Search results for: Conventional solar still
1626 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material
Authors: Mouna Hamed, Ammar B. Brahim
Abstract:
The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.Keywords: Thermal energy storage, phase change material, melting, solidification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12651625 Risk Management in Islamic Banks: A Case Study of the Faisal Islamic Bank of Egypt
Authors: Mohamed Saad Ahmed Hussien
Abstract:
This paper discusses the risk management in Islamic banks and aims to determine the difference in the practices and methods of risk management in those banks compared to the conventional banks, and to make a case study of the biggest Islamic bank in Egypt (Faisal Islamic Bank of Egypt) to identify the most important financial risks faced and how to manage those risks. It was found that Islamic banks face two types of risks. The first type is similar to the risks in conventional banks; the second type is the additional risks which facing the Islamic banks only as a result of some Islamic modes of financing. With regard to the risk management, Islamic banks such as conventional banks applied the regulatory rules issued by the Central Banks and the Basel Committee; Islamic banks also applied the instructions and procedures issued by the Islamic Financial Services Board (IFSB). Also, Islamic banks are similar to the conventional banks in the practices and methods which they use to manage the risks. And there are some factors that may affect the risk management in Islamic banks, such as the size of the bank and the efficiency of the administration and the staff of the bank.
Keywords: Conventional banks, Faisal Islamic Bank of Egypt, Islamic banks, risk management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26851624 Optimization of a Hybrid Wind-Pv-Diesel Standalone System: Case Chlef, Algeria
Authors: T. Tahri, A. Bettahar, M. Douani
Abstract:
In this work, an attempt is made to design an optimal wind/pv/diesel hybrid power system for a village of Ain Merane, Chlef, Algeria, where the wind speed and solar radiation measurements were made. The aim of this paper is the optimization of a hybrid wind/solar/diesel system applied in term of technical and economic feasibility by simulation using HOMER. A comparison was made between the performance of wind/pv/diesel system and the classic connecting system.Keywords: Chlef-Algeria, Homer, Renewable energy, Wind-pvdiesel hybrid system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30531623 Ferroelectric Relaxor Behaviour in Some Lead- Free Compositions and their Potential Applications as Photocatalyst to Hydrogen Production
Authors: A. Kerfah, K. Taïbi, S. Omeiri, M. Trari.
Abstract:
New lead-free ferroelectric relaxor ceramics were prepared by conventional solid-state synthesis in the BaTiO3-Bi2O3- Y2O3 systems. Some of these ceramics present a ferroelectric relaxor with transition temperature close to room temperature. These new materials are very interesting for applications and can replace leadbased ceramic to prevent the toxic pollutions during the preparation state. In the other hand, the energy band diagram shows the potentiality of these compounds for the solar energy conversion. Thus, some compositions have been tested successfully for H2 production upon visible light. The best activity occurs in alkaline media with a rate evolution of about 0.15 mL g-1 mn-1 and a quantum yield of 1% under polychromatic light.Keywords: Ferroelectric, Hydrogen production, Lead-free, Photocatalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17261622 Effects of Virtual Reality on the Upper Extremity Spasticity and Motor Function in Patients with Stroke: A Single Blinded Randomized Controlled Trial
Authors: K. Afsahi, M. Soheilifar, S. H. Hosseini, O. S. Esmaeili, R. Kezemi, N. Mehrbod, N. Vahed, T. Hajiahmad, N. N. Ansari
Abstract:
Background: Stroke is a disabling neurological disease. Rehabilitative therapies are important treatment methods. This clinical trial was done to compare the effects of virtual reality (VR) beside conventional rehabilitation versus conventional rehabilitation alone on the spasticity and motor function in stroke patients. Materials and methods: In this open-label randomized controlled clinical trial, 40 consecutive patients with stable first-ever ischemic stroke in the past three to 12 months that were referred to a rehabilitation clinic in Tehran, Iran in 2020 were enrolled. After signing the informed written consent form, subjects were randomly assigned by block randomization of five in each block as cases with 1:1 into two groups of 20 cases; conventional plus VR therapy group: 45-minute conventional therapy session plus 15-minute VR therapy, and conventional group: 60-minute conventional therapy session. VR rehabilitation is designed and developed with different stages. Outcomes were Modified Ashworth scale, Recovery Stage score for motor function, range of motion (ROM) of shoulder abduction/wrist extension, and patients’ satisfaction rate. Data were compared after study termination. Results: The satisfaction rate among the patients was significantly better in combination group (P = 0.003). Only wrist extension was varied between groups and was better in combination group. The variables generally had statistically significant difference (P < 0.05). Conclusion: VR plus conventional rehabilitation therapy is superior versus conventional rehabilitation alone on the wrist and elbow spasticity and motor function in patients with stroke.
