Search results for: Swarm intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 646

Search results for: Swarm intelligence

406 Chances and Challenges of Intelligent Technologies in the Production and Retail Sector

Authors: Carsten Röcker

Abstract:

This paper provides an introduction into the evolution of information and communication technology and illustrates its usage in the work domain. The paper is sub-divided into two parts. The first part gives an overview over the different phases of information processing in the work domain. It starts by charting the past and present usage of computers in work environments and shows current technological trends, which are likely to influence future business applications. The second part starts by briefly describing, how the usage of computers changed business processes in the past, and presents first Ambient Intelligence applications based on identification and localization information, which are already used in the production and retail sector. Based on current systems and prototype applications, the paper gives an outlook of how Ambient Intelligence technologies could change business processes in the future.

Keywords: Ambient Intelligence, Ubiquitous Computing, Business Applications, Radio Frequency Identification (RFID).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
405 A Green Design for Assembly Model for Integrated Design Evaluation and Assembly and Disassembly Sequence Planning

Authors: Yuan-Jye Tseng, Fang-Yu Yu, Feng-Yi Huang

Abstract:

A green design for assembly model is presented to integrate design evaluation and assembly and disassembly sequence planning by evaluating the three activities in one integrated model. For an assembled product, an assembly sequence planning model is required for assembling the product at the start of the product life cycle. A disassembly sequence planning model is needed for disassembling the product at the end. In a green product life cycle, it is important to plan how a product can be disassembled, reused, or recycled, before the product is actually assembled and produced. Given a product requirement, there may be several design alternative cases to design the same product. In the different design cases, the assembly and disassembly sequences for producing the product can be different. In this research, a new model is presented to concurrently evaluate the design and plan the assembly and disassembly sequences. First, the components are represented by using graph based models. Next, a particle swarm optimization (PSO) method with a new encoding scheme is developed. In the new PSO encoding scheme, a particle is represented by a position matrix defining an assembly sequence and a disassembly sequence. The assembly and disassembly sequences can be simultaneously planned with an objective of minimizing the total of assembly costs and disassembly costs. The test results show that the presented method is feasible and efficient for solving the integrated design evaluation and assembly and disassembly sequence planning problem. An example product is implemented and illustrated in this paper.

Keywords: green design, assembly and disassembly sequence planning, green design for assembly, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
404 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump

Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison

Abstract:

Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.

Keywords: Centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
403 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.

Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
402 Conventional and PSO Based Approaches for Model Reduction of SISO Discrete Systems

Authors: S. K. Tomar, R. Prasad, S. Panda, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) discrete systems into lower order model, using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Modified Cauer Form (MCF) and differentiation are used. In this method the original discrete system is, first, converted into equivalent continuous system by applying bilinear transformation. The denominator of the equivalent continuous system and its reciprocal are differentiated successively, the reduced denominator of the desired order is obtained by combining the differentiated polynomials. The numerator is obtained by matching the quotients of MCF. The reduced continuous system is converted back into discrete system using inverse bilinear transformation. In the evolutionary technique method, Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Discrete System, Single Input Single Output (SISO), Bilinear Transformation, Reduced Order Model, Modified CauerForm, Polynomial Differentiation, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
401 Artificial Intelligence: A Comprehensive and Systematic Literature Review of Applications and Comparative Technologies

Authors: Z. M. Najmi

Abstract:

Over the years, the question around Artificial Intelligence has always been one with many answers. Whether by means of use in business and industry or complicated algorithmic programming, management of these technologies has always been the core focus. More recently, technologies have been questioned in industry and society alike as to whether they have improved human-centred design, assisted choices and objectives, and had a hand in systematic processes across the board. With these questions the answer may lie within AI technologies, and the steps needed in removing common human error. Elements such as Machine Learning, Deep Learning, Recommender Systems and Natural Language Processing will all be features to consider moving forward. Our previous intervention with AI applications has resulted in increased productivity, however, raised concerns for the continuation of traditional human-centred occupations. Emerging technologies such as Augmented Reality and Virtual Reality have all played a part in this during AI’s prominent rise. As mentioned, AI has been constantly under the microscope; the benefits and drawbacks may seem endless is wide, but AI is something we must take notice of and adapt into our everyday lives. The aim of this paper is to give an overview of the technologies surrounding A.I. and its’ related technologies. A comprehensive review has been written as a timeline of the developing events and key points in the history of Artificial Intelligence. This research is gathered entirely from secondary research, academic statements of knowledge and gathered to produce an understanding of the timeline of AI.

