Search results for: software defect prediction.
2890 Core Issues Affecting Software Architecture in Enterprise Projects
Authors: Halûk Gümüşkaya
Abstract:
In this paper we analyze the core issues affecting software architecture in enterprise projects where a large number of people at different backgrounds are involved and complex business, management and technical problems exist. We first give general features of typical enterprise projects and then present foundations of software architectures. The detailed analysis of core issues affecting software architecture in software development phases is given. We focus on three main areas in each development phase: people, process, and management related issues, structural (product) issues, and technology related issues. After we point out core issues and problems in these main areas, we give recommendations for designing good architecture. We observed these core issues and the importance of following the best software development practices and also developed some novel practices in many big enterprise commercial and military projects in about 10 years of experience.Keywords: Software architecture, enterprise projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36082889 Development of the Structure of the Knowledgebase for Countermeasures in the Knowledge Acquisition Process for Trouble Prediction in Healthcare Processes
Authors: Shogo Kato, Daisuke Okamoto, Satoko Tsuru, Yoshinori Iizuka, Ryoko Shimono
Abstract:
Healthcare safety has been perceived important. It is essential to prevent troubles in healthcare processes for healthcare safety. Trouble prevention is based on trouble prediction using accumulated knowledge on processes, troubles, and countermeasures. However, information on troubles has not been accumulated in hospitals in the appropriate structure, and it has not been utilized effectively to prevent troubles. In the previous study, however a detailed knowledge acquisition process for trouble prediction was proposed, the knowledgebase for countermeasures was not involved. In this paper, we aim to propose the structure of the knowledgebase for countermeasures, in the knowledge acquisition process for trouble prediction in healthcare process. We first design the structure of countermeasures and propose the knowledge representation form on countermeasures. Then, we evaluate the validity of the proposal, by applying it into an actual hospital.Keywords: Trouble prevention, knowledge structure, structured knowledge, reusable knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16752888 An Examination of the Factors Influencing Software Development Effort
Authors: Zhizhong Jiang, Peter Naudé
Abstract:
Effective evaluation of software development effort is an important aspect of successful project management. Based on a large database with 4106 projects ever developed, this study statistically examines the factors that influence development effort. The factors found to be significant for effort are project size, average number of developers that worked on the project, type of development, development language, development platform, and the use of rapid application development. Among these factors, project size is the most critical cost driver. Unsurprisingly, this study found that the use of CASE tools does not necessarily reduce development effort, which adds support to the claim that the use of tools is subtle. As many of the current estimation models are rarely or unsuccessfully used, this study proposes a parsimonious parametric model for the prediction of effort which is both simple and more accurate than previous models.
Keywords: Development effort, function points, team size, development language, CASE tool, rapid application development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25122887 Comparison of Alternative Models to Predict Lean Meat Percentage of Lamb Carcasses
Authors: Vasco A. P. Cadavez, Fernando C. Monteiro
Abstract:
The objective of this study was to develop and compare alternative prediction equations of lean meat proportion (LMP) of lamb carcasses. Forty (40) male lambs, 22 of Churra Galega Bragançana Portuguese local breed and 18 of Suffolk breed were used. Lambs were slaughtered, and carcasses weighed approximately 30 min later in order to obtain hot carcass weight (HCW). After cooling at 4º C for 24-h a set of seventeen carcass measurements was recorded. The left side of carcasses was dissected into muscle, subcutaneous fat, inter-muscular fat, bone, and remainder (major blood vessels, ligaments, tendons, and thick connective tissue sheets associated with muscles), and the LMP was evaluated as the dissected muscle percentage. Prediction equations of LMP were developed, and fitting quality was evaluated through the coefficient of determination of estimation (R2 e) and standard error of estimate (SEE). Models validation was performed by k-fold crossvalidation and the coefficient of determination of prediction (R2 p) and standard error of prediction (SEP) were computed. The BT2 measurement was the best single predictor and accounted for 37.8% of the LMP variation with a SEP of 2.30%. The prediction of LMP of lamb carcasses can be based simple models, using as predictors the HCW and one fat thickness measurement.
Keywords: Bootstrap, Carcass, Lambs, Lean meat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16272886 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shivakumar, G. S. Vijay, P. Srinivas Pai, B. R. Shrinivasa Rao
Abstract:
In the present study, RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tex and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: Radial Basis Function networks, emissions, Performance parameters, Fuzzy c means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17342885 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: [email protected]
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.
Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4202884 Bayesian Belief Networks for Test Driven Development
Authors: Vijayalakshmy Periaswamy S., Kevin McDaid
Abstract:
Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.Keywords: Software testing, Test Driven Development, Bayesian Belief Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18912883 Computer-Based Assessment of Pre-assigned Individual Education Plans in Special Education
Authors: Yasar Guneri Sahin, Mehmet Cudi Okur
Abstract:
Assessment of IEP (Individual Education Plan) is an important stage in the area of special education. This paper deals with this problem by introducing computer software which process the data gathered from application of IEP. The software is intended to be used by special education institution in Turkey and allows assessment of school and family trainings. The software has a user friendly interface and its design includes graphical developer tools.Keywords: Disabled individual, software for education, assessment of education, special education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16142882 Prediction of a Human Facial Image by ANN using Image Data and its Content on Web Pages
Authors: Chutimon Thitipornvanid, Siripun Sanguansintukul
Abstract:
Choosing the right metadata is a critical, as good information (metadata) attached to an image will facilitate its visibility from a pile of other images. The image-s value is enhanced not only by the quality of attached metadata but also by the technique of the search. This study proposes a technique that is simple but efficient to predict a single human image from a website using the basic image data and the embedded metadata of the image-s content appearing on web pages. The result is very encouraging with the prediction accuracy of 95%. This technique may become a great assist to librarians, researchers and many others for automatically and efficiently identifying a set of human images out of a greater set of images.Keywords: Metadata, Prediction, Multi-layer perceptron, Human facial image, Image mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12192881 Application of Seismic Wave Method in Early Estimation of Wencheng Earthquake
Authors: Wenlong Liu, Yucheng Liu
Abstract:
This paper introduces the application of seismic wave method in earthquake prediction and early estimation. The advantages of the seismic wave method over the traditional earthquake prediction method are demonstrated. An example is presented in this study to show the accuracy and efficiency of using the seismic wave method in predicting a medium-sized earthquake swarm occurred in Wencheng, Zhejiang, China. By applying this method, correct predictions were made on the day after this earthquake swarm started and the day the maximum earthquake occurred, which provided scientific bases for governmental decision-making.
Keywords: earthquake prediction, earthquake swarm, seismicactivity method, seismic wave method, Wencheng earthquake
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16662880 Analytical Study of Component Based Software Engineering
Authors: Iqbaldeep Kaur, Parvinder S. Sandhu, Hardeep Singh, Vandana Saini
Abstract:
This paper is a survey of current component-based software technologies and the description of promotion and inhibition factors in CBSE. The features that software components inherit are also discussed. Quality Assurance issues in componentbased software are also catered to. The feat research on the quality model of component based system starts with the study of what the components are, CBSE, its development life cycle and the pro & cons of CBSE. Various attributes are studied and compared keeping in view the study of various existing models for general systems and CBS. When illustrating the quality of a software component an apt set of quality attributes for the description of the system (or components) should be selected. Finally, the research issues that can be extended are tabularized.Keywords: Component, COTS, Component based development, Component-based Software Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27462879 A Complexity Measure for Java Bean based Software Components
Authors: Sandeep Khimta, Parvinder S. Sandhu, Amanpreet Singh Brar
Abstract:
The traditional software product and process metrics are neither suitable nor sufficient in measuring the complexity of software components, which ultimately is necessary for quality and productivity improvement within organizations adopting CBSE. Researchers have proposed a wide range of complexity metrics for software systems. However, these metrics are not sufficient for components and component-based system and are restricted to the module-oriented systems and object-oriented systems. In this proposed study it is proposed to find the complexity of the JavaBean Software Components as a reflection of its quality and the component can be adopted accordingly to make it more reusable. The proposed metric involves only the design issues of the component and does not consider the packaging and the deployment complexity. In this way, the software components could be kept in certain limit which in turn help in enhancing the quality and productivity.Keywords: JavaBean Components, Complexity, Metrics, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15312878 User-Perceived Quality Factors for Certification Model of Web-Based System
Authors: Jamaiah H. Yahaya, Aziz Deraman, Abdul Razak Hamdan, Yusmadi Yah Jusoh
Abstract:
One of the most essential issues in software products is to maintain it relevancy to the dynamics of the user’s requirements and expectation. Many studies have been carried out in quality aspect of software products to overcome these problems. Previous software quality assessment models and metrics have been introduced with strengths and limitations. In order to enhance the assurance and buoyancy of the software products, certification models have been introduced and developed. From our previous experiences in certification exercises and case studies collaborating with several agencies in Malaysia, the requirements for user based software certification approach is identified and demanded. The emergence of social network applications, the new development approach such as agile method and other varieties of software in the market have led to the domination of users over the software. As software become more accessible to the public through internet applications, users are becoming more critical in the quality of the services provided by the software. There are several categories of users in web-based systems with different interests and perspectives. The classifications and metrics are identified through brain storming approach with includes researchers, users and experts in this area. The new paradigm in software quality assessment is the main focus in our research. This paper discusses the classifications of users in web-based software system assessment and their associated factors and metrics for quality measurement. The quality model is derived based on IEEE structure and FCM model. The developments are beneficial and valuable to overcome the constraints and improve the application of software certification model in future.