Keywords: Stroke, virtual therapy, efficacy, rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7601621 Fuzzy Logic Based Maximum Power Point Tracking Designed for 10kW Solar Photovoltaic System with Different Membership Functions
Authors: S. Karthika, K. Velayutham, P. Rathika, D. Devaraj
Abstract:
The electric power supplied by a photovoltaic power generation systems depends on the solar irradiation and temperature. The PV system can supply the maximum power to the load at a particular operating point which is generally called as maximum power point (MPP), at which the entire PV system operates with maximum efficiency and produces its maximum power. Hence, a Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. The proposed MPPT controller is designed for 10kW solar PV system installed at Cape Institute of Technology. This paper presents the fuzzy logic based MPPT algorithm. However, instead of one type of membership function, different structures of fuzzy membership functions are used in the FLC design. The proposed controller is combined with the system and the results are obtained for each membership functions in Matlab/Simulink environment. Simulation results are decided that which membership function is more suitable for this system.
Keywords: MPPT, DC-DC Converter, Fuzzy logic controller, Photovoltaic (PV) system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42591620 A Two-Stage Multi-Agent System to Predict the Unsmoothed Monthly Sunspot Numbers
Authors: Mak Kaboudan
Abstract:
A multi-agent system is developed here to predict monthly details of the upcoming peak of the 24th solar magnetic cycle. While studies typically predict the timing and magnitude of cycle peaks using annual data, this one utilizes the unsmoothed monthly sunspot number instead. Monthly numbers display more pronounced fluctuations during periods of strong solar magnetic activity than the annual sunspot numbers. Because strong magnetic activities may cause significant economic damages, predicting monthly variations should provide different and perhaps helpful information for decision-making purposes. The multi-agent system developed here operates in two stages. In the first, it produces twelve predictions of the monthly numbers. In the second, it uses those predictions to deliver a final forecast. Acting as expert agents, genetic programming and neural networks produce the twelve fits and forecasts as well as the final forecast. According to the results obtained, the next peak is predicted to be 156 and is expected to occur in October 2011- with an average of 136 for that year.Keywords: Computational techniques, discrete wavelet transformations, solar cycle prediction, sunspot numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13291619 Application of Robot Formation Scheme for Screening Solar Energy in a Greenhouse
Authors: George K. Fourlas, Konstantinos Kalovrektis, Evangelos Fountas
Abstract:
Many agricultural and especially greenhouse applications like plant inspection, data gathering, spraying and selective harvesting could be performed by robots. In this paper multiple nonholonomic robots are used in order to create a desired formation scheme for screening solar energy in a greenhouse through data gathering. The formation consists from a leader and a team member equipped with appropriate sensors. Each robot is dedicated to its mission in the greenhouse that is predefined by the requirements of the application. The feasibility of the proposed application includes experimental results with three unmanned ground vehicles (UGV).Keywords: Greenhouses application, robot formation, solarenergy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16321618 Performance Enhancement of Dye-Sensitized Solar Cells by MgO Coating on TiO2 Electrodes
Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Thanachayanont
Abstract:
TiO2/MgO composite films were prepared by coating the magnesium acetate solution in the pores of mesoporous TiO2 films using a dip coating method. Concentrations of magnesium acetate solution were varied in a range of 1x10-4 – 1x10-1 M. The TiO2/MgO composite films were characterized by scanning electron microscopy (SEM), transmission electron microscropy (TEM), electrochemical impedance spectroscopy(EIS) , transient voltage decay and I-V test. The TiO2 films and TiO2/MgO composite films were immersed in a 0.3 mM N719 dye solution. The Dye-sensitized solar cells with the TiO2/MgO/N719 structure showed an optimal concentration of magnesium acetate solution of 1x10-3 M resulting in the MgO film estimated thickness of 0.0963 nm and giving the maximum efficiency of 4.85%. The improved efficiency of dyesensitized solar cell was due to the magnesium oxide film as the wide band gap coating decays the electron back transfer to the triiodide electrolyte and reduce charge recombination.Keywords: Magnesium oxide thin film, TiO2/MgO composite films, Electrochemical Impedance Spectrum, Transient voltage decay
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32051617 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications
Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel
Abstract:
The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.