Keywords: Artificial Intelligence, Deep Learning, Augmented Reality, Reinforcement Learning, Machine Learning, Supervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
400 Passive Non-Prehensile Manipulation on Helix Path Based on Mechanical Intelligence

Authors: Abdullah Bajelan, Adel Akbarimajd

Abstract:

Object manipulation techniques in robotics can be categorized in two major groups including manipulation with grasp and manipulation without grasp. The original aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled. The manipulation path is a helix track with constant radius and incline. The method presented in this paper proposes a system which has not the actuator and the active controller. So this system requires a passive mechanical intelligence to convey the object from the status of the source along the specified path to the goal state. This intelligent is created based on utilizing the geometry of the system components. A general set up for the components of the system is considered to satisfy the required conditions. Then after kinematical analysis, detailed dimensions and geometry of the mechanism is obtained. The kinematical results are verified by simulation in ADAMS.

Keywords: Mechanical intelligence, Object manipulation, Passive mechanism, Passive non-prehensile manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
399 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
398 The Multimedia Interactive Theatre by Virtual Means Regarding Computational Intelligence in Space Design as HCI and Samples from Turkey

Authors: Pelin Yildiz

Abstract:

The aim of this study is to emphasize the opportunities in space design under the aspect of HCI as performance areas. HCI is a multidisciplinary approach that could be identified in many different areas. The aesthetical reflections of HCI by virtual reality in space design are the high-tech solutions of the new innovations as computational facilities by artistic features. The method of this paper is to identify the subject in 3 main parts. In the first part a general approach and definition of interactivity on the basis of space design; in the second part the concept of multimedia interactive theater by some chosen samples from the world and interactive design aspects; in the third part the samples from Turkey will be identified by stage designing principles. In the results it could be declared that the multimedia database is the virtual approach of theatre stage designing regarding interactive means by computational facilities according to aesthetical aspects. HCI is mostly identified in theatre stages as computational intelligence under the affect of interactivity.

Keywords: Computational intelligence, interactive space, multimedia theatre, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
397 Neuro-Fuzzy Algorithm for a Biped Robotic System

Authors: Hataitep Wongsuwarn, Djitt Laowattana

Abstract:

This paper summaries basic principles and concepts of intelligent controls, implemented in humanoid robotics as well as recent algorithms being devised for advanced control of humanoid robots. Secondly, this paper presents a new approach neuro-fuzzy system. We have included some simulating results from our computational intelligence technique that will be applied to our humanoid robot. Subsequently, we determine a relationship between joint trajectories and located forces on robot-s foot through a proposed neuro-fuzzy technique.

Keywords: Biped Robot, Computational Intelligence, Static and Dynamic Walking, Gait Synthesis, Neuro-Fuzzy System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
396 Application of Artificial Intelligence Techniques for Dissolved Gas Analysis of Transformers-A Review

Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta

Abstract:

The gases generated in oil filled transformers can be used for qualitative determination of incipient faults. The Dissolved Gas Analysis has been widely used by utilities throughout the world as the primarily diagnostic tool for transformer maintenance. In this paper, various Artificial Intelligence Techniques that have been used by the researchers in the past have been reviewed, some conclusions have been drawn and a sequential hybrid system has been proposed. The synergy of ANN and FIS can be a good solution for reliable results for predicting faults because one should not rely on a single technology when dealing with real–life applications.

