Search results for: step less Q control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4604

Search results for: step less Q control

1844 On Constructing a Cubically Convergent Numerical Method for Multiple Roots

Authors: Young Hee Geum

Abstract:

We propose the numerical method defined by

xn+1 = xn − λ[f(xn − μh(xn))/]f'(xn) , n ∈ N,

and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-precision computability.

Keywords: Asymptotic error constant, iterative method , multiple root, root-finding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
1843 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: Coupled Markov random field, environment, object-based analysis, Polarimetric SAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860
1842 Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors

Authors: Buket Metin

Abstract:

Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.

Keywords: Construction process, construction technology, decision making, environmental performance, subcontractors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
1841 Design of PI Controller Using MRAC Techniques For Couple-Tanks Process

Authors: Boonsrimuang P., Numsomran A., Kangwanrat S.

Abstract:

The typical coupled-tanks process that is TITO plant has the difficulty in controller design because changing of system dynamics and interacting of process. This paper presents design methodology of auto-adjustable PI controller using MRAC technique. The proposed method can adjust the controller parameters in response to changes in plant and disturbance real time by referring to the reference model that specifies properties of the desired control system.

Keywords: PI controller, MRAC, Couple-tanks process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
1840 Revival of the Modern Wing Sails for the Propulsion of Commercial Ships

Authors: Pravesh Chandra Shukla, Kunal Ghosh

Abstract:

Over 90% of the world trade is carried by the international shipping industry. As most of the countries are developing, seaborne trade continues to expand to bring benefits for consumers across the world. Studies show that world trade will increase 70-80% through shipping in the next 15-20 years. Present global fleet of 70000 commercial ships consumes approximately 200 million tonnes of diesel fuel a year and it is expected that it will be around 350 million tonnes a year by 2020. It will increase the demand for fuel and also increase the concentration of CO2 in the atmosphere. So, it-s essential to control this massive fuel consumption and CO2 emission. The idea is to utilize a diesel-wind hybrid system for ship propulsion. Use of wind energy by installing modern wing-sails in ships can drastically reduce the consumption of diesel fuel. A huge amount of wind energy is available in oceans. Whenever wind is available the wing-sails would be deployed and the diesel engine would be throttled down and still the same forward speed would be maintained. Wind direction in a particular shipping route is not same throughout; it changes depending upon the global wind pattern which depends on the latitude. So, the wing-sail orientation should be such that it optimizes the use of wind energy. We have made a computer programme in which by feeding the data regarding wind velocity, wind direction, ship-motion direction; we can find out the best wing-sail position and fuel saving for commercial ships. We have calculated net fuel saving in certain international shipping routes, for instance, from Mumbai in India to Durban in South Africa. Our estimates show that about 8.3% diesel fuel can be saved by utilizing the wind. We are also developing an experimental model of the ship employing airfoils (small scale wingsail) and going to test it in National Wind Tunnel Facility in IIT Kanpur in order to develop a control mechanism for a system of airfoils.

Keywords: Commercial ships, Wind diesel hybrid system, Wing-sail, Wind direction, Wind velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3959
1839 Study the Efficacies of Green Manure Application as Chickpea Pre Plant

Authors: Khosro Mohammadi, Amir Ghalavand, Majid Aghaalikhani

Abstract:

