Search results for: statistical learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3136

Search results for: statistical learning.

526 Context Modeling and Context-Aware Service Adaptation for Pervasive Computing Systems

Authors: Moeiz Miraoui, Chakib Tadj, Chokri ben Amar

Abstract:

Devices in a pervasive computing system (PCS) are characterized by their context-awareness. It permits them to provide proactively adapted services to the user and applications. To do so, context must be well understood and modeled in an appropriate form which enhance its sharing between devices and provide a high level of abstraction. The most interesting methods for modeling context are those based on ontology however the majority of the proposed methods fail in proposing a generic ontology for context which limit their usability and keep them specific to a particular domain. The adaptation task must be done automatically and without an explicit intervention of the user. Devices of a PCS must acquire some intelligence which permits them to sense the current context and trigger the appropriate service or provide a service in a better suitable form. In this paper we will propose a generic service ontology for context modeling and a context-aware service adaptation based on a service oriented definition of context.

Keywords: Pervasive computing system, context, contextawareness, service, context modeling, ontology, adaptation, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
525 Response of Diaphragmatic Excursion to Inspiratory Muscle Trainer Post Thoracotomy

Authors: H. M. Haytham, E. A. Azza, E.S. Mohamed, E. G. Nesreen

Abstract:

Thoracotomy is a great surgery that has serious pulmonary complications, so purpose of this study was to determine the response of diaphragmatic excursion to inspiratory muscle trainer post thoracotomy. Thirty patients of both sexes (16 men and 14 women) with age ranged from 20 to 40 years old had done thoracotomy participated in this study. The practical work was done in cardiothoracic department, Kasr-El-Aini hospital at faculty of medicine for individuals 3 days Post operatively. Patients were assigned into two groups: group A (study group) included 15 patients (8 men and 7 women) who received inspiratory muscle training by using inspiratory muscle trainer for 20 minutes and routine chest physiotherapy (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Group B (control group) included 15 patients (8 men and 7 women) who received the routine chest physiotherapy only (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Ultrasonography was used to evaluate the changes in diaphragmatic excursion before and after training program. Statistical analysis revealed a significant increase in diaphragmatic excursion in the study group (59.52%) more than control group (18.66%) after using inspiratory muscle trainer post operatively in patients post thoracotomy. It was concluded that the inspiratory muscle training device increases diaphragmatic excursion in patients post thoracotomy through improving inspiratory muscle strength and improving mechanics of breathing and using of inspiratory muscle trainer as a method of physical therapy rehabilitation to reduce post-operative pulmonary complications post thoracotomy.

Keywords: Diaphragmatic excursion, inspiratory muscle trainer, ultrasonography, thoracotomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
524 Knowledge, Attitude and Practice of Pregnant Women toward Antenatal Care at Public Hospitals in Sana'a City-Yemen

Authors: Abdulfatah Al-Jaradi, Marzoq Ali Odhah, Abdulnasser A. Haza’a

Abstract:

Background: Antenatal care can be defined as the care provided by skilled healthcare professionals to pregnant women and adolescent girls to ensure the best health conditions for both mother and baby during pregnancy. The components of Antenatal Care (ANC) include risk identification; prevention and management of pregnancy-related or concurrent diseases; and health education and health promotion. The aim of this study: to assess the knowledge, attitude, and practice of pregnant women regarding ANC. Methodology: A descriptive knowledge, attitude, and practice (KAP) study was conducted in public hospitals in Sana'a City, Yemen. The study population included all pregnant women that intended to the prenatal department and clinical outpatient department; the final sample size was 371 pregnant women. A self-administered questionnaire was used to collect the data, statistical package for social sciences SPSS was used to data analysis. The results: Most (79%) of pregnant women had correct answers in total knowledge regarding ANC, and about two-thirds (67%) of pregnant women had performance practice regarding ANC and two-third (68%) of pregnant women had a positive attitude. Conclusions: More than three quarter of pregnant women had good knowledge level, most of pregnant women had moderate practice level, and more than two-thirds of pregnant women had a positive attitude regarding antenatal care. There was a statistically significant association between overall knowledge and practice level toward ANC and demographic characteristics of pregnant women, at P-value ≤ 0.05. Recommendations: we recommended more education and training courses, lecturers, and education sessions in clinical facilitators focused on ANC, which relies on evidence-based interventions provided to women during pregnancy by skilled healthcare providers such as midwives, doctors, and nurses.