Keywords: Dissolved Gas Analysis, Artificial IntelligenceTechniques, Incipient Faults, Transformer Fault Diagnosis, andHybrid Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4065
395 Artificial Intelligence in Penetration Testing of a Connected and Autonomous Vehicle Network

Authors: Phillip Garrad, Saritha Unnikrishnan

Abstract:

The increase in connected and autonomous vehicles (CAV) creates more opportunities for cyber-attacks. Cyber-attacks can be performed with malicious intent or for research and testing purposes. As connected vehicles approach full autonomy, the possible impact of these cyber-attacks also grows. This review analyses the challenges faced in CAV cybersecurity testing. This includes access and cost of the representative test setup and lack of experts in the field A review of potential solutions to overcome these challenges is presented. Studies have demonstrated Artificial Intelligence (AI) as a promising technique to reduce runtime, enhance effectiveness and comprehensively cover all the standard test aspects in penetration testing in other industries. However, this review has identified a significant gap in the systematic implementation of AI for penetration testing in the CAV cybersecurity domain. The expectation from this review is to investigate potential AI algorithms, which can demonstrate similar improvements in runtime and efficiency for a CAV model. If proven to be an effective means of penetration test for CAV, this methodology may be used on a full CAV test network.

Keywords: Cybersecurity, connected vehicles, software simulation, artificial intelligence, penetration testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490
394 Multimodal Reasoning in a Knowledge Engineering Framework for Product Support

Authors: Rossitza M. Setchi, Nikolaos Lagos

Abstract:

Problem solving has traditionally been one of the principal research areas for artificial intelligence. Yet, although artificial intelligence reasoning techniques have been employed in several product support systems, the benefit of integrating product support, knowledge engineering, and problem solving, is still unclear. This paper studies the synergy of these areas and proposes a knowledge engineering framework that integrates product support systems and artificial intelligence techniques. The framework includes four spaces; the data, problem, hypothesis, and solution ones. The data space incorporates the knowledge needed for structured reasoning to take place, the problem space contains representations of problems, and the hypothesis space utilizes a multimodal reasoning approach to produce appropriate solutions in the form of virtual documents. The solution space is used as the gateway between the system and the user. The proposed framework enables the development of product support systems in terms of smaller, more manageable steps while the combination of different reasoning techniques provides a way to overcome the lack of documentation resources.

Keywords: Knowledge engineering framework, product support, case-based reasoning, model-based reasoning, multimodal reasoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
393 An Ontology for Knowledge Representation and Applications

Authors: Nhon Do

Abstract:

Ontology is a terminology which is used in artificial intelligence with different meanings. Ontology researching has an important role in computer science and practical applications, especially distributed knowledge systems. In this paper we present an ontology which is called Computational Object Knowledge Base Ontology. It has been used in designing some knowledge base systems for solving problems such as the system that supports studying knowledge and solving analytic geometry problems, the program for studying and solving problems in Plane Geometry, the knowledge system in linear algebra.

Keywords: Artificial intelligence, knowledge representation, knowledge base system, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
392 A Weighted Group EI Incorporating Role Information for More Representative Group EI Measurement

Authors: Siyu Wang, Anthony Ward

Abstract:

Emotional intelligence (EI) is a well-established personal characteristic. It has been viewed as a critical factor which can influence an individual's academic achievement, ability to work and potential to succeed. When working in a group, EI is fundamentally connected to the group members' interaction and ability to work as a team. The ability of a group member to intelligently perceive and understand own emotions (Intrapersonal EI), to intelligently perceive and understand other members' emotions (Interpersonal EI), and to intelligently perceive and understand emotions between different groups (Cross-boundary EI) can be considered as Group emotional intelligence (Group EI). In this research, a more representative Group EI measurement approach, which incorporates the information of the composition of a group and an individual’s role in that group, is proposed. To demonstrate the claim of being more representative Group EI measurement approach, this study adopts a multi-method research design, involving a combination of both qualitative and quantitative techniques to establish a metric of Group EI. From the results, it can be concluded that by introducing the weight coefficient of each group member on group work into the measurement of Group EI, Group EI will be more representative and more capable of understanding what happens during teamwork than previous approaches.

Keywords: Emotional intelligence, EI, Group EI, multi-method research, teamwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
391 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection

Authors: Taiwo. M. Akinmuyisitan, John Cosmas

Abstract:

This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.

Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 284
390 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes

Authors: Ivanka Valova

Abstract:

This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.

Keywords: Multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76
389 Adopting Artificial Intelligence and Deep Learning Techniques in Cloud Computing for Operational Efficiency

Authors: Sandesh Achar

Abstract:

Artificial intelligence (AI) is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remains a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.