In order to Study the efficacy application of green manure as chickpea pre plant, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different strategies for soil fertilization were investigated on grain yield and yield component, minerals, organic compounds and cooking time of chickpea. Experimental units were arranged in splitsplit plots based on randomized complete blocks with three replications. Main plots consisted of (G1): establishing a mixed vegetation of Vicia panunica and Hordeum vulgare and (G2): control, as green manure levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): 20 t.ha-1 farmyard manure; (N2): 10 t.ha-1 compost; (N3): 75 kg.ha-1 triple super phosphate; (N4): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost and (N5): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost + 50 kg.ha-1 triple super phosphate were considered in sub plots. Furthermoree four levels of biofertilizers consisted of (B1): Bacillus lentus + Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus + Pseudomonas putida + Trichoderma harzianum; and (B4): control (without biofertilizers) were arranged in sub-sub plots. Results showed that integrating biofertilizers (B3) and green manure (G1) produced the highest grain yield. The highest amounts of yield were obtained in G1×N5 interaction. Comparison of all 2-way and 3-way interactions showed that G1N5B3 was determined as the superior treatment. Significant increasing of N, P2O5, K2O, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis abilities of the crops. The combined application of compost, farmyard manure and chemical phosphorus (N5) in addition to having the highest yield, had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Keywords: chickpea, biofertilizer, nitrogen fixation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
1838 Neural Network Evaluation of FRP Strengthened RC Buildings Subjected to Near-Fault Ground Motions having Fling Step

Authors: Alireza Mortezaei, Kimia Mortezaei

Abstract:

Recordings from recent earthquakes have provided evidence that ground motions in the near field of a rupturing fault differ from ordinary ground motions, as they can contain a large energy, or “directivity" pulse. This pulse can cause considerable damage during an earthquake, especially to structures with natural periods close to those of the pulse. Failures of modern engineered structures observed within the near-fault region in recent earthquakes have revealed the vulnerability of existing RC buildings against pulse-type ground motions. This may be due to the fact that these modern structures had been designed primarily using the design spectra of available standards, which have been developed using stochastic processes with relatively long duration that characterizes more distant ground motions. Many recently designed and constructed buildings may therefore require strengthening in order to perform well when subjected to near-fault ground motions. Fiber Reinforced Polymers are considered to be a viable alternative, due to their relatively easy and quick installation, low life cycle costs and zero maintenance requirements. The objective of this paper is to investigate the adequacy of Artificial Neural Networks (ANN) to determine the three dimensional dynamic response of FRP strengthened RC buildings under the near-fault ground motions. For this purpose, one ANN model is proposed to estimate the base shear force, base bending moments and roof displacement of buildings in two directions. A training set of 168 and a validation set of 21 buildings are produced from FEA analysis results of the dynamic response of RC buildings under the near-fault earthquakes. It is demonstrated that the neural network based approach is highly successful in determining the response.

Keywords: Seismic evaluation, FRP, neural network, near-fault ground motion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1837 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall

Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi

Abstract:

Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.

Keywords: Steel plate shear wall, Abacus software, finite element method, boundary element, seismic structural improvement, Von misses Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 504
1836 Evolutionary Design of Polynomial Controller

Authors: R. Matousek, S. Lang, P. Minar, P. Pivonka

Abstract:

In the control theory one attempts to find a controller that provides the best possible performance with respect to some given measures of performance. There are many sorts of controllers e.g. a typical PID controller, LQR controller, Fuzzy controller etc. In the paper will be introduced polynomial controller with novel tuning method which is based on the special pole placement encoding scheme and optimization by Genetic Algorithms (GA). The examples will show the performance of the novel designed polynomial controller with comparison to common PID controller.

Keywords: Evolutionary design, Genetic algorithms, PID controller, Pole placement, Polynomial controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
1835 Contribution to Improving the DFIG Control Using a Multi-Level Inverter

Authors: Imane El Karaoui, Mohammed Maaroufi, Hamid Chaikhy

Abstract:

Doubly Fed Induction Generator (DFIG) is one of the most reliable wind generator. Major problem in wind power generation is to generate Sinusoidal signal with very low THD on variable speed caused by inverter two levels used. This paper presents a multi-level inverter whose objective is to reduce the THD and the dimensions of the output filter. This work proposes a three-level NPC-type inverter, the results simulation are presented demonstrating the efficiency of the proposed inverter.

Keywords: DFIG, multilevel inverter, NPC inverter , THD, Induction machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
1834 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria

Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman

Abstract:

Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstress. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhance agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings, decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and antinutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.

