Search results for: Distributed Data Mining
5393 Alternative Robust Estimators for the Shape Parameters of the Burr XII Distribution
Authors: F. Z. Doğru, O. Arslan
Abstract:
In general, classical methods such as maximum likelihood (ML) and least squares (LS) estimation methods are used to estimate the shape parameters of the Burr XII distribution. However, these estimators are very sensitive to the outliers. To overcome this problem we propose alternative robust estimators based on the M-estimation method for the shape parameters of the Burr XII distribution. We provide a small simulation study and a real data example to illustrate the performance of the proposed estimators over the ML and the LS estimators. The simulation results show that the proposed robust estimators generally outperform the classical estimators in terms of bias and root mean square errors when there are outliers in data.
Keywords: Burr XII distribution, robust estimator, M-estimator, maximum likelihood, least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26595392 Democratic Political Socialization of the 5th and 6th Graders under the Authority of Dusit District Office, Bangkok
Authors: Mathinee Khongsatid, Phusit Phukamchanoad, Sakapas Sangchai
Abstract:
This research aims to study the democratic political socialization of the 5th and 6th Graders under the Authority of Dusit District Office, Bangkok by using stratified sampling for probability sampling and using purposive sampling for non-probability sampling to collect data toward the distribution of questionnaires to 300 respondents. This covers all of the schools under the authority of Dusit District Office. The researcher analyzed the data by using descriptive statistics which include arithmetic mean and standard deviation. The result shows that 5th and 6th graders under the authority of Dusit District Office, Bangkok, have displayed some characteristics following democratic political socialization both inside and outside classroom as well as outside school. However, the democratic political socialization in classroom through grouping and class participation is much more emphasized.
Keywords: Democratic, Political Socialization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16735391 The Methodology of Out-Migration in Georgia
Authors: Shorena Tsiklauri
Abstract:
Out-migration is an important issue for Georgia as well as since independence has loosed due to emigration one fifth of its population. During Soviet time out-migration from USSR was almost impossible and one of the most important instruments in regulating population movement within the Soviet Union was the system of compulsory residential registrations, so-called “propiska”. Since independent here was not any regulation for migration from Georgia. The majorities of Georgian migrants go abroad by tourist visa and then overstay, becoming the irregular labor migrants. The official statistics on migration published for this period was based on the administrative system of population registration, were insignificant in terms of numbers and did not represent the real scope of these migration movements. This paper discusses the data quality and methodology of migration statistics in Georgia and we are going to answer the questions: what is the real reason of increasing immigration flows according to the official numbers since 2000s?Keywords: Data quality, Georgia, methodology, out-migration, policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19125390 Day Type Identification for Algerian Electricity Load using Kohonen Maps
Authors: Mohamed Tarek Khadir, Damien Fay, Ahmed Boughrira
Abstract:
Short term electricity demand forecasts are required by power utilities for efficient operation of the power grid. In a competitive market environment, suppliers and large consumers also require short term forecasts in order to estimate their energy requirements in advance. Electricity demand is influenced (among other things) by the day of the week, the time of year and special periods and/or days such as Ramadhan, all of which must be identified prior to modelling. This identification, known as day-type identification, must be included in the modelling stage either by segmenting the data and modelling each day-type separately or by including the day-type as an input. Day-type identification is the main focus of this paper. A Kohonen map is employed to identify the separate day-types in Algerian data.Keywords: Day type identification, electricity Load, Kohonenmaps, load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17885389 Topology-Based Character Recognition Method for Coin Date Detection
Authors: Xingyu Pan, Laure Tougne
Abstract:
For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.