Keywords: Antenatal care, knowledge, practice, attitude, pregnant women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
523 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering

Authors: Elizabeth B. Varghese, M. Wilscy

Abstract:

A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.

Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
522 Iris Recognition Based On the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
521 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
520 Consumption Pattern and Dietary Practices of Pregnant Women in Odeda Local Government Area of Ogun State

Authors: Ademuyiwa, M. O., Sanni, S. A.

Abstract:

The importance of maternal nutritional practices during pregnancy cannot be overemphasized. This paper assessed the consumption pattern and dietary practices of 50 pregnant women selected using purposive sampling technique from three health care centres (Primary Health Care Centre, Obantoko; Primary Health Care Centre Alabata; and the General Hospital, Odeda) in Odeda Local Government Area of Ogun State, Nigeria. Structured questionnaire was used to elicit information on socioeconomic status, consumption pattern and dietary practices. Data were analyzed using the Statistical Package for Social Sciences (SPSS, 17). The results indicated that about 58% of the pregnant women were below the age of 30 while 42% were ages 28-40 years. Only 16% had tertiary education while (38%) had secondary education, 52% earn income through petty trading. On food intake, 52% got their energy source from rice on a daily basis, followed by pap (38%) and eko (34%). For protein intake, 36% consumed bean cake on a daily basis while 66% consumed moinmoin 2-3 times a week. Orange (48%) and Green Leafy vegetable (40%) accounted for the mostly consumed fruit and vegetable on daily basis. In terms of animal origin, fish (76%), meat (58%) and eggs (30%) were consumed daily, while chicken and snail were consumed occasionally by 54% and 42%, respectively. Forty-six percent (46%) of the pregnant women eat more than three times daily; while 60% of the women eat outside their homes with 42% respondents eat out lunch and only two percent least eaten out dinner. It is important to increase in awareness campaign to sensitize the pregnant women on the importance of good nutrition especially fruits, vegetables and dairy products. 

Keywords: Consumption Pattern, Dietary Practices, Pregnant, Women, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4920
519 Integrating Technology into Mathematics Education: A Case Study from Primary Mathematics Students Teachers

Authors: Berna Cantürk-Günhan, Esra Bukova-Güzel

Abstract:

The purpose of the study is to determine the primary mathematics student teachers- views related to use instructional technology tools in course of the learning process and to reveal how the sample presentations towards different mathematical concepts affect their views. This is a qualitative study involving twelve mathematics students from a public university. The data gathered from two semi-structural interviews. The first one was realized in the beginning of the study. After that the representations prepared by the researchers were showed to the participants. These representations contain animations, Geometer-s Sketchpad activities, video-clips, spreadsheets, and power-point presentations. The last interview was realized at the end of these representations. The data from the interviews and content analyses were transcribed and read and reread to explore the major themes. Findings revealed that the views of the students changed in this process and they believed that the instructional technology tools should be used in their classroom.

Keywords: Integrating Technology, Mathematics Education, Primary Education, Teacher Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
518 A Robust Eyelashes and Eyelid Detection in Transformation Invariant Iris Recognition: In Application with LRC Security System

Authors: R. Bremananth

Abstract:

Biometric authentication is an essential task for any kind of real-life applications. In this paper, we contribute two primary paradigms to Iris recognition such as Robust Eyelash Detection (RED) using pathway kernels and hair curve fitting synthesized model. Based on these two paradigms, rotation invariant iris recognition is enhanced. In addition, the presented framework is tested with real-life iris data to provide the authentication for LRC (Learning Resource Center) users. Recognition performance is significantly improved based on the contributed schemes by evaluating real-life irises. Furthermore, the framework has been implemented using Java programming language. Experiments are performed based on 1250 diverse subjects in different angles of variations on the authentication process. The results revealed that the methodology can deploy in the process on LRC management system and other security required applications.

Keywords: Authentication, biometric, eye lashes detection, iris scanning, LRC security, secure access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
517 Review of the Road Crash Data Availability in Iraq

Authors: Abeer K. Jameel, Harry Evdorides

Abstract:

Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users’ details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies.