Keywords: Anti-nutritional, healthy livelihood, nutritional waste, organic waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
1833 Speciation, Preconcentration, and Determination of Iron(II) and (III) Using 1,10-Phenanthroline Immobilized on Alumina-Coated Magnetite Nanoparticles as a Solid Phase Extraction Sorbent in Pharmaceutical Products

Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad

Abstract:

The proposed method for speciation, preconcentration and determination of Fe(II) and Fe(III) in pharmaceutical products was developed using of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) as solid phase extraction (SPE) sorbent in magnetic mixed hemimicell solid phase extraction (MMHSPE) technique followed by flame atomic absorption spectrometry analysis. The procedure is based on complexation of Fe(II) with 1, 10-phenanthroline (OP) as complexing reagent for Fe(II) that immobilized on the modified Fe3O4/Al2O3 NPs. The extraction and concentration process for pharmaceutical sample was carried out in a single step by mixing the extraction solvent, magnetic adsorbents under ultrasonic action. Then, the adsorbents were isolated from the complicated matrix easily with an external magnetic field. Fe(III) ions determined after facility reduced to Fe(II) by added a proper reduction agent to sample solutions. Compared with traditional methods, the MMHSPE method simplified the operation procedure and reduced the analysis time. Various influencing parameters on the speciation and preconcentration of trace iron, such as pH, sample volume, amount of sorbent, type and concentration of eluent, were studied. Under the optimized operating conditions, the preconcentration factor of the modified nano magnetite for Fe(II) 167 sample was obtained. The detection limits and linear range of this method for iron were 1.0 and 9.0 - 175 ng.mL−1, respectively. Also the relative standard deviation for five replicate determinations of 30.00 ng.mL-1 Fe2+ was 2.3%.

Keywords: Alumina-coated magnetite nanoparticles, magnetic mixed hemimicell solid-phase extraction, Fe(ΙΙ) and Fe(ΙΙΙ), pharmaceutical sample.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
1832 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
1831 A β-mannanase from Fusarium oxysporum SS-25 via Solid State Fermentation on Brewer’s Spent Grain: Medium Optimization by Statistical Tools, Kinetic Characterization and Its Applications

Authors: S. S. Rana, C. Janveja, S. K. Soni

Abstract:

This study is concerned with the optimization of fermentation parameters for the hyper production of mannanase from Fusarium oxysporum SS-25 employing two step statistical strategy and kinetic characterization of crude enzyme preparation. The Plackett-Burman design used to screen out the important factors in the culture medium revealed 20% (w/w) wheat bran, 2% (w/w) each of potato peels, soyabean meal and malt extract, 1% tryptone, 0.14% NH4SO4, 0.2% KH2PO4, 0.0002% ZnSO4, 0.0005% FeSO4, 0.01% MnSO4, 0.012% SDS, 0.03% NH4Cl, 0.1% NaNO3 in brewer’s spent grain based medium with 50% moisture content, inoculated with 2.8×107 spores and incubated at 30oC for 6 days to be the main parameters influencing the enzyme production. Of these factors, four variables including soyabean meal, FeSO4, MnSO4 and NaNO3 were chosen to study the interactive effects and their optimum levels in central composite design of response surface methodology with the final mannanase yield of 193 IU/gds. The kinetic characterization revealed the crude enzyme to be active over broader temperature and pH range. This could result in 26.6% reduction in kappa number with 4.93% higher tear index and 1% increase in brightness when used to treat the wheat straw based kraft pulp. The hydrolytic potential of enzyme was also demonstrated on both locust bean gum and guar gum.

