Search results for: variable neighborhood search
1378 A PIM (Processor-In-Memory) for Computer Graphics : Data Partitioning and Placement Schemes
Authors: Jae Chul Cha, Sandeep K. Gupta
Abstract:
The demand for higher performance graphics continues to grow because of the incessant desire towards realism. And, rapid advances in fabrication technology have enabled us to build several processor cores on a single die. Hence, it is important to develop single chip parallel architectures for such data-intensive applications. In this paper, we propose an efficient PIM architectures tailored for computer graphics which requires a large number of memory accesses. We then address the two important tasks necessary for maximally exploiting the parallelism provided by the architecture, namely, partitioning and placement of graphic data, which affect respectively load balances and communication costs. Under the constraints of uniform partitioning, we develop approaches for optimal partitioning and placement, which significantly reduce search space. We also present heuristics for identifying near-optimal placement, since the search space for placement is impractically large despite our optimization. We then demonstrate the effectiveness of our partitioning and placement approaches via analysis of example scenes; simulation results show considerable search space reductions, and our heuristics for placement performs close to optimal – the average ratio of communication overheads between our heuristics and the optimal was 1.05. Our uniform partitioning showed average load-balance ratio of 1.47 for geometry processing and 1.44 for rasterization, which is reasonable.Keywords: Data Partitioning and Placement, Graphics, PIM, Search Space Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14921377 Neighborhood Sustainability Assessment Tools: A Conceptual Framework for Their Use in Building Adaptive Capacity to Climate Change
Authors: Sally Naji, Julie Gwilliam
Abstract:
Climate change remains a challenging matter for the human and the built environment in the 21st century, where the need to consider adaptation to climate change in the development process is paramount. However, there remains a lack of information regarding how we should prepare responses to this issue, such as through developing organized and sophisticated tools enabling the adaptation process. This study aims to build a systematic framework approach to investigate the potentials that Neighborhood Sustainability Assessment tools (NSA) might offer in enabling both the analysis of the emerging adaptive capacity to climate change. The analysis of the framework presented in this paper aims to discuss this issue in three main phases. The first part attempts to link sustainability and climate change, in the context of adaptive capacity. It is argued that in deciding to promote sustainability in the context of climate change, both the resilience and vulnerability processes become central. However, there is still a gap in the current literature regarding how the sustainable development process can respond to climate change. As well as how the resilience of practical strategies might be evaluated. It is suggested that the integration of the sustainability assessment processes with both the resilience thinking process, and vulnerability might provide important components for addressing the adaptive capacity to climate change. A critical review of existing literature is presented illustrating the current lack of work in this field, integrating these three concepts in the context of addressing the adaptive capacity to climate change. The second part aims to identify the most appropriate scale at which to address the built environment for the climate change adaptation. It is suggested that the neighborhood scale can be considered as more suitable than either the building or urban scales. It then presents the example of NSAs, and discusses the need to explore their potential role in promoting the adaptive capacity to climate change. The third part of the framework presents a comparison among three example NSAs, BREEAM Communities, LEED-ND, and CASBEE-UD. These three tools have been selected as the most developed and comprehensive assessment tools that are currently available for the neighborhood scale. This study concludes that NSAs are likely to present the basis for an organized framework to address the practical process for analyzing and yet promoting Adaptive Capacity to Climate Change. It is further argued that vulnerability (exposure & sensitivity) and resilience (Interdependence & Recovery) form essential aspects to be addressed in the future assessment of NSA’s capability to adapt to both short and long term climate change impacts. Finally, it is acknowledged that further work is now required to understand impact assessment in terms of the range of physical sectors (Water, Energy, Transportation, Building, Land Use and Ecosystems), Actor and stakeholder engagement as well as a detailed evaluation of the NSA indicators, together with a barriers diagnosis process.Keywords: Adaptive capacity, climate change, NSA tools, resilience, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21721376 A Self Adaptive Genetic Based Algorithm for the Identification and Elimination of Bad Data
Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy
Abstract:
The identification and elimination of bad measurements is one of the basic functions of a robust state estimator as bad data have the effect of corrupting the results of state estimation according to the popular weighted least squares method. However this is a difficult problem to handle especially when dealing with multiple errors from the interactive conforming type. In this paper, a self adaptive genetic based algorithm is proposed. The algorithm utilizes the results of the classical linearized normal residuals approach to tune the genetic operators thus instead of making a randomized search throughout the whole search space it is more likely to be a directed search thus the optimum solution is obtained at very early stages(maximum of 5 generations). The algorithm utilizes the accumulating databases of already computed cases to reduce the computational burden to minimum. Tests are conducted with reference to the standard IEEE test systems. Test results are very promising.Keywords: Bad Data, Genetic Algorithms, Linearized Normal residuals, Observability, Power System State Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13451375 An Efficient VLSI Design Approach to Reduce Static Power using Variable Body Biasing
Authors: Md. Asif Jahangir Chowdhury, Md. Shahriar Rizwan, M. S. Islam
Abstract:
In CMOS integrated circuit design there is a trade-off between static power consumption and technology scaling. Recently, the power density has increased due to combination of higher clock speeds, greater functional integration, and smaller process geometries. As a result static power consumption is becoming more dominant. This is a challenge for the circuit designers. However, the designers do have a few methods which they can use to reduce this static power consumption. But all of these methods have some drawbacks. In order to achieve lower static power consumption, one has to sacrifice design area and circuit performance. In this paper, we propose a new method to reduce static power in the CMOS VLSI circuit using Variable Body Biasing technique without being penalized in area requirement and circuit performance.
