The effect of linear stability analysis of triple diffusive convection in a vertically oscillating viscoelastic liquid of Oldroyd-B type is studied. The correction Rayleigh number is obtained by using perturbation method which gives prospect to control the convection. The eigenvalue is obtained by using perturbation method by adopting Venezian approach. From the study, it is observed that gravity modulation advances the onset of triple diffusive convection.<\/p>\r\n","references":"[1]\tA. J. Pearlstein, R. D. Harris and G. Terrones, \u201cThe onset of convective instability in a triply diffusive fluid layer,\u201d J. Fluid Mech., vol. 202, pp. 443-465, 1989.\r\n[2]\tR. A. Lopez, L. A. Romero and A. J. Pearlstein, \u201cEffect of rigid boundaries on the onset of convective instability in a triply diffusive fluid layer,\u201d Phys. Fluids A, vol. 2, pp. 897, 1990.\r\n[3]\tD. Poulikakos, \u201cDouble diffusive convection in a horizontal sparcely packed porous layer,\u201d Int. Comm. of Heat and Mass Transfer, vol. 13, pp. 587-598, 1986.\r\n[4]\tR. Sumithra, \u201cExact solution of triple diffusive Marangoni-convection in a composite layer,\u201d Int. J. Engg. Research and Tech., vol. 1, no. 5, pp. 1-13, 2012.\r\n[5]\tS. Rionero, \u201cTriple diffusive convection in porous media,\u201d Acta Mech., vol. 224, pp. 447\u2013458, 2013.\r\n[6]\tT. Sameena, \u201cHeat and mass transfer of triple Diffusive convection in Boussinesq-Stokes suspension using Ginzburg-Landau model,\u201d JP J. Heat and Mass transfer, vol. 14, no. 1, pp. 131-147, 2017.\r\n[7]\tP. M. Gresho and S. L. Sani, \u201cThe effects of gravity modulation on the stability of a heated fluid layer,\u201d J. Fluid Mech., vol. 40, no. 4, pp. 783-806, 1970. \r\n[8]\tP. G. Siddheshwar and S. Pranesh, \u201cEffect of temperature\/gravity modulation on the onset of magneto-convection in weak electrically conducting fluids with internal angular momentum,\u201d J. Magnetism and Magnetic Materials, vol. 192, pp. 159-176, 1999.\r\n[9]\tD. A. S. Rees and I. Pop, \u201cG-jitter induced free convection near a stagnation point,\u201d Heat and Mass Transfer, vol. 37, pp. 403-408, 2001.\r\n[10]\tT. Sameena and S. Pranesh, \u201cEffect of gravity modulation on the onset of Rayleigh-B\u00e9nard Convection in a weak electrically conducting couple stress fluid with saturated porous layer,\u201d Int. J. of Engg. Research & Tech., vol. 5, no. 1, pp. 914-928, 2016. \r\n[11]\t. G. Siddheshwar, G. N. Sekhar and G. Jayalatha, \u201cSurface tension driven convection in viscoelastic liquids with thermo rheological effect,\u201d Int. Comm. Heat and Mass transfer, vol. 38, no. 4, pp. 468-473, 2010.\r\n[12]\tM. Malashetty and M. Swamy, \u201cThe onset of double diffusive convection in a viscoelastic fluid layer,\u201d J. Non-Newtonian Fluid Mech., vol. 165, pp. 1129-1138, 2010.\r\n[13]\tM. Narayana, S. N. Gaikwad, P. Sibanda and R. B. Malge, \u201cDouble diffusive magneto-convection in viscoelastic fluids,\u201d Int. J. Heat and Mass Transfer, vol. 67, pp. 194\u2013201, 2013.\r\n[14]\tB. S. Bhadauria and P. Kiran, \u201cChaotic and oscillatory magneto-convection in a binary viscoelastic fluid under g-jitter,\u201d Int. J Heat and Mass Transfer, vol. 84, pp. 610-624, 2015.\r\n[15]\tT. Sameena and S. Pranesh, \u201cTriple diffusive convection in Oldroyd-B liquid,\u201d IOSR J. Math., vol. 12, no. 4, pp. 7-13, 2016.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 141, 2018"}