Keywords: Data availability, Iraq, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
516 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks

Authors: Ahmad Aljaafreh

Abstract:

This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.

Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6249
515 Learning Spatio-Temporal Topology of a Multi-Camera Network by Tracking Multiple People

Authors: Yunyoung Nam, Junghun Ryu, Yoo-Joo Choi, We-Duke Cho

Abstract:

This paper presents a novel approach for representing the spatio-temporal topology of the camera network with overlapping and non-overlapping fields of view (FOVs). The topology is determined by tracking moving objects and establishing object correspondence across multiple cameras. To track people successfully in multiple camera views, we used the Merge-Split (MS) approach for object occlusion in a single camera and the grid-based approach for extracting the accurate object feature. In addition, we considered the appearance of people and the transition time between entry and exit zones for tracking objects across blind regions of multiple cameras with non-overlapping FOVs. The main contribution of this paper is to estimate transition times between various entry and exit zones, and to graphically represent the camera topology as an undirected weighted graph using the transition probabilities.

Keywords: Surveillance, multiple camera, people tracking, topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
514 Strategies of Entrepreneurs to Collaborate with Alliances for Commercializing Technology and New Product Innovation: A Practical Learning in Thailand

Authors: Kusumaphorn Sompong, Helen Lawton Smith, Barbara Igel

Abstract:

This paper provides a key driver-based conceptual framework that can be used to improve a firm-s success in commercializing technology and in new product innovation resulting from collaboration with other organizations through strategic alliances. Based on a qualitative study using an interview approach, strategic alliances of entrepreneurs in the food processing industry in Thailand are explored. This paper describes factors affecting decisions to collaborate through alliances. It identifies four issues: maintaining the efficiency of the value chain for production capability, adapting to present and future competition, careful assessment of value of outcomes, and management of innovation. We consider five driving factors: resource orientation, assessment of risk, business opportunity, sharing of benefits and confidence in alliance partners. These factors will be of interest to entrepreneurs and policy makers with regard to further understanding of the direction of business strategies.

Keywords: Managing collaboration, strategic alliance, technology commercialization, innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
513 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks

Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing

Abstract:

The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.

Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
512 Musical Notation Reading versus Alphabet Reading - Comparison and Implications for Teaching Music Reading to Students with Dyslexia

Authors: Ora Geiger

Abstract:

This paper discusses the question whether a person diagnosed with dyslexia will necessarily have difficulty in reading musical notes. The author specifies the characteristics of alphabet reading in comparison to musical notation reading, and concludes that there should be no contra-indication for teaching standard music reading to children with dyslexia if an appropriate process is offered. This conclusion is based on a long term case study and relies on two main characteristics of music reading: (1) musical notation system is a systematic, logical, relative set of symbols written on a staff; and (2) music reading learning connected with playing a musical instrument is a multi-sensory activity that combines sight, hearing, touch, and movement. The paper describes music reading teaching procedures, using soprano recorders, and provides unique teaching methods that have been found to be effective for students who were diagnosed with dyslexia. It provides theoretical explanations in addition to guidelines for music education practices.

Keywords: Alphabet reading, music reading, multisensory teaching method, dyslexia, recorder playing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
511 A Study of the Problems and Demands of Community Leaders- Training in the Upper Northeastern Region

Authors: Teerawach Khamkorn, Laongtip Mathurasa, Savittree Rochanasmita Arnold, Witthaya Mekhum

Abstract:

This research is aimed at studying the nature of problems and demands of the training for community leaders in the upper northeastern region of Thailand. Population and group samplings are based on 360 community leaders in the region who have experienced prior training from the Udonthani Rajabhat University. Stratified random samplings have been drawn upon 186 participants. The research tools is questionnaires. The frequency, percentage and standard deviation are employed in data analysis. The findings indicate that most of community leaders are males and senior adults. The problems in training are associated with the inconveniences of long-distance travelling to training locations, inadequacy of learning centers and training sites and high training costs. The demand of training is basically motivated by a desire for self-development in modern knowledge in keeping up-to-date with the changing world and the need for technological application and facilitation in shortening the distance to training locations and in limiting expensive training costs.