Keywords: variable body biasing, state saving technique, stack effect, dual V-th, static power reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30871374 Using Interval Trees for Approximate Indexing of Instances
Authors: Khalil el Hindi
Abstract:
This paper presents a simple and effective method for approximate indexing of instances for instance based learning. The method uses an interval tree to determine a good starting search point for the nearest neighbor. The search stops when an early stopping criterion is met. The method proved to be very effective especially when only the first nearest neighbor is required.
Keywords: Instance based learning, interval trees, the knn algorithm, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15091373 Exercise and Cognitive Function: Time Course of the Effects
Authors: Simon B. Cooper, Stephan Bandelow, Maria L. Nute, John G. Morris, Mary E. Nevill
Abstract:
Previous research has indicated a variable effect of exercise on adolescents’ cognitive function. However, comparisons between studies are difficult to make due to differences in: the mode, intensity and duration of exercise employed; the components of cognitive function measured (and the tests used to assess them); and the timing of the cognitive function tests in relation to the exercise. Therefore, the aim of the present study was to assess the time course (10 and 60min post-exercise) of the effects of 15min intermittent exercise on cognitive function in adolescents. 45 adolescents were recruited to participate in the study and completed two main trials (exercise and resting) in a counterbalanced crossover design. Participants completed 15min of intermittent exercise (in cycles of 1 min exercise, 30s rest). A battery of computer based cognitive function tests (Stroop test, Sternberg paradigm and visual search test) were completed 30 min pre- and 10 and 60min post-exercise (to assess attention, working memory and perception respectively).The findings of the present study indicate that on the baseline level of the Stroop test, 10min following exercise response times were slower than at any other time point on either trial (trial by session time interaction, p = 0.0308). However, this slowing of responses also tended to produce enhanced accuracy 10min post-exercise on the baseline level of the Stroop test (trial by session time interaction, p = 0.0780). Similarly, on the complex level of the visual search test there was a slowing of response times 10 min post-exercise (trial by session time interaction, p = 0.0199). However, this was not coupled with an improvement in accuracy (trial by session time interaction, p = 0.2349). The mid-morning bout of exercise did not affect response times or accuracy across the morning on the Sternberg paradigm. In conclusion, the findings of the present study suggest an equivocal effect of exercise on adolescents' cognitive function. The mid-morning bout of exercise appears to cause a speed-accuracy trade off immediately following exercise on the Stroop test (participants become slower but more accurate), whilst slowing response times on the visual search test and having no effect on performance on the Sternberg paradigm. Furthermore, this work highlights the importance of the timing of the cognitive function tests relative to the exercise and the components of cognitive function examined in future studies.
Keywords: Adolescents, cognitive function, exercise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31371372 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading
Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho
Abstract:
Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.
Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5281371 An Improved Variable Tolerance RSM with a Proportion Threshold
Authors: Chen Wu, Youquan Xu, Dandan Li, Ronghua Yang, Lijuan Wang
Abstract:
In rough set models, tolerance relation, similarity relation and limited tolerance relation solve different situation problems for incomplete information systems in which there exists a phenomenon of missing value. If two objects have the same few known attributes and more unknown attributes, they cannot distinguish them well. In order to solve this problem, we presented two improved limited and variable precision rough set models. One is symmetric, the other one is non-symmetric. They all use more stringent condition to separate two small probability equivalent objects into different classes. The two models are needed to engage further study in detail. In the present paper, we newly form object classes with a different respect comparing to the first suggested model. We overcome disadvantages of non-symmetry regarding to the second suggested model. We discuss relationships between or among several models and also make rule generation. The obtained results by applying the second model are more accurate and reasonable.Keywords: Incomplete information system, rough set, symmetry, variable precision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8871370 Instability of a Nonlinear Differential Equation of Fifth Order with Variable Delay
Authors: Cemil Tunc
Abstract:
In this paper, we study the instability of the zero solution to a nonlinear differential equation with variable delay. By using the Lyapunov functional approach, some sufficient conditions for instability of the zero solution are obtained.