Keywords: Concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7411616 Low-complexity Integer Frequency Offset Synchronization for OFDMA System
Authors: Young-Jae Kim, Young-Hwan You
Abstract:
This paper presents a integer frequency offset (IFO) estimation scheme for the 3GPP long term evolution (LTE) downlink system. Firstly, the conventional joint detection method for IFO and sector cell index (CID) information is introduced. Secondly, an IFO estimation without explicit sector CID information is proposed, which can operate jointly with the proposed IFO estimation and reduce the time delay in comparison with the conventional joint method. Also, the proposed method is computationally efficient and has almost similar performance in comparison with the conventional method over the Pedestrian and Vehicular channel models.Keywords: LTE, OFDMA, primary synchronization signal (PSS), IFO, CID
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23131615 Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa
Authors: Aradhna Pandarum
Abstract:
South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.
Keywords: Medium voltage networks, power system losses, power system voltage, solar photovoltaic, PV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5551614 Selection of Photovoltaic Solar Power Plant Investment Projects - An ANP Approach
Authors: P. Aragonés-Beltrán, F. Chaparro-González, J. P. Pastor Ferrando, M. García-Melón
Abstract:
In this paper the Analytic Network Process (ANP) is applied to the selection of photovoltaic (PV) solar power projects. These projects follow a long management and execution process from plant site selection to plant start-up. As a consequence, there are many risks of time delays and even of project stoppage. In the case study presented in this paper a top manager of an important Spanish company that operates in the power market has to decide on the best PV project (from four alternative projects) to invest based on risk minimization. The manager identified 50 project execution delay and/or stoppage risks. The influences among elements of the network (groups of risks and alternatives) were identified and analyzed using the ANP multicriteria decision analysis method. After analyzing the results the main conclusion is that the network model can manage all the information of the real-world problem and thus it is a decision analysis model recommended by the authors. The strengths and weaknesses ANP as a multicriteria decision analysis tool are also described in the paper.Keywords: Multicriteria decision analysis, Analytic Network Process, Photovoltaic solar power projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21311613 A Computational Comparison between Revetec Engine and Conventional Internal Combustion Engines on the Indicated Torque
Authors: Maisara Mohyeldin Gasim, A. K. Amirruddin, A. Shahrani
Abstract:
This paper investigates the effect of replacing crankshaft with cam on the indicated torque during compression and power strokes in internal combustion engines. A Cycloidal cam profile was used in Revetec engine to calculate and compare the torque to a conventional engine, using a computational method. Firstly, the cylinder pressure was calculated using Ferguson equation, and then the torque calculated depending on cylinder pressure values in every crank angle. the results showed that by using Cycloidal cam profile in Revetec engine the torque can increased by 14% compared with conventional engines, which means an increase in engine efficiency.Keywords: Revetec engine, indicated torque, cam profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20091612 Antenna for Energy Harvesting in Wireless Connected Objects
Authors: Nizar Sakli, Chayma Bahar, Chokri Baccouch, Hedi Sakli
Abstract:
If connected objects multiply, they are becoming a challenge in more than one way. In particular by their consumption and their supply of electricity. A large part of the new generations of connected objects will only be able to develop if it is possible to make them entirely autonomous in terms of energy. Some manufacturers are therefore developing products capable of recovering energy from their environment. Vital solutions in certain contexts, such as the medical industry. Energy recovery from the environment is a reliable solution to solve the problem of powering wireless connected objects. This paper presents and study a optically transparent solar patch antenna in frequency band of 2.4 GHz for connected objects in the future standard 5G for energy harvesting and RF transmission.Keywords: 5G, IoT, wireless communications, antenna, solar cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8181611 A Simulated Design and Analysis of a Solar Thermal Parabolic Trough Concentrator