Keywords: Coin, detection, character recognition, topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14775388 Automatic Voice Classification System Based on Traditional Korean Medicine
Authors: Jaehwan Kang, Haejung Lee
Abstract:
This paper introduces an automatic voice classification system for the diagnosis of individual constitution based on Sasang Constitutional Medicine (SCM) in Traditional Korean Medicine (TKM). For the developing of this algorithm, we used the voices of 309 female speakers and extracted a total of 134 speech features from the voice data consisting of 5 sustained vowels and one sentence. The classification system, based on a rule-based algorithm that is derived from a non parametric statistical method, presents 3 types of decisions: reserved, positive and negative decisions. In conclusion, 71.5% of the voice data were diagnosed by this system, of which 47.7% were correct positive decisions and 69.7% were correct negative decisions.Keywords: Voice Classifier, Sasang Constitution Medicine, Traditional Korean Medicine, SCM, TKM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13895387 Twitter Sentiment Analysis during the Lockdown on New Zealand
Authors: Smah Doeban Almotiri
Abstract:
One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2021, until April 4, 2021. Natural language processing (NLP), which is a form of Artificial intelligent was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applied machine learning sentimental method such as Crystal Feel and extended the size of the sample tweet by using multiple tweets over a longer period of time.
Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5845386 A Frame Work for the Development of a Suitable Method to Find Shoot Length at Maturity of Mustard Plant Using Soft Computing Model
Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri
Abstract:
The production of a plant can be measured in terms of seeds. The generation of seeds plays a critical role in our social and daily life. The fruit production which generates seeds, depends on the various parameters of the plant, such as shoot length, leaf number, root length, root number, etc When the plant is growing, some leaves may be lost and some new leaves may appear. It is very difficult to use the number of leaves of the tree to calculate the growth of the plant.. It is also cumbersome to measure the number of roots and length of growth of root in several time instances continuously after certain initial period of time, because roots grow deeper and deeper under ground in course of time. On the contrary, the shoot length of the tree grows in course of time which can be measured in different time instances. So the growth of the plant can be measured using the data of shoot length which are measured at different time instances after plantation. The environmental parameters like temperature, rain fall, humidity and pollution are also play some role in production of yield. The soil, crop and distance management are taken care to produce maximum amount of yields of plant. The data of the growth of shoot length of some mustard plant at the initial stage (7,14,21 & 28 days after plantation) is available from the statistical survey by a group of scientists under the supervision of Prof. Dilip De. In this paper, initial shoot length of Ken( one type of mustard plant) has been used as an initial data. The statistical models, the methods of fuzzy logic and neural network have been tested on this mustard plant and based on error analysis (calculation of average error) that model with minimum error has been selected and can be used for the assessment of shoot length at maturity. Finally, all these methods have been tested with other type of mustard plants and the particular soft computing model with the minimum error of all types has been selected for calculating the predicted data of growth of shoot length. The shoot length at the stage of maturity of all types of mustard plants has been calculated using the statistical method on the predicted data of shoot length.Keywords: Fuzzy time series, neural network, forecasting error, average error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15915385 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that Microsoft project does not store the data in database, so the data cannot automatically be imported from Microsoft Project into Microsoft Excel. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI (Business Intelligence) for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, Human Resource (HR) reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.
Keywords: Primavera P6, SQL, Power BI, Earned Value Management, Integration Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4325384 Dynamic Performance Indicators for Aged-Care Construction Projects
Authors: Norman Wu, Darren Sun
Abstract:
Key performance indicators (KPIs) are used for post result evaluation in the construction industry, and they normally do not have provisions for changes. This paper proposes a set of dynamic key performance indicators (d-KPIs) which predicts the future performance of the activity being measured and presents the opportunity to change practice accordingly. Critical to the predictability of a construction project is the ability to achieve automated data collection. This paper proposes an effective way to collect the process and engineering management data from an integrated construction management system. The d-KPI matrix, consisting of various indicators under seven categories, developed from this study can be applied to close monitoring of the development projects of aged-care facilities. The d-KPI matrix also enables performance measurement and comparison at both project and organization levels.Keywords: Aged-care project, construction, dynamic KPI, healthcare system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23765383 Secure Image Retrieval Based On Orthogonal Decomposition under Cloud Environment
Authors: Yanyan Xu, Lizhi Xiong, Zhengquan Xu, Li Jiang
Abstract:
In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.
Keywords: Secure image retrieval, secure search, orthogonal decomposition, secure cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21145382 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation
Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone
Abstract:
Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.