Keywords: Instability, Lyapunov-Krasovskii functional, delay differential equation, fifth order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14531369 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks
Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing
Abstract:
The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.
Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15201368 String Searching in Dispersed Files using MDS Convolutional Codes
Authors: A. S. Poornima, R. Aparna, B. B. Amberker, Prashant Koulgi
Abstract:
In this paper, we propose use of convolutional codes for file dispersal. The proposed method is comparable in complexity to the information Dispersal Algorithm proposed by M.Rabin and for particular choices of (non-binary) convolutional codes, is almost as efficient as that algorithm in terms of controlling expansion in the total storage. Further, our proposed dispersal method allows string search.Keywords: Convolutional codes, File dispersal, Filereconstruction, Information Dispersal Algorithm, String search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12781367 Multiple Power Flow Solutions Using Particle Swarm Optimization with Embedded Local Search Technique
Authors: P. Acharjee, S. K. Goswami
Abstract:
Particle Swarm Optimization (PSO) with elite PSO parameters has been developed for power flow analysis under practical constrained situations. Multiple solutions of the power flow problem are useful in voltage stability assessment of power system. A method of determination of multiple power flow solutions is presented using a hybrid of Particle Swarm Optimization (PSO) and local search technique. The unique and innovative learning factors of the PSO algorithm are formulated depending upon the node power mismatch values to be highly adaptive with the power flow problems. The local search is applied on the pbest solution obtained by the PSO algorithm in each iteration. The proposed algorithm performs reliably and provides multiple solutions when applied on standard and illconditioned systems. The test results show that the performances of the proposed algorithm under critical conditions are better than the conventional methods.Keywords: critical conditions, ill-conditioned systems, localsearch technique, multiple power flow solutions, particle swarmoptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18151366 A Retrievable Genetic Algorithm for Efficient Solving of Sudoku Puzzles
Authors: Seyed Mehran Kazemi, Bahare Fatemi
Abstract:
Sudoku is a logic-based combinatorial puzzle game which is popular among people of different ages. Due to this popularity, computer softwares are being developed to generate and solve Sudoku puzzles with different levels of difficulty. Several methods and algorithms have been proposed and used in different softwares to efficiently solve Sudoku puzzles. Various search methods such as stochastic local search have been applied to this problem. Genetic Algorithm (GA) is one of the algorithms which have been applied to this problem in different forms and in several works in the literature. In these works, chromosomes with little or no information were considered and obtained results were not promising. In this paper, we propose a new way of applying GA to this problem which uses more-informed chromosomes than other works in the literature. We optimize the parameters of our GA using puzzles with different levels of difficulty. Then we use the optimized values of the parameters to solve various puzzles and compare our results to another GA-based method for solving Sudoku puzzles.