Authors: Fauziah Sulaiman, Nurhayati Abdullah, Balbir Singh Mahinder Singh
Abstract:
In recent years Malaysia has included renewable energy as an alternative fuel to help in diversifying the country-s energy reliance on oil, natural gas, coal and hydropower with biomass and solar energy gaining priority. The scope of this paper is to look at the designing procedures and analysis of a solar thermal parabolic trough concentrator by simulation utilizing meteorological data in several parts of Malaysia. Parameters which include the aperture area, the diameter of the receiver and the working fluid may be varied to optimize the design. Aperture area is determined by considering the width and the length of the concentrator whereas the geometric concentration ratio (CR) is obtained by considering the width and diameter of the receiver. Three types of working fluid are investigated. Theoretically, concentration ratios can be very high in the range of 10 to 40 000 depending on the optical elements used and continuous tracking of the sun. However, a thorough analysis is essential as discussed in this paper where optical precision and thermal analysis must be carried out to evaluate the performance of the parabolic trough concentrator as the theoretical CR is not the only factor that should be considered.Keywords: Parabolic trough concentrator, Concentration ratio, Intercept factor, Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39811610 Thermal Performance of Hybrid PVT Collector with Natural Circulation
Authors: K. Touafek, A. Khelifa, I. Tabet, H. Haloui, H. Bencheikh El Houcine, M. Adouane
Abstract:
Hybrid photovoltaic thermal (PVT) collectors allow simultaneous production of electrical energy thus heat energy. There are several configurations of hybrid collectors (to produce water or air). For hybrids water collectors, there are several configurations that differ by the nature of the absorber (serpentine, tubes...). In this paper, an absorber tank is studied. The circulation of the coolant is natural (we do not use the pump). We present the obtained results in our experimental study and we analyzed the data, and then we compare the results with the theory practices. The electrical performances of the hybrid collector are compared with those of conventional photovoltaic module mounted on the same structure and measured under the same conditions.
We conducted experiments with natural circulation of the coolant (Thermosyphon), for a flow rate of 0.025kg/m².
Keywords: Experimental, Photovoltaic, Solar, Temperature, Tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22931609 Meshed Antenna for Ku-band Wireless Communication
Authors: Chokri Baccouch, Chayma Bahhar, Hedi Sakli, Nizar Sakli
Abstract:
In this article, we present the combination of an antenna patch structure with a photovoltaic cell in one device for telecommunication applications in isolated environments. The radiating patch element of a patch antenna was replaced by a solar cell. DC current generation is the original feature of the solar cell, but now it was additionally able to receive and transmit electromagnetic waves. A mathematical model which serves in the minimization of power losses of the cell and therefore the improvement in conversion performance was studied. Simulation results of this antenna show a resonance at a frequency of 16.55 GHz in Ku-band with a gain of 4.24 dBi.
Keywords: Electric power collected, optical and electrical losses, optimization of the grid of collection, patch antenna, photovoltaic cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7621608 Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper
Authors: Hossein Ramezani Ali-Akbari
Abstract:
This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor’s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz’s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated.