Keywords: Software certification model, user centric approach, software quality factors, metrics and measurements, web-based system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21522877 A Simulation Software for DNA Computing Algorithms Implementation
Authors: M. S. Muhammad, S. M. W. Masra, K. Kipli, N. Zamhari
Abstract:
The capturing of gel electrophoresis image represents the output of a DNA computing algorithm. Before this image is being captured, DNA computing involves parallel overlap assembly (POA) and polymerase chain reaction (PCR) that is the main of this computing algorithm. However, the design of the DNA oligonucleotides to represent a problem is quite complicated and is prone to errors. In order to reduce these errors during the design stage before the actual in-vitro experiment is carried out; a simulation software capable of simulating the POA and PCR processes is developed. This simulation software capability is unlimited where problem of any size and complexity can be simulated, thus saving cost due to possible errors during the design process. Information regarding the DNA sequence during the computing process as well as the computing output can be extracted at the same time using the simulation software.Keywords: DNA computing, PCR, POA, simulation software
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18242876 A System for Performance Evaluation of Embedded Software
Authors: Yong-Yoon Cho, Jong-Bae Moon, Young-Chul Kim
Abstract:
Developers need to evaluate software's performance to make software efficient. This paper suggests a performance evaluation system for embedded software. The suggested system consists of code analyzer, testing agents, data analyzer, and report viewer. The code analyzer inserts additional code dependent on target system into source code and compiles the source code. The testing agents execute performance test. The data analyzer translates raw-level results data to class-level APIs for reporting viewer. The report viewer offers users graphical report views by using the APIs. We hope that the suggested tool will be useful for embedded-related software development,because developers can easily and intuitively analyze software's performance and resource utilization.
Keywords: Embedded Software, Performance EvaluationSystem, Testing Agents, Report Generator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28832875 Identifying Mitigation Plans in Reducing Usability Risk Using Delphi Method
Authors: Jayaletchumi T. Sambantha Moorthy, Suhaimi bin Ibrahim, Mohd Naz’ri Mahrin
Abstract:
Most quality models have defined usability as a significant factor that leads to improving product acceptability, increasing user satisfaction, improving product reliability, and also financially benefitting companies. Usability is also the best factor that balances both the technical and human aspects of a software product, which is an important aspect in defining quality during software development process. A usability risk consist risk factors that could impact the usability of a software product thereby contributing to negative user experiences and causing a possible software product failure. Hence, it is important to mitigate and reduce usability risks in the software development process itself. By managing possible usability risks in software development process, failure of software product could be reduced. Therefore, this research uses the Delphi method to identify mitigation plans for reducing potential usability risks. The Delphi method is conducted with seven experts from the field of risk management and software development.
Keywords: Usability, Usability Risk, Risk Management, Risk Mitigation, Delphi Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22362874 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.
Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6642873 Simulation Model for Predicting Dengue Fever Outbreak
Authors: Azmi Ibrahim, Nor Azan Mat Zin, Noraidah Sahari Ashaari
Abstract:
Dengue fever is prevalent in Malaysia with numerous cases including mortality recorded over the years. Public education on the prevention of the desease through various means has been carried out besides the enforcement of legal means to eradicate Aedes mosquitoes, the dengue vector breeding ground. Hence, other means need to be explored, such as predicting the seasonal peak period of the dengue outbreak and identifying related climate factors contributing to the increase in the number of mosquitoes. Simulation model can be employed for this purpose. In this study, we created a simulation of system dynamic to predict the spread of dengue outbreak in Hulu Langat, Selangor Malaysia. The prototype was developed using STELLA 9.1.2 software. The main data input are rainfall, temperature and denggue cases. Data analysis from the graph showed that denggue cases can be predicted accurately using these two main variables- rainfall and temperature. However, the model will be further tested over a longer time period to ensure its accuracy, reliability and efficiency as a prediction tool for dengue outbreak.Keywords: dengue fever, prediction, system dynamic, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23402872 The Role of Intrinsic Motivation in Explaining Students- Willingness to Use Software Applications
Authors: Anne Sorebo, Oystein Sorebo
Abstract:
The present study was designed to test the influence of intrinsic ICT-motivation, perceived usefulness and ease of use on business students- willingness to use a particular software package. A questionnaire was completed by 196 business students in Norway. We found that 34% of the variance in the students- willingness to use the software could be explained by the three proposed antecedents. Intrinsic ICT-motivation seems to be the most important predictor of students- satisfaction willingness to use the software package.Keywords: Spreadsheet, business students, technology acceptance, intrinsic motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20782871 The Application of an Experimental Design for the Defect Reduction of Electrodeposition Painting on Stainless Steel Washers
Authors: Chansiri Singhtaun, Nattaporn Prasartthong
Abstract:
The purpose of this research is to reduce the amount of incomplete coating of stainless steel washers in the electrodeposition painting process by using an experimental design technique. The surface preparation was found to be a major cause of painted surface quality. The influence of pretreating and painting process parameters, which are cleaning time, chemical concentration and shape of hanger were studied. A 23 factorial design with two replications was performed. The analysis of variance for the designed experiment showed the great influence of cleaning time and shape of hanger. From this study, optimized cleaning time was determined and a newly designed electrical conductive hanger was proved to be superior to the original one. The experimental verification results showed that the amount of incomplete coating defects decreased from 4% to 1.02% and operation cost decreased by 10.5%.
Keywords: Defect reduction, design of experiments, electrodeposition painting, stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22742870 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15652869 Cosastudio: A Software Architecture Modeling Tool
Authors: Adel Smeda, Adel Alti, Mourad Oussalah, Abdallah Boukerram
Abstract:
A key aspect of the design of any software system is its architecture. An architecture description provides a formal model of the architecture in terms of components and connectors and how they are composed together. COSA (Component-Object based Software Structures), is based on object-oriented modeling and component-based modeling. The model improves the reusability by increasing extensibility, evolvability, and compositionality of the software systems. This paper presents the COSA modelling tool which help architects the possibility to verify the structural coherence of a given system and to validate its semantics with COSA approach.Keywords: Software Architecture, Architecture Description Languages, UML, Components, Connectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16872868 A Novel Prediction Method for Tag SNP Selection using Genetic Algorithm based on KNN
Authors: Li-Yeh Chuang, Yu-Jen Hou, Jr., Cheng-Hong Yang
Abstract:
Single nucleotide polymorphisms (SNPs) hold much promise as a basis for disease-gene association. However, research is limited by the cost of genotyping the tremendous number of SNPs. Therefore, it is important to identify a small subset of informative SNPs, the so-called tag SNPs. This subset consists of selected SNPs of the genotypes, and accurately represents the rest of the SNPs. Furthermore, an effective evaluation method is needed to evaluate prediction accuracy of a set of tag SNPs. In this paper, a genetic algorithm (GA) is applied to tag SNP problems, and the K-nearest neighbor (K-NN) serves as a prediction method of tag SNP selection. The experimental data used was taken from the HapMap project; it consists of genotype data rather than haplotype data. The proposed method consistently identified tag SNPs with considerably better prediction accuracy than methods from the literature. At the same time, the number of tag SNPs identified was smaller than the number of tag SNPs in the other methods. The run time of the proposed method was much shorter than the run time of the SVM/STSA method when the same accuracy was reached.
Keywords: Genetic Algorithm (GA), Genotype, Single nucleotide polymorphism (SNP), tag SNPs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17752867 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes
Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis
Abstract:
In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.
Keywords: Partially observable system, hidden Markov model, competing risks, residual life prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20462866 An Approach for the Prediction of Cardiovascular Diseases
Authors: Nebi Gedik
Abstract:
Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.
Keywords: Cardiovascular disease, feature extraction, supervised learning, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852865 Efficient Lossless Compression of Weather Radar Data
Authors: Wei-hua Ai, Wei Yan, Xiang Li
Abstract:
Data compression is used operationally to reduce bandwidth and storage requirements. An efficient method for achieving lossless weather radar data compression is presented. The characteristics of the data are taken into account and the optical linear prediction is used for the PPI images in the weather radar data in the proposed method. The next PPI image is identical to the current one and a dramatic reduction in source entropy is achieved by using the prediction algorithm. Some lossless compression methods are used to compress the predicted data. Experimental results show that for the weather radar data, the method proposed in this paper outperforms the other methods.