Keywords: Artificial intelligence, AI, cloud computing, deep learning, machine learning, ML, internet of things, IoT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628
388 Novel Hybrid Approaches For Real Coded Genetic Algorithm to Compute the Optimal Control of a Single Stage Hybrid Manufacturing Systems

Authors: M. Senthil Arumugam, M.V.C. Rao

Abstract:

This paper presents a novel two-phase hybrid optimization algorithm with hybrid genetic operators to solve the optimal control problem of a single stage hybrid manufacturing system. The proposed hybrid real coded genetic algorithm (HRCGA) is developed in such a way that a simple real coded GA acts as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method is next employed to do fine tuning. The hybrid genetic operators involved in the proposed algorithm improve both the quality of the solution and convergence speed. The phase–1 uses conventional real coded genetic algorithm (RCGA), while optimisation by direct search and systematic reduction of the size of search region is employed in the phase – 2. A typical numerical example of an optimal control problem with the number of jobs varying from 10 to 50 is included to illustrate the efficacy of the proposed algorithm. Several statistical analyses are done to compare the validity of the proposed algorithm with the conventional RCGA and PSO techniques. Hypothesis t – test and analysis of variance (ANOVA) test are also carried out to validate the effectiveness of the proposed algorithm. The results clearly demonstrate that the proposed algorithm not only improves the quality but also is more efficient in converging to the optimal value faster. They can outperform the conventional real coded GA (RCGA) and the efficient particle swarm optimisation (PSO) algorithm in quality of the optimal solution and also in terms of convergence to the actual optimum value.

Keywords: Hybrid systems, optimal control, real coded genetic algorithm (RCGA), Particle swarm optimization (PSO), Hybrid real coded GA (HRCGA), and Hybrid genetic operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
387 Artificial Intelligence Techniques applied to Biomedical Patterns

Authors: Giovanni Luca Masala

Abstract:

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Keywords: Computer Aided Detection, mammary tumor, pattern recognition, thalassemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
386 Correlational Analysis between Brain Dominances and Multiple Intelligences

Authors: Lakshmi Dhandabani, Rajeev Sukumaran

Abstract:

Aim of this research study is to investigate and establish the characteristics of brain dominances (BD) and multiple intelligences (MI). This experimentation has been conducted for the sample size of 552 undergraduate computer-engineering students. In addition, mathematical formulation has been established to exhibit the relation between thinking and intelligence, and its correlation has been analyzed. Correlation analysis has been statistically measured using Pearson’s coefficient. Analysis of the results proves that there is a strong relational existence between thinking and intelligence. This research is carried to improve the didactic methods in engineering learning and also to improve e-learning strategies.

Keywords: Thinking style assessment, correlational analysis, mathematical model, data analysis, dynamic equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
385 AI Applications to Metal Stamping Die Design– A Review

Authors: Vishal Naranje, Shailendra Kumar

Abstract:

Metal stamping die design is a complex, experiencebased and time-consuming task. Various artificial intelligence (AI) techniques are being used by worldwide researchers for stamping die design to reduce complexity, dependence on human expertise and time taken in design process as well as to improve design efficiency. In this paper a comprehensive review of applications of AI techniques in manufacturability evaluation of sheet metal parts, die design and process planning of metal stamping die is presented. Further the salient features of major research work published in the area of metal stamping are presented in tabular form and scope of future research work is identified.

Keywords: Artificial Intelligence, Die design, ManufacturabilityEvaluation, Metal Stamping Die.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3869
384 Value Index, a Novel Decision Making Approach for Waste Load Allocation

Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani

Abstract:

Waste load allocation (WLA) policies may use multiobjective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.

Keywords: Waste load allocation (WLA), Value index, Multi objective particle swarm optimization (MOPSO), Haraz River, Equity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
383 Predicting the Success of Bank Telemarketing Using Artificial Neural Network

Authors: Mokrane Selma

Abstract:

The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.

Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3150
382 Competitive Advantage on the Road Again: Exploring Nuances through a Conceptual Review and Future Research Avenues

Authors: Abdolali Mortazavi, Faegheh Taheran

Abstract:

By giving an overview of previous arguments and findings concerned with the concept of competitive advantage, first, we define the overall concept of competitive advantage and discuss nuances of understanding such an important and strategic idea. Finally, by considering the major concerns of marketing academia, including globalization, Artificial Intelligence (AI)-based technologies, consumer well-being, and internal coopetition between a firm’s units, fruitful avenues to be explored by future studies are presented in the form of research propositions. In the end, relevant gaps mentioned by numerous studies that are worth investigating are demonstrated.