Keywords: Community leaders, Distance Training, Management, Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
510 On the Factors Affecting Computing Students’ Awareness of the Latest ICTs

Authors: O. D. Adegbehingbe, S. D. Eyono Obono

Abstract:

The education sector is constantly faced with rapid changes in technologies in terms of ensuring that the curriculum is up to date and in terms of making sure that students are aware of these technological changes. This challenge can be seen as the motivation for this study, which is to examine the factors affecting computing students’ awareness of the latest Information Technologies (ICTs). The aim of this study is divided into two sub-objectives which are: the selection of relevant theories and the design of a conceptual model to support it as well as the empirical testing of the designed model. The first objective is achieved by a review of existing literature on technology adoption theories and models. The second objective is achieved using a survey of computing students in the four universities of the KwaZulu-Natal province of South Africa. Data collected from this survey is analyzed using Statistical package for the Social Science (SPSS) using descriptive statistics, ANOVA and Pearson correlations. The main hypothesis of this study is that there is a relationship between the demographics and the prior conditions of the computing students and their awareness of general ICT trends and of Digital Switch Over (DSO) a new technology which involves the change from analog to digital television broadcasting in order to achieve improved spectrum efficiency. The prior conditions of the computing students that were considered in this study are students’ perceived exposure to career guidance and students’ perceived curriculum currency. The results of this study confirm that gender, ethnicity, and high school computing course affect students’ perceived curriculum currency while high school location affects students’ awareness of DSO. The results of this study also confirm that there is a relationship between students prior conditions and their awareness of general ICT trends and DSO in particular.

Keywords: Education, Information Technologies, IDT, awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
509 First Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks

Authors: Frank Emmert-Streib, Matthias Dehmer

Abstract:

Inferring the network structure from time series data is a hard problem, especially if the time series is short and noisy. DNA microarray is a technology allowing to monitor the mRNA concentration of thousands of genes simultaneously that produces data of these characteristics. In this study we try to investigate the influence of the experimental design on the quality of the result. More precisely, we investigate the influence of two different types of random single gene perturbations on the inference of genetic networks from time series data. To obtain an objective quality measure for this influence we simulate gene expression values with a biologically plausible model of a known network structure. Within this framework we study the influence of single gene knock-outs in opposite to linearly controlled expression for single genes on the quality of the infered network structure.

Keywords: Dynamic Bayesian networks, microarray data, structure learning, Markov chain Monte Carlo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
508 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
507 The Impact of HIV/AIDS on Micro-enterprise Development in Kenya: A Study of Obunga Slum in Kisumu

Authors: C. A. Oloo, C. Ojwang

Abstract:

The performances of small and medium enterprises have stagnated in the last two decades. This has mainly been due to the emergence of HIV / Aids. The disease has had a detrimental effect on the general economy of the country leading to morbidity and mortality of the Kenyan workforce in their primary age. The present study sought to establish the economic impact of HIV / Aids on the micro-enterprise development in Obunga slum – Kisumu, in terms of production loss, increasing labor related cost and to establish possible strategies to address the impact of HIV / Aids on microenterprises. The study was necessitated by the observation that most micro-enterprises in the slum are facing severe economic and social crisis due to the impact of HIV / Aids, they get depleted and close down within a short time due to death of skilled and experience workforce. The study was carried out between June 2008 and June 2009 in Obunga slum. Data was subjected to computer aided statistical analysis that included descriptive statistic, chi-squared and ANOVA techniques. Chi-squared analysis on the micro-enterprise owners opinion on the impact of HIV / Aids on depletion of microenterprise compared to other diseases indicated high levels of the negative effects of the disease at significance levels of P<0.01. Analysis of variance on the impact of HIV / Aids on the performance and productivity of micro-enterprises also indicated a negative effect on the general performance of micro-enterprise at significance levels of P<0.01. Therefore reducing the negative impacts of HIV/Aids on micro-enterprise development, there is need to improve the socioeconomic environment, mobilize donors and stake holders in training and funding, and review the current strategies for addressing the disease. Further conclusive research should also be conducted on a bigger scale.