Keywords: Back electromotive force, brushed DC motor, rotational speed damper, satellite solar panel deployment mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491607 Fuzzy Logic Based Determination of Battery Charging Efficiency Applied to Hybrid Power System
Authors: Priyanka Paliwal, N. P. Patidar, R. K. Nema
Abstract:
Battery storage system is emerging as an essential component of hybrid power system based on renewable energy resources such as solar and wind in order to make these sources dispatchable. Accurate modeling of battery storage system is ssential in order to ensure optimal planning of hybrid power systems incorporating battery storage. Majority of the system planning studies involving battery storage assume battery charging efficiency to be constant. However a strong correlation exists between battery charging efficiency and battery state of charge. In this work a Fuzzy logic based model has been presented for determining battery charging efficiency relative to a particular SOC. In order to demonstrate the efficacy of proposed approach, reliability evaluation studies are carried out for a hypothetical autonomous hybrid power system located in Jaisalmer, Rajasthan, India. The impact of considering battery charging efficiency as a function of state of charge is compared against the assumption of fixed battery charging efficiency for three different configurations comprising of wind-storage, solar-storage and wind-solar-storage.
Keywords: Battery Storage, Charging efficiency, Fuzzy Logic, Hybrid Power System, Reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20931606 Performance Analysis of a Single-Phase Thermosyphon Solar Water Heating System
Authors: S. Sadhishkumar, T. Balusamy
Abstract:
A single-phase closed thermosyphon has been fabricated and experimented to utilize solar energy for water heating. The working fluid of the closed thermosyphon is heated at the flatplate collector and the hot water goes to the water tank due to density gradient caused by temperature differences. This experimental work was done using insulated water tank and insulated connecting pipe between the tank and the flat-plate collector. From the collected data, performance parameters such as instantaneous collector efficiency and heat removal factor are calculated. In this study, the effects of glazing were also observed. The water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using insulated water tank and insulated connecting pipe are 17°C in a period of 5 hours and 60% respectively. Whereas the water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using non-insulated water tank and non-insulated connecting pipe are 14°C in a period of 5 hours and 39% respectively.
Keywords: Solar water heating systems, Single-phase thermosyphon, Flat-plate collector, Insulated tank and pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31321605 Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA
Authors: Jamil Hijazi, Stirling Howieson
Abstract:
Reducing energy consumption and CO2 emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO2 production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.
Keywords: Cooling load, energy efficiency, ground pipe cooling, hybrid cooling strategy, hydronic radiant systems, low carbon emission, passive designs, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9461604 Evaluation of The Energy Performance of Shading Devices based on Incremental Costs
Authors: Jian Yao, Chengwen Yan
Abstract:
Solar shading designs are important for reduction of building energy consumption and improvement of indoor thermal environment. This paper carried out a number of building simulations for evaluation of the energy performance of different shading devices based on incremental costs. The results show that movable shading devices lower incremental costs by up to 50% compared with fixed ones for the same building energy efficiency for residential buildings, and wing panel shadings are much more suitable in commercial buildings than baring screen ones and overhangs for commercial buildings.
Keywords: Solar shading, Incremental costs, Building energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571603 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based On Li-ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries.
In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.
Keywords: ZigBee, Li-ion battery, solar panel, CC2530.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30921602 Factors Affecting Current Ratings for Underground and Air Cables
Authors: S. H. Alwan, J. Jasni, M. Z. A. Ab Kadir, N. Aziz
Abstract:
The aim of this paper is to present a parametric study to determine the major factors that influence the calculations of current rating for both air and underground cables. The current carrying capability of the power cables rely largely on the installation conditions and material properties. In this work, the influences on ampacity of conductor size, soil thermal resistivity and ambient soil temperature for underground installations are shown. The influences on the current-carrying capacity of solar heating (time of day effects and intensity of solar radiation), ambient air temperature and cable size for cables air are also presented. IEC and IEEE standards are taken as reference.