Keywords: Genetic algorithm, optimization, solving Sudoku puzzles, stochastic local search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37711365 Music-Inspired Harmony Search Algorithm for Fixed Outline Non-Slicing VLSI Floorplanning
Authors: K. Sivasubramanian, K. B. Jayanthi
Abstract:
Floorplanning plays a vital role in the physical design process of Very Large Scale Integrated (VLSI) chips. It is an essential design step to estimate the chip area prior to the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, many optimization techniques were adopted in the literature. In this work, a music-inspired Harmony Search (HS) algorithm is used for the fixed die outline constrained floorplanning, with the aim of reducing the total chip area. HS draws inspiration from the musical improvisation process of searching for a perfect state of harmony. Initially, B*-tree is used to generate the primary floorplan for the given rectangular hard modules and then HS algorithm is applied to obtain an optimal solution for the efficient floorplan. The experimental results of the HS algorithm are obtained for the MCNC benchmark circuits.Keywords: Floor planning, harmony search, non-slicing floorplan, very large scale integrated circuits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19561364 GSA-Based Design of Dual Proportional Integral Load Frequency Controllers for Nonlinear Hydrothermal Power System
Authors: M. Elsisi, M. Soliman, M. A. S. Aboelela, W. Mansour
Abstract:
This paper considers the design of Dual Proportional- Integral (DPI) Load Frequency Control (LFC), using gravitational search algorithm (GSA). The design is carried out for nonlinear hydrothermal power system where generation rate constraint (GRC) and governor dead band are considered. Furthermore, time delays imposed by governor-turbine, thermodynamic process, and communication channels are investigated. GSA is utilized to search for optimal controller parameters by minimizing a time-domain based objective function. GSA-based DPI has been compared to Ziegler- Nichols based PI, and Genetic Algorithm (GA) based PI controllers in order to demonstrate the superior efficiency of the proposed design. Simulation results are carried for a wide range of operating conditions and system parameters variations.Keywords: Gravitational Search Algorithm (GSA), Load Frequency Control (LFC), Dual Proportional-Integral (DPI) controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19851363 A Genetic Algorithm with Priority Selection for the Traveling Salesman Problem
Authors: Cha-Hwa Lin, Je-Wei Hu
Abstract:
The conventional GA combined with a local search algorithm, such as the 2-OPT, forms a hybrid genetic algorithm(HGA) for the traveling salesman problem (TSP). However, the geometric properties which are problem specific knowledge can be used to improve the search process of the HGA. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. This knowledge could constrain GAs to work out with fine tour segments without considering long tour segments as often. Consequently, a new algorithm is proposed, called intelligent-OPT hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT algorithm in order to reduce the search time for the optimal solution. Based on the geometric properties, all the tour segments are assigned 2-level priorities to distinguish between good and bad genes. A simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that in general the IOHGA could obtain near-optimal solutions with less time and better accuracy than the hybrid genetic algorithm with simulated annealing algorithm (HGA(SA)).Keywords: Traveling salesman problem, hybrid geneticalgorithm, priority selection, 2-OPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591362 A Comparison and Analysis of Name Matching Algorithms
Authors: Chakkrit Snae
Abstract:
Names are important in many societies, even in technologically oriented ones which use e.g. ID systems to identify individual people. Names such as surnames are the most important as they are used in many processes, such as identifying of people and genealogical research. On the other hand variation of names can be a major problem for the identification and search for people, e.g. web search or security reasons. Name matching presumes a-priori that the recorded name written in one alphabet reflects the phonetic identity of two samples or some transcription error in copying a previously recorded name. We add to this the lode that the two names imply the same person. This paper describes name variations and some basic description of various name matching algorithms developed to overcome name variation and to find reasonable variants of names which can be used to further increasing mismatches for record linkage and name search. The implementation contains algorithms for computing a range of fuzzy matching based on different types of algorithms, e.g. composite and hybrid methods and allowing us to test and measure algorithms for accuracy. NYSIIS, LIG2 and Phonex have been shown to perform well and provided sufficient flexibility to be included in the linkage/matching process for optimising name searching.Keywords: Data mining, name matching algorithm, nominaldata, searching system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 110891361 Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies
Authors: Halil Ibrahim Demir, Abdullah Hulusi Kokcam, Fuat Simsir, Özer Uygun
Abstract:
Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure.
Keywords: Evolutionary strategies, hybrid searches, process planning, simulated annealing, weighted due-date assignment, weighted scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11581360 Restartings: A Technique to Improve Classic Genetic Algorithms Performance
Authors: Grigorios N. Beligiannis, Georgios A. Tsirogiannis, Panayotis E. Pintelas
Abstract:
In this contribution, a way to enhance the performance of the classic Genetic Algorithm is proposed. The idea of restarting a Genetic Algorithm is applied in order to obtain better knowledge of the solution space of the problem. A new operator of 'insertion' is introduced so as to exploit (utilize) the information that has already been collected before the restarting procedure. Finally, numerical experiments comparing the performance of the classic Genetic Algorithm and the Genetic Algorithm with restartings, for some well known test functions, are given.