Keywords: Digital Twin, Distribution System Operator, Electrical Distribution System, Smart Grid Controller, Supervisory Control and Data Acquisition System, Smart Recursive Load Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555381 Parametric Analysis on Information Technology Adoption and Organizational Efficiency in Northern Nigeria
Authors: A. Y. Dutse, S. I. Ningi
Abstract:
The adoption and diffusion of Information Technology (IT) is one of the fastest growing trends in organizations operating within Nigeria’s economy. Public and private organizations make huge capital investments in an attempt acquire and adopt the state-of-the-art IT for improving operational efficiency. In this study the level of IT adoption is considered the primary driver of efficiency witnessed by organizations. The research gathered data on the intensity of IT usage, and resultant efficiency increase in the organizations’ operations. The data was analyzed using multiple regression analysis and reveals that high level of IT usage has enhance efficiency of private and public organizations in Northern part of Nigeria with organizations having strategic intent on IT adoption indicating higher efficiency gains.
Keywords: IT Adoption, Nigeria, Organizational efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13735380 Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads
Authors: Kayijuka Idrissa
Abstract:
This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.
Keywords: Statistical methods, Poisson distribution, car moving techniques, traffic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18195379 Grid-based Supervised Clustering - GBSC
Authors: Pornpimol Bungkomkhun, Surapong Auwatanamongkol
Abstract:
This paper presents a supervised clustering algorithm, namely Grid-Based Supervised Clustering (GBSC), which is able to identify clusters of any shapes and sizes without presuming any canonical form for data distribution. The GBSC needs no prespecified number of clusters, is insensitive to the order of the input data objects, and is capable of handling outliers. Built on the combination of grid-based clustering and density-based clustering, under the assistance of the downward closure property of density used in bottom-up subspace clustering, the GBSC can notably reduce its search space to avoid the memory confinement situation during its execution. On two-dimension synthetic datasets, the GBSC can identify clusters with different shapes and sizes correctly. The GBSC also outperforms other five supervised clustering algorithms when the experiments are performed on some UCI datasets.Keywords: supervised clustering, grid-based clustering, subspace clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16105378 Motor Gear Fault Diagnosis by Current, Noise and Vibration on AC Machine Considering Environment
Authors: Sun-Ki Hong, Ki-Seok Kim, Yong-Ho Cho
Abstract:
Lots of motors have been being used in industry. Therefore many researchers have studied about the failure diagnosis of motors. In this paper, the effect of measuring environment for diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. For bad and good environment, the diagnosis results are compared. From these, it is shown that the bad measuring environment may not be able to detect exactly the motor gear fault. Therefore it is emphasized that the measuring environment should be carefully prepared.Keywords: Motor fault, Diagnosis, FFT, Vibration, Noise, q-axis current, measuring environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25065377 SeCloudBPMN: A Lightweight Extension for BPMN Considering Security Threats in the Cloud
Authors: Somayeh Sobati Moghadam
Abstract:
Business processes are crucial for organizations and help businesses to evaluate and optimize their performance and processes against current and future-state business goals. Outsourcing business processes to the cloud becomes popular due to a wide varsity of benefits and cost-saving. However, cloud outsourcing raises enterprise data security concerns, which must be incorporated in Business Process Model and Notation (BPMN). This paper, presents SeCloudBPMN, a lightweight extension for BPMN which extends the BPMN to explicitly support the security threats in the cloud as an outsourcing environment. SeCloudBPMN helps business’s security experts to outsource business processes to the cloud considering different threats from inside and outside the cloud. In this way, appropriate security countermeasures could be considered to preserve data security in business processes outsourcing to the cloud.Keywords: BPMN, security threats, cloud computing, graphical representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7795376 Non-Parametric, Unconditional Quantile Estimation of Efficiency in Microfinance Institutions
Authors: Komlan Sedzro
Abstract:
We apply the non-parametric, unconditional, hyperbolic order-α quantile estimator to appraise the relative efficiency of Microfinance Institutions in Africa in terms of outreach. Our purpose is to verify if these institutions, which must constantly try to strike a compromise between their social role and financial sustainability are operationally efficient. Using data on African MFIs extracted from the Microfinance Information eXchange (MIX) database and covering the 2004 to 2006 periods, we find that more efficient MFIs are also the most profitable. This result is in line with the view that social performance is not in contradiction with the pursuit of excellent financial performance. Our results also show that large MFIs in terms of asset and those charging the highest fees are not necessarily the most efficient.Keywords: Data envelopment analysis, microfinance institutions, quantile estimation of efficiency, social and financial performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16795375 Spatial Structure of First-Order Voronoi for the Future of Roundabout Cairo since 1867