Keywords: Brewer’s Spent Grain, Fusarium oxysporum, Mannanase, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5169
1830 Effect of Assumptions of Normal Shock Location on the Design of Supersonic Ejectors for Refrigeration

Authors: Payam Haghparast, Mikhail V. Sorin, Hakim Nesreddine

Abstract:

The complex oblique shock phenomenon can be simply assumed as a normal shock at the constant area section to simulate a sharp pressure increase and velocity decrease in 1-D thermodynamic models. The assumed normal shock location is one of the greatest sources of error in ejector thermodynamic models. Most researchers consider an arbitrary location without justifying it. Our study compares the effect of normal shock place on ejector dimensions in 1-D models. To this aim, two different ejector experimental test benches, a constant area-mixing ejector (CAM) and a constant pressure-mixing (CPM) are considered, with different known geometries, operating conditions and working fluids (R245fa, R141b). In the first step, in order to evaluate the real value of the efficiencies in the different ejector parts and critical back pressure, a CFD model was built and validated by experimental data for two types of ejectors. These reference data are then used as input to the 1D model to calculate the lengths and the diameters of the ejectors. Afterwards, the design output geometry calculated by the 1D model is compared directly with the corresponding experimental geometry. It was found that there is a good agreement between the ejector dimensions obtained by the 1D model, for both CAM and CPM, with experimental ejector data. Furthermore, it is shown that normal shock place affects only the constant area length as it is proven that the inlet normal shock assumption results in more accurate length. Taking into account previous 1D models, the results suggest the use of the assumed normal shock location at the inlet of the constant area duct to design the supersonic ejectors.

Keywords: 1D model, constant area-mixing, constant pressure-mixing, normal shock location, ejector dimensions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
1829 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System

Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung

Abstract:

In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.

Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
1828 Urban Environment Quality Improvement Planning Case Study: Moft Abad Neighborhood, Tehran, Iran

Authors: Elham Lashkari, Mehrshad Khalaj

Abstract:

Rapid enlargement and physical development of cities have facilitated the emergence of a number of city life crises and decrease of environment quality. Subsequently, the need for noticing the concept of quality and its improvement in urban environments, besides quantitative issues, is obviously recognized. In the domain of urban ideas the importance of taking these issues into consideration is obvious not only in accordance to sustainable development concepts and improvement of public environment quality, but also in the enhancement of social and behavioral models. The major concern of present article is to study the nature of urban environment quality in urban development plans, which is important not only in the concept and the aim of projects but also in their execution procedure. As a result, this paper is going to utilize planning capacities caused by environmental virtues in the planning procedure of Moft Abad neighborhood. Thus, at the first step, applying the Analytical Hierarchy Process (AHP), it has assessed quantitative environmental issues. The present conditions of Moft Abad state that “the neighborhood is generally suffering from the lack of qualitative parameters, and the previously formed planning procedures could not take the sustainable and developmental paths which are aimed at environment quality virtues." The diminution of economical and environmental virtues has resulted in the diminution of residential and social virtues. Therefore, in order to enhance the environment quality in Moft Abad, the present paper has tried to supply the subject plans in order to make a safe, healthy, and lively neighborhood.

Keywords: Urban Environment Quality, Neighborhood Plan, Urban Development Plan, Analytical Hierarchy Process (AHP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
1827 An Experimental Multi-Agent Robot System for Operating in Hazardous Environments

Authors: Y. J. Huang, J. D. Yu, B. W. Hong, C. H. Tai, T. C. Kuo

Abstract:

In this paper, a multi-agent robot system is presented. The system consists of four robots. The developed robots are able to automatically enter and patrol a harmful environment, such as the building infected with virus or the factory with leaking hazardous gas. Further, every robot is able to perform obstacle avoidance and search for the victims. Several operation modes are designed: remote control, obstacle avoidance, automatic searching, and so on.

Keywords: autonomous robot, field programmable gate array, obstacle avoidance, ultrasonic sensor, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
1826 Web-Based Control and Notification for Home Automation Alarm Systems

Authors: Helder Adão, Rui Antunes, Frederico Grilo

Abstract:

This paper describes the project and development of a very low-cost and small electronic prototype, especially designed for monitoring and controlling existing home automation alarm systems (intruder, smoke, gas, flood, etc.), via TCP/IP, with a typical web browser. Its use will allow home owners to be immediately alerted and aware when an alarm event occurs, and being also able to interact with their home automation alarm system, disarming, arming and watching event alerts, with a personal wireless Wi-Fi PDA or smartphone logged on to a dedicated predefined web page, and using also a PC or Laptop.