Keywords: Genetic Algorithms, Restartings, Search space exploration, Search space exploitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21371359 Novel Hybrid Approaches For Real Coded Genetic Algorithm to Compute the Optimal Control of a Single Stage Hybrid Manufacturing Systems
Authors: M. Senthil Arumugam, M.V.C. Rao
Abstract:
This paper presents a novel two-phase hybrid optimization algorithm with hybrid genetic operators to solve the optimal control problem of a single stage hybrid manufacturing system. The proposed hybrid real coded genetic algorithm (HRCGA) is developed in such a way that a simple real coded GA acts as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method is next employed to do fine tuning. The hybrid genetic operators involved in the proposed algorithm improve both the quality of the solution and convergence speed. The phase–1 uses conventional real coded genetic algorithm (RCGA), while optimisation by direct search and systematic reduction of the size of search region is employed in the phase – 2. A typical numerical example of an optimal control problem with the number of jobs varying from 10 to 50 is included to illustrate the efficacy of the proposed algorithm. Several statistical analyses are done to compare the validity of the proposed algorithm with the conventional RCGA and PSO techniques. Hypothesis t – test and analysis of variance (ANOVA) test are also carried out to validate the effectiveness of the proposed algorithm. The results clearly demonstrate that the proposed algorithm not only improves the quality but also is more efficient in converging to the optimal value faster. They can outperform the conventional real coded GA (RCGA) and the efficient particle swarm optimisation (PSO) algorithm in quality of the optimal solution and also in terms of convergence to the actual optimum value.
Keywords: Hybrid systems, optimal control, real coded genetic algorithm (RCGA), Particle swarm optimization (PSO), Hybrid real coded GA (HRCGA), and Hybrid genetic operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18971358 Application of Genetic Algorithms for Evolution of Quantum Equivalents of Boolean Circuits
Authors: Swanti Satsangi, Ashish Gulati, Prem Kumar Kalra, C. Patvardhan
Abstract:
Due to the non- intuitive nature of Quantum algorithms, it becomes difficult for a classically trained person to efficiently construct new ones. So rather than designing new algorithms manually, lately, Genetic algorithms (GA) are being implemented for this purpose. GA is a technique to automatically solve a problem using principles of Darwinian evolution. This has been implemented to explore the possibility of evolving an n-qubit circuit when the circuit matrix has been provided using a set of single, two and three qubit gates. Using a variable length population and universal stochastic selection procedure, a number of possible solution circuits, with different number of gates can be obtained for the same input matrix during different runs of GA. The given algorithm has also been successfully implemented to obtain two and three qubit Boolean circuits using Quantum gates. The results demonstrate the effectiveness of the GA procedure even when the search spaces are large.Keywords: Ancillas, Boolean functions, Genetic algorithm, Oracles, Quantum circuits, Scratch bit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19431357 Visualization and Indexing of Spectral Databases
Authors: Tibor Kulcsar, Gabor Sarossy, Gabor Bereznai, Robert Auer, Janos Abonyi
Abstract:
On-line (near infrared) spectroscopy is widely used to support the operation of complex process systems. Information extracted from spectral database can be used to estimate unmeasured product properties and monitor the operation of the process. These techniques are based on looking for similar spectra by nearest neighborhood algorithms and distance based searching methods. Search for nearest neighbors in the spectral space is an NP-hard problem, the computational complexity increases by the number of points in the discrete spectrum and the number of samples in the database. To reduce the calculation time some kind of indexing could be used. The main idea presented in this paper is to combine indexing and visualization techniques to reduce the computational requirement of estimation algorithms by providing a two dimensional indexing that can also be used to visualize the structure of the spectral database. This 2D visualization of spectral database does not only support application of distance and similarity based techniques but enables the utilization of advanced clustering and prediction algorithms based on the Delaunay tessellation of the mapped spectral space. This means the prediction has not to use the high dimension space but can be based on the mapped space too. The results illustrate that the proposed method is able to segment (cluster) spectral databases and detect outliers that are not suitable for instance based learning algorithms.
Keywords: indexing high dimensional databases, dimensional reduction, clustering, similarity, k-nn algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17691356 Research Topic Map Construction
Authors: Hei-Chia Wang, Che-Tsung Yang
Abstract:
While the explosive increase in information published on the Web, researchers have to filter information when searching for conference related information. To make it easier for users to search related information, this paper uses Topic Maps and social information to implement ontology since ontology can provide the formalisms and knowledge structuring for comprehensive and transportable machine understanding that digital information requires. Besides enhancing information in Topic Maps, this paper proposes a method of constructing research Topic Maps considering social information. First, extract conference data from the web. Then extract conference topics and the relationships between them through the proposed method. Finally visualize it for users to search and browse. This paper uses ontology, containing abundant of knowledge hierarchy structure, to facilitate researchers getting useful search results. However, most previous ontology construction methods didn-t take “people" into account. So this paper also analyzes the social information which helps researchers find the possibilities of cooperation/combination as well as associations between research topics, and tries to offer better results.Keywords: Ontology, topic maps, social information, co-authorship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18041355 Formal Verification of Cache System Using a Novel Cache Memory Model
Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang
Abstract:
Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.