Keywords: Artificial Intelligence, competitive advantage, consumer well-being, coopetition, globalization, literature review, temporary competitive advantage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154
381 Emotional Intelligence and Leadership Profiles among Students’ Representative Council of Malaysian Public Universities

Authors: R. A. Harun, N. M. Ishak, N. Yusoff, S. Amat

Abstract:

This quantitative research is aimed to identify the level of leadership quality and emotional intelligence for members of Students' Representatives Council (SRC) of Malaysian Public Universities (MPU). The variables include the leadership quality and emotional quotient (EQ). 238 SRC members in MPU were selected as subjects of the study. Data were collected using two instruments i.e. Malaysian Emotional Quotient Inventory (MEQI) and Ayu-Noriah Leadership Audit Trail Inventory (Ayu-Noriah, LATI). Data were analyzed using descriptive (mean and percentage). Research findings showed that the subjects scored highly in four out of five EQ domains (Self-Regulations, Self-Motivation, Empathy and Social Skills). However, the subjects scored medium to low in Self-Awareness. Analysis on the sub domains (a total of 28 sub domains) showed that the subjects scored high in 17 sub domains for EQ, whilst another 11 were at medium level. The overall analysis indicates that the subjects have high level of EQ. Findings on their leadership qualities showed that they obtained high scores in all seven factors that were measured i.e. Strategy and Leadership Model, Recruit, Review Performance and Honor, Deploy Strategically, Developing, Engage and Retain and Built HR Capabilities/Line Ownership. The overall score for leadership qualities was found to be high.

Keywords: Emotional intelligence, leadership, students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
380 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation

Authors: G. Settanni, A. Panarese, R. Vaira, A. Galiano

Abstract:

Nowadays, artificial intelligence is used successfully in the field of e-commerce for its ability to learn from a large amount of data. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them the most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Also, Long Short-Term Memory algorithms have been implemented and trained on historical data in order to predict customer scores of the different items. Items with the highest scores are recommended to customers.

Keywords: Deep Learning, Long Short-Term Memory, Machine Learning, Recommender Systems, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326
379 Artificial Intelligence Techniques for Controlling Spacecraft Power System

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Advancements in the field of artificial intelligence (AI) made during this decade have forever changed the way we look at automating spacecraft subsystems including the electrical power system. AI have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. In this paper, a mathematical modeling and MATLAB–SIMULINK model for the different components of the spacecraft power system is presented. Also, a control system, which includes either the Neural Network Controller (NNC) or the Fuzzy Logic Controller (FLC) is developed for achieving the coordination between the components of spacecraft power system as well as control the energy flows. The performance of the spacecraft power system is evaluated by comparing two control systems using the NNC and the FLC.

Keywords: Spacecraft, Neural network, Fuzzy logic control, Photovoltaic array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
378 Research on User Experience and Brand Attitudes of Chatbots

Authors: Shu-Yin Yu

Abstract:

With the advancement of artificial intelligence technology, most companies are aware of the profound potential of artificial intelligence in commercial marketing. Man-machine dialogue has become the latest trend in marketing customer service. However, chatbots are often considered to be lack of intelligent or unfriendly conversion, which instead reduces the communication effect of chatbots. To ensure that chatbots represent the brand image and provide a good user experience, companies and users attach great importance. In this study, customer service chatbot was used as the research sample. The research variables are based on the theory of artificial intelligence emotions, integrating the technology acceptance model and innovation diffusion theory, and the three aspects of pleasure, arousal, and dominance of the human-machine PAD (Pleasure, Arousal and Dominance) dimension. The results show that most of the participants have a higher acceptance of innovative technologies and are high pleasure and arousal in the user experience. Participants still have traditional gender (female) service stereotypes about customer service chatbots. Users who have high trust in using chatbots can easily enhance brand acceptance and easily accept brand messages, extend the trust of chatbots to trust in the brand, and develop a positive attitude towards the brand.

Keywords: Brand attitude, chatbot, emotional interaction, user experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
377 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765