Authors: Ali Essam El Shazly
Abstract:
The Haussmannization plan of Cairo in 1867 formed a regular network of roundabout spaces, though deteriorated at present. The method of identifying the spatial structure of roundabout Cairo for conservation matches the voronoi diagram with the space syntax through their geometrical property of spatial convexity. In this initiative, the primary convex hull of first-order voronoi adopts the integral and control measurements of space syntax on Cairo’s roundabout generators. The functional essence of royal palaces optimizes the roundabout structure in terms of spatial measurements and the symbolic voronoi projection of 'Tahrir Roundabout' over the Giza Nile and Pyramids. Some roundabouts of major public and commercial landmarks surround the pole of 'Ezbekia Garden' with a higher control than integral measurements, which filter the new spatial structure from the adjacent traditional town. Nevertheless, the least integral and control measures correspond to the voronoi contents of pollutant workshops and the plateau of old Cairo Citadel with the visual compensation of new royal landmarks on top. Meanwhile, the extended suburbs of infinite voronoi polygons arrange high control generators of chateaux housing in 'garden city' environs. The point pattern of roundabouts determines the geometrical characteristics of voronoi polygons. The measured lengths of voronoi edges alternate between the zoned short range at the new poles of Cairo and the distributed structure of longer range. Nevertheless, the shortest range of generator-vertex geometry concentrates at 'Ezbekia Garden' where the crossways of vast Cairo intersect, which maximizes the variety of choice at different spatial resolutions. However, the symbolic 'Hippodrome' which is the largest public landmark forms exclusive geometrical measurements, while structuring a most integrative roundabout to parallel the royal syntax. Overview of the symbolic convex hull of voronoi with space syntax interconnects Parisian Cairo with the spatial chronology of scattered monuments to conceive one universal Cairo structure. Accordingly, the approached methodology of 'voronoi-syntax' prospects the future conservation of roundabout Cairo at the inferred city-level concept.Keywords: Roundabout Cairo, first-order Voronoi, space syntax, spatial structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16885374 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect
Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary
Abstract:
Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyze the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.
Keywords: Rapid Prototyping, Selective Laser Sintering, Cranial defect, Dimensional Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33625373 Enhancing Children’s English Vocabulary Acquisition through Digital Storytelling at Happy Kids Kindergarten, Palembang, Indonesia
Authors: Gaya Tridinanti
Abstract:
Enhanching English vocabulary in early childhood is the main problem often faced by teachers. Thus, the purpose of this study was to determine the enhancement of children’s English vocabulary acquisition by using digital storytelling. This type of research was an action research. It consisted of a series of four activities done in repeated cycles: planning, implementation, observation, and reflection. The subject of the study consisted of 30 students of B group (5-6 years old) attending Happy Kids Kindergarten Palembang, Indonesia. This research was conducted in three cycles. The methods used for data collection were observation and documentation. Descriptive qualitative and quantitative methods were also used to analyse the data. The research showed that the digital storytelling learning activities could enhance the children’s English vocabulary acquisition. It is based on the data in which the enhancement in pre-cycle was 37% and 51% in Cycle I. In Cycle II it was 71% and in Cycle III it was 89.3%. The results showed an enhancement of about 14% from the pre-cycle to Cycle I, 20% from Cycle I to Cycle II, and enhancement of about 18.3% from Cycle II to Cycle III. The conclusion of this study suggests that digital storytelling learning method could enhance the English vocabulary acquisition of B group children at the Happy Kids Kindergarten Palembang. Therefore, digital storytelling can be considered as an alternative to improve English language learning in the classroom.Keywords: Acquisition, enhancing, digital storytelling, English vocabulary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16545372 Trust In Ad Media
Authors: Duygu Aydin
Abstract:
Advertising today has already become an integral part of human life as a building block of the consumer community. A component of the value chain of the media, advertising sector is struggling increasingly harder to find new methods to reach consumers. The tendency towards experimental marketing practices is increasing day by day, especially to divert consumers from the idea “They are selling something to me.” It is therefore considered a good idea to investigate the trust in ad media of consumers, who are today exposed to a great bulk of information from advertising sector. In this study, the current value of ad media for the young consumer will be investigated. Data on various ad media reliability will be comparatively analyzed and young consumers will be traced by including university students in the study. In this research, which will be performed on students studying at the Selçuk University (Turkey) by random sampling method, data will be obtained by survey technique and evaluated by a statistical analysis.Keywords: Trust in advertising, ad medium, media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19485371 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: Computational social science, movie preference, machine learning, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16515370 Fast Painting with Different Colors Using Cross Correlation in the Frequency Domain