Keywords: Lossless compression, weather radar data, optical linear prediction, PPI image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22642864 Dust Storm Prediction Using ANNs Technique (A Case Study: Zabol City)
Authors: Jamalizadeh, M.R., Moghaddamnia, A., Piri, J., Arbabi, V., Homayounifar, M., Shahryari, A.
Abstract:
Dust storms are one of the most costly and destructive events in many desert regions. They can cause massive damages both in natural environments and human lives. This paper is aimed at presenting a preliminary study on dust storms, as a major natural hazard in arid and semi-arid regions. As a case study, dust storm events occurred in Zabol city located in Sistan Region of Iran was analyzed to diagnose and predict dust storms. The identification and prediction of dust storm events could have significant impacts on damages reduction. Present models for this purpose are complicated and not appropriate for many areas with poor-data environments. The present study explores Gamma test for identifying inputs of ANNs model, for dust storm prediction. Results indicate that more attempts must be carried out concerning dust storms identification and segregate between various dust storm types.Keywords: Dust Storm, Gamma Test, Prediction, ANNs, Zabol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21562863 Comparative Advantage of Mobile Agent Application in Procuring Software Products on the Internet
Authors: Michael K. Adu, Boniface K. Alese, Olumide S. Ogunnusi
Abstract:
This paper brings to fore the inherent advantages in application of mobile agents to procure software products rather than downloading software content on the Internet. It proposes a system whereby the products come on compact disk with mobile agent as deliverable. The client/user purchases a software product, but must connect to the remote server of the software developer before installation. The user provides an activation code that activates mobile agent which is part of the software product on compact disk. The validity of the activation code is checked on connection at the developer’s end to ascertain authenticity and prevent piracy. The system is implemented by downloading two different software products as compare with installing same products on compact disk with mobile agent’s application. Downloading software contents from developer’s database as in the traditional method requires a continuously open connection between the client and the developer’s end, a fixed network is not economically or technically feasible. Mobile agent after being dispatched into the network becomes independent of the creating process and can operate asynchronously and autonomously. It can reconnect later after completing its task and return for result delivery. Response Time and Network Load are very minimal with application of Mobile agent.Keywords: Activation code, internet, mobile agent, software developer, software products.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6332862 Mathematical Analysis of Stock Prices Prediction in a Financial Market Using Geometric Brownian Motion Model
Authors: Edikan E. Akpanibah, Ogunmodimu Dupe Catherine
Abstract:
The relevance of geometric Brownian motion (GBM) in modelling the behaviour of stock market prices (SMP) cannot be over emphasized taking into consideration the volatility of the SMP. Consequently, there is need to investigate how GBM models are being estimated and used in financial market to predict SMP. To achieve this, the GBM estimation and its application to the SMP of some selected companies are studied. The normal and log-normal distributions were used to determine the expected value, variance and co-variance. Furthermore, the GBM model was used to predict the SMP of some selected companies over a period of time and the mean absolute percentage error (MAPE) were calculated and used to determine the accuracy of the GBM model in predicting the SMP of the four companies under consideration. It was observed that for all the four companies, their MAPE values were within the region of acceptance. Also, the MAPE values of our data were compared to an existing literature to test the accuracy of our prediction with respect to time of investment. Finally, some numerical simulations of the graphs of the SMP, expectations and variance of the four companies over a period of time were presented using MATLAB programming software.
Keywords: Stock Market, Geometric Brownian Motion, normal and log-normal distribution, mean absolute percentage error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2762861 Cognitive Weighted Polymorphism Factor: A Comprehension Augmented Complexity Metric
Authors: T. Francis Thamburaj, A. Aloysius
Abstract:
Polymorphism is one of the main pillars of objectoriented paradigm. It induces hidden forms of class dependencies which may impact software quality, resulting in higher cost factor for comprehending, debugging, testing, and maintaining the software. In this paper, a new cognitive complexity metric called Cognitive Weighted Polymorphism Factor (CWPF) is proposed. Apart from the software structural complexity, it includes the cognitive complexity on the basis of type. The cognitive weights are calibrated based on 27 empirical studies with 120 persons. A case study and experimentation of the new software metric shows positive results. Further, a comparative study is made and the correlation test has proved that CWPF complexity metric is a better, more comprehensive, and more realistic indicator of the software complexity than Abreu’s Polymorphism Factor (PF) complexity metric.Keywords: Cognitive complexity metric, cognitive weighted polymorphism factor, object-oriented metrics, polymorphism factor, software metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231