Keywords: Alarm Systems, Home Automation, Web-Server, TCP/IP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3197
1825 A Two-Step, Temperature-Staged Direct Coal Liquefaction Process

Authors: Reyna Singh, David Lokhat, Milan Carsky

Abstract:

The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal remains an abundant resource. The aim of this work was to produce a high value hydrocarbon liquid product using a Direct Coal Liquefaction (DCL) process at, relatively mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated in a dual reactor lab-scale pilot plant facility. The objectives included maximising thermal dissolution of the coal in the presence of tetralin as the hydrogen donor solvent in the first stage with 2:1 and 3:1 solvent: coal ratios. Subsequently, in the second stage, hydrogen saturation, in particular, hydrodesulphurization (HDS) performance was assessed. Two commercial hydrotreating catalysts were investigated viz. NickelMolybdenum (Ni-Mo) and Cobalt-Molybdenum (Co-Mo). GC-MS results identified 77 compounds and various functional groups present in the first and second stage liquid product. In the first stage 3:1 ratios and liquid product yields catalysed by magnetite were favoured. The second stage product distribution showed an increase in the BTX (Benzene, Toluene, Xylene) quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, Ni-Mo had an improved performance over Co-Mo. Co-Mo is selective to a higher concentration of cyclohexane. For 16 days on stream each, Ni-Mo had a higher activity than Co-Mo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated. 

Keywords: Catalyst, coal, liquefaction, temperature-staged.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
1824 Research and Development of Net-Centric Information Sharing Platform

Authors: Xiaoqing Wang, Fang Youyuan, Zheng Yanxing, Gu Tianyang, Zong Jianjian, Tong Jinrong

Abstract:

Compared with traditional distributed environment, the net-centric environment brings on more demanding challenges for information sharing with the characteristics of ultra-large scale and strong distribution, dynamic, autonomy, heterogeneity, redundancy. This paper realizes an information sharing model and a series of core services, through which provides an open, flexible and scalable information sharing platform.

Keywords: Net-centric environment, Information sharing, Metadata registry and catalog, Cross-domain data access control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
1823 Holistic Approach to Teaching Mathematics in Secondary School as a Means of Improving Students’ Comprehension of Study Material

Authors: Natalia Podkhodova, Olga Sheremeteva, Mariia Soldaeva

Abstract:

Creating favourable conditions for students’ comprehension of mathematical content is one of the primary problems in teaching mathematics in secondary school. The fact of comprehension includes the ability to build a working situational model and thus becomes an important means of solving mathematical problems. This paper describes a holistic approach to teaching mathematics designed to address the primary challenges of such teaching; specifically, the challenge of students’ comprehension. Essentially, this approach consists of (1) establishing links between the attributes of the notion: the sense, the meaning, and the term; (2) taking into account the components of student’s subjective experience—value-based emotions, contextual, procedural and communicative—during the educational process; (3) linking together different ways to present mathematical information; (4) identifying and leveraging the relationships between real, perceptual and conceptual (scientific) mathematical spaces by applying real-life situational modelling. The article describes approaches to the practical use of these foundational concepts. Identifying how proposed methods and techniques influence understanding of material used in teaching mathematics was the primary goal. The study included an experiment in which 256 secondary school students took part: 142 in the study group and 114 in the control group. All students in these groups had similar levels of achievement in math and studied math under the same curriculum. In the course of the experiment, comprehension of two topics — “Derivative” and “Trigonometric functions”—was evaluated. Control group participants were taught using traditional methods. Students in the study group were taught using the holistic method: under teacher’s guidance, they carried out assignments designed to establish linkages between notion’s characteristics, to convert information from one mode of presentation to another, as well as assignments that required the ability to operate with all modes of presentation. Identification, accounting for and transformation of subjective experience were associated with methods of stimulating the emotional value component of the studied mathematical content (discussions of lesson titles, assignments aimed to create study dominants, performing theme-related physical exercise ...) The use of techniques that forms inter-subject notions based on linkages between, perceptual real and mathematical conceptual spaces proved to be of special interest to the students. Results of the experiment were analysed by presenting students in each of the groups with a final test in each of the studied topics. The test included assignments that required building real situational models. Statistical analysis was used to aggregate test results. Pierson criterion x2 was used to reveal statistics significance of results (pass-fail the modelling test). Significant difference of results was revealed (p < 0.001), which allowed to conclude that students in the study group showed better comprehension of mathematical information than those in the control group. The total number of completed assignments of each student was analysed as well, with average results calculated for each group. Statistical significance of result differences against the quantitative criterion (number of completed assignments) was determined using Student’s t-test, which showed that students in the study group completed significantly more assignments than those in the control group (p = 0.0001). Authors thus come to the conclusion that suggested increase in the level of comprehension of study material took place as a result of applying implemented methods and techniques.