Authors: Hazem M. El-Bakry
Abstract:
In this paper, a new technique for fast painting with different colors is presented. The idea of painting relies on applying masks with different colors to the background. Fast painting is achieved by applying these masks in the frequency domain instead of spatial (time) domain. New colors can be generated automatically as a result from the cross correlation operation. This idea was applied successfully for faster specific data (face, object, pattern, and code) detection using neural algorithms. Here, instead of performing cross correlation between the input input data (e.g., image, or a stream of sequential data) and the weights of neural networks, the cross correlation is performed between the colored masks and the background. Furthermore, this approach is developed to reduce the computation steps required by the painting operation. The principle of divide and conquer strategy is applied through background decomposition. Each background is divided into small in size subbackgrounds and then each sub-background is processed separately by using a single faster painting algorithm. Moreover, the fastest painting is achieved by using parallel processing techniques to paint the resulting sub-backgrounds using the same number of faster painting algorithms. In contrast to using only faster painting algorithm, the speed up ratio is increased with the size of the background when using faster painting algorithm and background decomposition. Simulation results show that painting in the frequency domain is faster than that in the spatial domain.Keywords: Fast Painting, Cross Correlation, Frequency Domain, Parallel Processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17955369 Selection of Best Band Combination for Soil Salinity Studies using ETM+ Satellite Images (A Case study: Nyshaboor Region,Iran)
Authors: Sanaeinejad, S. H.; A. Astaraei, . P. Mirhoseini.Mousavi, M. Ghaemi,
Abstract:
One of the main environmental problems which affect extensive areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Neyshaboor area, North East of Iran was selected as a field study of this research. Landsat satellite images for this area were used in order to prepare suitable learning samples for processing and classifying the images. 300 locations were selected randomly in the area to collect soil samples and finally 273 locations were reselected for further laboratory works and image processing analysis. Electrical conductivity of all samples was measured. Six reflective bands of ETM+ satellite images taken from the study area in 2002 were used for soil salinity classification. The classification was carried out using common algorithms based on the best composition bands. The results showed that the reflective bands 7, 3, 4 and 1 are the best band composition for preparing the color composite images. We also found out, that hybrid classification is a suitable method for identifying and delineation of different salinity classes in the area.
Keywords: Soil salinity, Remote sensing, Image processing, ETM+, Nyshaboor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20215368 Assessment of the Situation and the Cause of Junk Food Consumption in Iranians: A Qualitative Study
Authors: A. Rezazadeh, B Damari, S. Riazi-Esfahani, M. Hajian
Abstract:
The consumption of junk food in Iran is alarmingly increasing. This study aimed to investigate the influencing factors of junk food consumption and amendable interventions that are criticized and approved by stakeholders, in order to presented to health policy makers. The articles and documents related to the content of study were collected by using the appropriate key words such as junk food, carbonated beverage, chocolate, candy, sweets, industrial fruit juices, potato chips, French fries, puffed corn, cakes, biscuits, sandwiches, prepared foods and popsicles, ice cream, bar, chewing gum, pastilles and snack, in scholar.google.com, pubmed.com, eric.ed.gov, cochrane.org, magiran.com, medlib.ir, irandoc.ac.ir, who.int, iranmedex.com, sid.ir, pubmed.org and sciencedirect.com databases. The main key points were extracted and included in a checklist and qualitatively analyzed. Then a summarized abstract was prepared in a format of a questionnaire to be presented to stakeholders. The design of this was qualitative (Delphi). According to this method, a questionnaire was prepared based on reviewing the articles and documents and it was emailed to stakeholders, who were asked to prioritize and choose the main problems and effective interventions. After three rounds, consensus was obtained. Studies revealed high consumption of junk foods in the Iranian population, especially in children and adolescents. The most important affecting factors include availability, low price, media advertisements, preference of fast foods taste, the variety of the packages and their attractiveness, low awareness and changing in lifestyle. Main interventions recommended by stakeholders include developing a protective environment, educational interventions, increasing healthy food access and controlling media advertisements and putting pressure from the Industry and Mining Ministry on producers to produce healthy snacks. According to the findings, the results of this study may be proposed to public health policymakers as an advocacy paper and to be integrated in the interventional programs of Health and Education ministries and the media. Also, implementation of supportive meetings with the producers of alternative healthy products is suggested.