Keywords: Cache system, formal verification, novel model, System on Chip (SoC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22981354 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting
Authors: I. Falconett, K. Nagasaka
Abstract:
This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.
Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15351353 Parameters Estimation of Double Diode Solar Cell Model
Authors: M. R. AlRashidi, K. M. El-Naggar, M. F. AlHajri
Abstract:
A new technique based on Pattern search optimization is proposed for estimating different solar cell parameters in this paper. The estimated parameters are the generated photocurrent, saturation current, series resistance, shunt resistance, and ideality factor. The proposed approach is tested and validated using double diode model to show its potential. Performance of the developed approach is quite interesting which signifies its potential as a promising estimation tool.
Keywords: Solar Cell, Parameter Estimation, Pattern Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59881352 Rule-Based Fuzzy Logic Controller with Adaptable Reference
Authors: Sheroz Khan, I. Adam, A. H. M. Zahirul Alam, Mohd Rafiqul Islam, Othman O. Khalifa
Abstract:
This paper attempts to model and design a simple fuzzy logic controller with Variable Reference. The Variable Reference (VR) is featured as an adaptability element which is obtained from two known variables – desired system-input and actual system-output. A simple fuzzy rule-based technique is simulated to show how the actual system-input is gradually tuned in to a value that closely matches the desired input. The designed controller is implemented and verified on a simple heater which is controlled by PIC Microcontroller harnessed by a code developed in embedded C. The output response of the PIC-controlled heater is analyzed and compared to the performances by conventional fuzzy logic controllers. The novelty of this work lies in the fact that it gives better performance by using less number of rules compared to conventional fuzzy logic controllers.Keywords: Fuzzy logic controller, Variable reference, Adaptability, Rule-based.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13121351 Theoretical Investigation on the Dynamic Characteristics of One Degree of Freedom Vibration System Equipped with Inerter of Variable Inertance
Authors: Barenten Suciu, Yoshiki Tsuji
Abstract:
In this paper, a theoretical investigation on the dynamic characteristics of one degree of freedom vibration system equipped with inerter of variable inertance, is presented. Differential equation of movement was solved under proper initial conditions in the case of free undamped/damped vibration, considered in the absence/presence of the inerter in the mechanical system. Influence of inertance on the amplitude of vibration, phase angle, natural frequency, damping ratio, and logarithmic decrement was clarified. It was mainly found that the inerter decreases the natural frequency of the undamped system and also of the damped system if the damping ratio is below 0.707. On the other hand, the inerter increases the natural frequency of the damped system if the damping ratio exceeds 0.707. Results obtained in this work are useful for the adequate design of inerters.
Keywords: One degree of freedom vibration system, inerter, parallel connection, variable inertance, frequency control, damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16421350 Game-Tree Simplification by Pattern Matching and Its Acceleration Approach using an FPGA
Authors: Suguru Ochiai, Toru Yabuki, Yoshiki Yamaguchi, Yuetsu Kodama
Abstract:
In this paper, we propose a Connect6 solver which adopts a hybrid approach based on a tree-search algorithm and image processing techniques. The solver must deal with the complicated computation and provide high performance in order to make real-time decisions. The proposed approach enables the solver to be implemented on a single Spartan-6 XC6SLX45 FPGA produced by XILINX without using any external devices. The compact implementation is achieved through image processing techniques to optimize a tree-search algorithm of the Connect6 game. The tree search is widely used in computer games and the optimal search brings the best move in every turn of a computer game. Thus, many tree-search algorithms such as Minimax algorithm and artificial intelligence approaches have been widely proposed in this field. However, there is one fundamental problem in this area; the computation time increases rapidly in response to the growth of the game tree. It means the larger the game tree is, the bigger the circuit size is because of their highly parallel computation characteristics. Here, this paper aims to reduce the size of a Connect6 game tree using image processing techniques and its position symmetric property. The proposed solver is composed of four computational modules: a two-dimensional checkmate strategy checker, a template matching module, a skilful-line predictor, and a next-move selector. These modules work well together in selecting next moves from some candidates and the total amount of their circuits is small. The details of the hardware design for an FPGA implementation are described and the performance of this design is also shown in this paper.Keywords: Connect6, pattern matching, game-tree reduction, hardware direct computation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19731349 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images
Authors: Maninder Pal
Abstract:
Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.
Keywords: Zooming, interpolation, medical images, resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575