Keywords: Entrepreneurship, HIV-AIDS, Micro-enterprise, Poverty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404
506 Evaluation and Analysis of Lean-Based Manufacturing Equipment and Technology System for Jordanian Industries

Authors: Mohammad D. AL-Tahat, Shahnaz M. Alkhalil

Abstract:

International markets driven forces are changing continuously, therefore companies need to gain a competitive edge in such markets. Improving the company's products, processes and practices is no longer auxiliary. Lean production is a production management philosophy that consolidates work tasks with minimum waste resulting in improved productivity. Lean production practices can be mapped into many production areas. One of these is Manufacturing Equipment and Technology (MET). Many lean production practices can be implemented in MET, namely, specific equipment configurations, total preventive maintenance, visual control, new equipment/ technologies, production process reengineering and shared vision of perfection.The purpose of this paper is to investigate the implementation level of these six practices in Jordanian industries. To achieve that a questionnaire survey has been designed according to five-point Likert scale. The questionnaire is validated through pilot study and through experts review. A sample of 350 Jordanian companies were surveyed, the response rate was 83%. The respondents were asked to rate the extent of implementation for each of practices. A relationship conceptual model is developed, hypotheses are proposed, and consequently the essential statistical analyses are then performed. An assessment tool that enables management to monitor the progress and the effectiveness of lean practices implementation is designed and presented. Consequently, the results show that the average implementation level of lean practices in MET is 77%, Jordanian companies are implementing successfully the considered lean production practices, and the presented model has Cronbach-s alpha value of 0.87 which is good evidence on model consistency and results validation.

Keywords: Lean Production, SME applications, Visual Control, New equipment/technologies, Specific equipment configurations, Jordan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
505 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays

Authors: M. Anidha, K. Premalatha

Abstract:

Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.

Keywords: Gene selection, mutual information, Fisher score, classification, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
504 Professional Development of Pre-Service Teachers: The Case of Practicum Experience

Authors: G. Lingam, N. Lingam, K. Raghuwaiya

Abstract:

The reported study focuses on pre-service teachers’ professional development during the teaching practice. The cohort studied comprised participants in their final year in the Bachelor of Arts and Bachelor of Science with Graduate Certificate in Education programmes of a university in Fiji. Analysis of the data obtained using a survey questionnaire indicates that overall, the pre-service teachers were satisfied with the practicum experience. This is assumed to demonstrate that the practicum experience contributed well towards their professional preparation for work expected of them in Fiji secondary schools. Participants also identified some concerns as needing attention. To conclude, the paper provides suggestions for improving the preparation of teachers by strengthening the identified areas of the practicum offered by the university. The study has implications for other teacher education providers in small developing island states and even beyond for the purpose of enhancing learning in student teachers’ for future work.

Keywords: Pre-service, teacher education, practicum, teachers’ world of work, student teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3837
503 A Robust Method for Finding Nearest-Neighbor using Hexagon Cells

Authors: Ahmad Attiq Al-Ogaibi, Ahmad Sharieh, Moh’d Belal Al-Zoubi, R. Bremananth

Abstract:

In pattern clustering, nearest neighborhood point computation is a challenging issue for many applications in the area of research such as Remote Sensing, Computer Vision, Pattern Recognition and Statistical Imaging. Nearest neighborhood computation is an essential computation for providing sufficient classification among the volume of pixels (voxels) in order to localize the active-region-of-interests (AROI). Furthermore, it is needed to compute spatial metric relationships of diverse area of imaging based on the applications of pattern recognition. In this paper, we propose a new methodology for finding the nearest neighbor point, depending on making a virtually grid of a hexagon cells, then locate every point beneath them. An algorithm is suggested for minimizing the computation and increasing the turnaround time of the process. The nearest neighbor query points Φ are fetched by seeking fashion of hexagon holistic. Seeking will be repeated until an AROI Φ is to be expected. If any point Υ is located then searching starts in the nearest hexagons in a circular way. The First hexagon is considered be level 0 (L0) and the surrounded hexagons is level 1 (L1). If Υ is located in L1, then search starts in the next level (L2) to ensure that Υ is the nearest neighbor for Φ. Based on the result and experimental results, we found that the proposed method has an advantage over the traditional methods in terms of minimizing the time complexity required for searching the neighbors, in turn, efficiency of classification will be improved sufficiently.