Keywords: Junk foods, situation, qualitative study, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12935367 Bullies and Their Mothers: Who Influence Whom?
Authors: Kostas A. Fanti, Stelios Georgiou
Abstract:
Even though most researchers would agree that in symbiotic relationships, like the one between parent and child, influences become reciprocal over time, empirical evidence supporting this claim is limited. The aim of the current study was to develop and test a model describing the reciprocal influence between characteristics of the parent-child relationship, such as closeness and conflict, and the child-s bullying and victimization experiences at school. The study used data from the longitudinal Study of Early Child-Care, conducted by the National Institute of Child Health and Human Development. The participants were dyads of early adolescents (5th and 6th graders during the two data collection waves) and their mothers (N=1364). Supporting our hypothesis, the findings suggested a reciprocal association between bullying and positive parenting, although this association was only significant for boys. Victimization and positive parenting were not significantly interrelated.Keywords: bullying, parenting, reciprocal associations, victimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16435366 Expert System for Chose Material used Gears
Authors: E.V. Butilă, F. Gîrbacia
Abstract:
In order to give high expertise the computer aided design of mechanical systems involves specific activities focused on processing two type of information: knowledge and data. Expert rule based knowledge is generally processing qualitative information and involves searching for proper solutions and their combination into synthetic variant. Data processing is based on computational models and it is supposed to be inter-related with reasoning in the knowledge processing. In this paper an Intelligent Integrated System is proposed, for the objective of choosing the adequate material. The software is developed in Prolog – Flex software and takes into account various constraints that appear in the accurate operation of gears.Keywords: Expert System, computer aided design, gear boxdesign, chose material, Prolog, Flex
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16955365 Enhancement of Higher Order Thinking Skills among Teacher Trainers by Fun Game Learning Approach
Authors: Malathi Balakrishnan, Gananathan M. Nadarajah, Saraswathy Vellasamy, Evelyn Gnanam William George
Abstract:
The purpose of the study is to explore how the fun game-learning approach enhances teacher trainers’ higher order thinking skills. Two-day fun filled fun game learning-approach was introduced to teacher trainers as a Continuous Professional Development Program (CPD). 26 teacher trainers participated in this Transformation of Teaching and Learning Fun Way Program, organized by Institute of Teacher Education Malaysia. Qualitative research technique was adopted as the researchers observed the participants’ higher order thinking skills developed during the program. Data were collected from observational checklist; interview transcriptions of four participants and participants’ reflection notes. All the data were later analyzed with NVivo data analysis process. The finding of this study presented five main themes, which are critical thinking, hands on activities, creating, application and use of technology. The studies showed that the teacher trainers’ higher order thinking skills were enhanced after the two-day CPD program. Therefore, Institute of Teacher Education will have more success using the fun way game-learning approach to develop higher order thinking skills among its teacher trainers who can implement these skills to their trainee teachers in future. This study also added knowledge to Constructivism learning theory, which will further highlight the prominence of the fun way learning approach to enhance higher order thinking skills.
Keywords: Constructivism, game-learning approach, higher order thinking skill, teacher trainer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28185364 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.
Keywords: Palm oil, fatty acid, NIRS, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4372