Keywords: Comprehension of mathematical content, holistic approach to teaching mathematics in secondary school, subjective experience, technology of the formation of inter-subject notions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
1822 Obtaining of Nanocrystalline Ferrites and Other Complex Oxides by Sol–Gel Method with Participation of Auto–Combustion

Authors: V. S. Bushkova

Abstract:

It is well known that in recent years magnetic materials have received increased attention due to their properties. For this reason a significant number of patents that were published during the last decade are oriented towards synthesis and study of such materials. The aim of this work is to create and study ferrite nanocrystalline materials with spinel structure, using sol-gel technology with participation of auto-combustion. This method is perspective in that it is a cheap and low-temperature technique that allows for the fine control on the product’s chemical composition.

Keywords: Magnetic materials, ferrites, sol–gel technology, nanocrystalline powders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
1821 A Simple User Administration View of Computing Clusters

Authors: Valeria M. Bastos, Myrian A. Costa, Matheus Ambrozio, Nelson F. F. Ebecken

Abstract:

In this paper a very simple and effective user administration view of computing clusters systems is implemented in order of friendly provide the configuration and monitoring of distributed application executions. The user view, the administrator view, and an internal control module create an illusionary management environment for better system usability. The architecture, properties, performance, and the comparison with others software for cluster management are briefly commented.

Keywords: Big data, computing clusters, administration view, user view.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
1820 Low-Cost Monitoring System for Hydroponic Urban Vertical Farms

Authors: Francesco Ruscio, Paolo Paoletti, Jens Thomas, Paul Myers, Sebastiano Fichera

Abstract:

This paper presents the development of a low-cost monitoring system for a hydroponic urban vertical farm, enabling its automation and a quantitative assessment of the farm performance. Urban farming has seen increasing interest in the last decade thanks to the development of energy efficient and affordable LED lights; however, the optimal configuration of such systems (i.e. amount of nutrients, light-on time, ambient temperature etc.) is mostly based on the farmers’ experience and empirical guidelines. Moreover, even if simple, the maintenance of such systems is labor intensive as it requires water to be topped-up periodically, mixing of the nutrients etc. To unlock the full potential of urban farming, a quantitative understanding of the role that each variable plays in the growth of the plants is needed, together with a higher degree of automation. The low-cost monitoring system proposed in this paper is a step toward filling this knowledge and technological gap, as it enables collection of sensor data related to water and air temperature, water level, humidity, pressure, light intensity, pH and electric conductivity without requiring any human intervention. More sensors and actuators can also easily be added thanks to the modular design of the proposed platform. Data can be accessed remotely via a simple web interface. The proposed platform can be used both for quantitatively optimizing the setup of the farms and for automating some of the most labor-intensive maintenance activities. Moreover, such monitoring system can also potentially be used for high-level decision making, once enough data are collected.