Keywords: Hexagon cells, k-nearest neighbors, Nearest Neighbor, Pattern recognition, Query pattern, Virtually grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2802
502 Web Personalization to Build Trust in E-Commerce: A Design Science Approach

Authors: Choon Ling Sia, Yani Shi, Jiaqi Yan, Huaping Chen

Abstract:

With the development of the Internet, E-commerce is growing at an exponential rate, and lots of online stores are built up to sell their goods online. A major factor influencing the successful adoption of E-commerce is consumer-s trust. For new or unknown Internet business, consumers- lack of trust has been cited as a major barrier to its proliferation. As web sites provide key interface for consumer use of E-Commerce, we investigate the design of web site to build trust in E-Commerce from a design science approach. A conceptual model is proposed in this paper to describe the ontology of online transaction and human-computer interaction. Based on this conceptual model, we provide a personalized webpage design approach using Bayesian networks learning method. Experimental evaluation are designed to show the effectiveness of web personalization in improving consumer-s trust in new or unknown online store.

Keywords: Trust, Web site design, Human-ComputerInteraction, E-Commerce, Design science, Bayesian network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
501 Modeling Child Development Factors for the Early Introduction of ICTs in Schools

Authors: K. E. Oyetade, S. D. Eyono Obono

Abstract:

One of the fundamental characteristics of Information and Communication Technology (ICT) has been the ever-changing nature of continuous release and models of ICTs with its impact on the academic, social, and psychological benefits of its introduction in schools. However, there seems to be a growing concern about its negative impact on students when introduced early in schools for teaching and learning. This study aims to design a model of child development factors affecting the early introduction of ICTs in schools in an attempt to improve the understanding of child development and introduction of ICTs in schools. The proposed model is based on a sound theoretical framework. It was designed following a literature review of child development theories and child development factors. The child development theoretical framework that fitted to the best of all child development factors was then chosen as the basis for the proposed model. This study hence found that the Jean Piaget cognitive developmental theory is the most adequate theoretical frameworks for modeling child development factors for ICT introduction in schools.

Keywords: Child development factors, child development theories, ICTs, theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
500 Multiple Power Flow Solutions Using Particle Swarm Optimization with Embedded Local Search Technique

Authors: P. Acharjee, S. K. Goswami

Abstract:

Particle Swarm Optimization (PSO) with elite PSO parameters has been developed for power flow analysis under practical constrained situations. Multiple solutions of the power flow problem are useful in voltage stability assessment of power system. A method of determination of multiple power flow solutions is presented using a hybrid of Particle Swarm Optimization (PSO) and local search technique. The unique and innovative learning factors of the PSO algorithm are formulated depending upon the node power mismatch values to be highly adaptive with the power flow problems. The local search is applied on the pbest solution obtained by the PSO algorithm in each iteration. The proposed algorithm performs reliably and provides multiple solutions when applied on standard and illconditioned systems. The test results show that the performances of the proposed algorithm under critical conditions are better than the conventional methods.

Keywords: critical conditions, ill-conditioned systems, localsearch technique, multiple power flow solutions, particle swarmoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
499 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
498 A Study of Distinctive Models for Pre-hospital EMS in Thailand: Knowledge Capture

Authors: R. Sinthavalai, N. Memongkol, N. Patthanaprechawong, J. Viriyanantavong, C. Choosuk

Abstract:

In Thailand, the practice of pre-hospital Emergency Medical Service (EMS) in each area reveals the different growth rates and effectiveness of the practices. Those can be found as the diverse quality and quantity. To shorten the learning curve prior to speed-up the practices in other areas, story telling and lessons learnt from the effective practices are valued as meaningful knowledge. To this paper, it was to ascertain the factors, lessons learnt and best practices that have impact as contributing to the success of prehospital EMS system. Those were formulized as model prior to speedup the practice in other areas. To develop the model, Malcolm Baldrige National Quality Award (MBNQA), which is widely recognized as a framework for organizational quality assessment and improvement, was chosen as the discussion framework. Remarkably, this study was based on the consideration of knowledge capture; however it was not to complete the loop of knowledge activities. Nevertheless, it was to highlight the recognition of knowledge capture, which is the initiation of knowledge management.

Keywords: Emergency Medical Service, Modeling, MBNQA, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
497 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 334