Keywords: Cable ampacity, underground cable, IEC standard, air cables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66521601 The Effect of Fine Aggregate Properties on the Fatigue Behavior of the Conventional and Polymer Modified Bituminous Mixtures Using Two Types of Sand as Fine Aggregate
Authors: S. G. Yasreen, N. B. Madzlan, K. Ibrahim
Abstract:
Fatigue cracking continues to be the main challenges in improving the performance of bituminous mixture pavements. The purpose of this paper is to look at some aspects of the effects of fine aggregate properties on the fatigue behaviour of hot mixture asphalt. Two types of sand (quarry and mining sand) with two conventional bitumen (PEN 50/60 & PEN 80/100) and four polymers modified bitumen PMB (PM1_82, PM1_76, PM2_82 and PM2_76) were used. Physical, chemical and mechanical tests were performed on the sands to determine their effect when incorporated with a bituminous mixture. According to the beam fatigue results, quarry sand that has more angularity, rougher, higher shear strength and a higher percentage of Aluminium oxide presented higher resistance to fatigue. Also a PMB mixture gives better fatigue results than conventional mixtures, this is due to the PMB having better viscosity property than that of the conventional bitumen.Keywords: Beam fatigue test, chemical property, mechanical property, physical property
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28151600 A Robust Frequency Offset Estimator for Orthogonal Frequency Division Multiplexing
Authors: Keunhong Chae, Seokho Yoon
Abstract:
We address the integer frequency offset (IFO) estimation under the influence of the timing offset (TO) in orthogonal frequency division multiplexing (OFDM) systems. Incorporating the IFO and TO into the symbol set used to represent the received OFDM symbol, we investigate the influence of the TO on the IFO, and then, propose a combining method between two consecutive OFDM correlations, reducing the influence. The proposed scheme has almost the same complexity as that of the conventional schemes, whereas it does not need the TO knowledge contrary to the conventional schemes. From numerical results it is confirmed that the proposed scheme is insensitive to the TO, consequently, yielding an improvement of the IFO estimation performance over the conventional schemes when the TO exists.
Keywords: Estimation, integer frequency offset, OFDM, timing offset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21291599 Delay and Energy Consumption Analysis of Conventional SRAM
Authors: Arash Azizi-Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati
Abstract:
The energy consumption and delay in read/write operation of conventional SRAM is investigated analytically as well as by simulation. Explicit analytical expressions for the energy consumption and delay in read and write operation as a function of device parameters and supply voltage are derived. The expressions are useful in predicting the effect of parameter changes on the energy consumption and speed as well as in optimizing the design of conventional SRAM. HSPICE simulation in standard 0.25μm CMOS technology confirms precision of analytical expressions derived from this paper.Keywords: Read energy consumption, write energy consumption, read delay, write delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33231598 Study on Damage Tolerance Behavior of Integrally Stiffened Panel and Conventional Stiffened Panel
Authors: M. Adeel
Abstract:
The damage tolerance behavior of integrally and conventional stiffened panel is investigated based on the fracture mechanics and finite element analysis. The load bearing capability and crack growth characteristic of both types of the stiffened panels having same configuration subjected to distributed tensile load is examined in this paper. A fourteen-stringer stiffened panel is analyzed for a central skin crack propagating towards the adjacent stringers. Stress intensity factors and fatigue crack propagation rates of both types of the stiffened panels are then compared. The analysis results show that integral stiffening causes higher stress intensity factor than conventional stiffened panel as the crack tip passes through the stringer and the integrally stiffened panel has less load bearing capability than the riveted stiffened panel.Keywords: Conventional Stiffened Structure, Damage Tolerance, Finite Element Analysis, Integrally Stiffened Structure, Stress Intensity Factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29191597 Optimized Hybrid Renewable Energy System of Isolated Islands in Smart-Grid Scenario - A Case Study in Indian Context
Authors: Aurobi Das, V. Balakrishnan
Abstract:
This paper focuses on the integration of hybrid renewable energy resources available in remote isolated islands of Sundarban-24 Parganas-South of Eastern part of India to National Grid of conventional power supply to give a Smart-Grid scenario. Before grid-integration, feasibility of optimization of hybrid renewable energy system is monitored through an Intelligent Controller proposed to be installed at Moushuni Island of Sundarban. The objective is to ensure the reliability and efficiency of the system to optimize the utilization of the hybrid renewable energy sources and also a proposition of how theses isolated Hybrid Renewable Energy Systems at remote islands can be grid-connected is analyzed towards vision of green smart-grid.
Keywords: Intelligent controller, hybrid renewable, solar photo voltaic, smart-grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849