Keywords: Automation, hydroponics, internet of things, monitoring system, urban farming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
1819 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1818 Work System Design in Productivity for Small and Medium Enterprises: A Systematic Literature Review

Authors: S. Halofaki, D. R. Seenivasagam, P. Bijay, K. Singh, R. Ananthanarayanan

Abstract:

This comprehensive literature review delves into the effects and applications of work system design on the performance of Small and Medium-sized Enterprises (SMEs). The review process involved three independent reviewers who screened 514 articles through a four-step procedure: removing duplicates, assessing keyword relevance, evaluating abstract content, and thoroughly reviewing full-text articles. Various criteria such as relevance to the research topic, publication type, study type, language, publication date, and methodological quality were employed to exclude certain publications. A portion of articles that met the predefined inclusion criteria were included as a result of this systematic literature review. These selected publications underwent data extraction and analysis to compile insights regarding the influence of work system design on SME performance. Additionally, the quality of the included studies was assessed, and the level of confidence in the body of evidence was established. The findings of this review shed light on how work system design impacts SME performance, emphasizing important implications and applications. Furthermore, the review offers suggestions for further research in this critical area and summarizes the current state of knowledge in the field. Understanding the intricate connections between work system design and SME success can enhance operational efficiency, employee engagement, and overall competitiveness for SMEs. This comprehensive examination of the literature contributes significantly to both academic research and practical decision-making for SMEs.

Keywords: Literature review, productivity, small and medium-sized enterprises, SMEs, work system design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88
1817 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth

Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey

Abstract:

Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with  nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.

Keywords: Nanoparticles, seed germination, seed soaking, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
1816 An Epidemiological Study on an Outbreak of Gastroenteritis Linked to Dinner Served at a Senior High School in Accra

Authors: Benjamin Osei Tutu, Rita Asante, Emefa Atsu

Abstract:

Background: An outbreak of gastroenteritis occurred in December 2019 after students of a Senior High School in Accra were served with kenkey and fish during their dinner. An investigation was conducted to characterize the affected people, the source of contamination, the etiologic food and agent. Methods: An epidemiological study was conducted with cases selected from the student population who were ill. Controls were selected from among students who also ate from the school canteen during dinner but were not ill. Food history of each case and control was taken to assess their exposure status. Epi Info 7 was used to analyze the data obtained from the outbreak. Attack rates and odds ratios were calculated to determine the risk of foodborne infection for each of the foods consumed by the population. The source of contamination of the foods was ascertained by conducting an environmental risk assessment at the school. Results: Data were obtained from 126 students, out of which 57 (45.2%) were cases and 69 (54.8%) were controls. The cases presented with symptoms such as diarrhea (85.96%), abdominal cramps (66.67%), vomiting (50.88%), headache (21.05%), fever (17.86%) and nausea (3.51%). The peak incubation period was 18 hours with a minimum and maximum incubation periods of 6 and 50 hours respectively. From the incubation period, duration of illness and the symptoms, non-typhoidal salmonellosis was suspected. Multivariate analysis indicated that the illness was associated with the consumption of the fried fish served, however this was statistically insignificant (AOR 3.1.00, P = 0.159). No stool, blood or food samples were available for organism isolation and confirmation of suspected etiologic agent. The environmental risk assessment indicated poor hand washing practices on the part of both the food handlers and students. Conclusion: The outbreak could probably be due to the consumption of the fried fish that might have been contaminated with Salmonella sp. as a result of poor hand washing practices in the school.

Keywords: Case control study, food poisoning, handwashing, Salmonella, school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
1815 Computation of Natural Logarithm Using Abstract Chemical Reaction Networks

Authors: Iuliia Zarubiieva, Joyun Tseng, Vishwesh Kulkarni

Abstract:

Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs.

Keywords: Abstract chemical reaction network, DNA strand displacement, natural logarithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020