Search results for: risk models
843 Interdisciplinary Principles of Field-Like Coordination in the Case of Self-Organized Social Systems1
Authors: D. Plikynas, S. Masteika, A. Budrionis
Abstract:
This interdisciplinary research aims to distinguish universal scale-free and field-like fundamental principles of selforganization observable across many disciplines like computer science, neuroscience, microbiology, social science, etc. Based on these universal principles we provide basic premises and postulates for designing holistic social simulation models. We also introduce pervasive information field (PIF) concept, which serves as a simulation media for contextual information storage, dynamic distribution and organization in social complex networks. PIF concept specifically is targeted for field-like uncoupled and indirect interactions among social agents capable of affecting and perceiving broadcasted contextual information. Proposed approach is expressive enough to represent contextual broadcasted information in a form locally accessible and immediately usable by network agents. This paper gives some prospective vision how system-s resources (tangible and intangible) could be simulated as oscillating processes immersed in the all pervasive information field.
Keywords: field-based coordination, multi-agent systems, information-rich social networks, pervasive information field
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571842 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks
Authors: Naveed Ghani, Samreen Javed
Abstract:
In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.
Keywords: Network worms, malware infection propagating malicious code, virus, security, VPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817841 Optimization Approaches for a Complex Dairy Farm Simulation Model
Authors: Jagannath Aryal, Don Kulasiri, Dishi Liu
Abstract:
This paper describes the optimization of a complex dairy farm simulation model using two quite different methods of optimization, the Genetic algorithm (GA) and the Lipschitz Branch-and-Bound (LBB) algorithm. These techniques have been used to improve an agricultural system model developed by Dexcel Limited, New Zealand, which describes a detailed representation of pastoral dairying scenarios and contains an 8-dimensional parameter space. The model incorporates the sub-models of pasture growth and animal metabolism, which are themselves complex in many cases. Each evaluation of the objective function, a composite 'Farm Performance Index (FPI)', requires simulation of at least a one-year period of farm operation with a daily time-step, and is therefore computationally expensive. The problem of visualization of the objective function (response surface) in high-dimensional spaces is also considered in the context of the farm optimization problem. Adaptations of the sammon mapping and parallel coordinates visualization are described which help visualize some important properties of the model-s output topography. From this study, it is found that GA requires fewer function evaluations in optimization than the LBB algorithm.Keywords: Genetic Algorithm, Linux Cluster, LipschitzBranch-and-Bound, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116840 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches
Authors: Wuttigrai Ngamsirijit
Abstract:
Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.Keywords: Decision making, human capital analytics, talent management, talent value chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976839 Small Sample Bootstrap Confidence Intervals for Long-Memory Parameter
Authors: Josu Arteche, Jesus Orbe
Abstract:
The log periodogram regression is widely used in empirical applications because of its simplicity, since only a least squares regression is required to estimate the memory parameter, d, its good asymptotic properties and its robustness to misspecification of the short term behavior of the series. However, the asymptotic distribution is a poor approximation of the (unknown) finite sample distribution if the sample size is small. Here the finite sample performance of different nonparametric residual bootstrap procedures is analyzed when applied to construct confidence intervals. In particular, in addition to the basic residual bootstrap, the local and block bootstrap that might adequately replicate the structure that may arise in the errors of the regression are considered when the series shows weak dependence in addition to the long memory component. Bias correcting bootstrap to adjust the bias caused by that structure is also considered. Finally, the performance of the bootstrap in log periodogram regression based confidence intervals is assessed in different type of models and how its performance changes as sample size increases.Keywords: bootstrap, confidence interval, log periodogram regression, long memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747838 Efficient Large Numbers Karatsuba-Ofman Multiplier Designs for Embedded Systems
Authors: M.Machhout, M.Zeghid, W.El hadj youssef, B.Bouallegue, A.Baganne, R.Tourki
Abstract:
Long number multiplications (n ≥ 128-bit) are a primitive in most cryptosystems. They can be performed better by using Karatsuba-Ofman technique. This algorithm is easy to parallelize on workstation network and on distributed memory, and it-s known as the practical method of choice. Multiplying long numbers using Karatsuba-Ofman algorithm is fast but is highly recursive. In this paper, we propose different designs of implementing Karatsuba-Ofman multiplier. A mixture of sequential and combinational system design techniques involving pipelining is applied to our proposed designs. Multiplying large numbers can be adapted flexibly to time, area and power criteria. Computationally and occupation constrained in embedded systems such as: smart cards, mobile phones..., multiplication of finite field elements can be achieved more efficiently. The proposed designs are compared to other existing techniques. Mathematical models (Area (n), Delay (n)) of our proposed designs are also elaborated and evaluated on different FPGAs devices.Keywords: finite field, Karatsuba-Ofman, long numbers, multiplication, mathematical model, recursivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534837 Framework for Spare Inventory Management
Authors: Eman M. Wahba, Noha M. Galal, Khaled S. El-Kilany
Abstract:
Spare parts inventory management is one of the major areas of inventory research. Analysis of recent literature showed that an approach integrating spare parts classification, demand forecasting, and stock control policies is essential; however, adapting this integrated approach is limited. This work presents an integrated framework for spare part inventory management and an Excel based application developed for the implementation of the proposed framework. A multi-criteria analysis has been used for spare classification. Forecasting of spare parts- intermittent demand has been incorporated into the application using three different forecasting models; namely, normal distribution, exponential smoothing, and Croston method. The application is also capable of running with different inventory control policies. To illustrate the performance of the proposed framework and the developed application; the framework is applied to different items at a service organization. The results achieved are presented and possible areas for future work are highlighted.Keywords: Demand forecasting, intermittent demand, inventory management, integrated approach, spare parts, spare part classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6579836 A Novel Method to Evaluate Line Loadability for Distribution Systems with Realistic Loads
Authors: K. Nagaraju, S. Sivanagaraju, T. Ramana, V. Ganesh
Abstract:
This paper presents a simple method for estimation of additional load as a factor of the existing load that may be drawn before reaching the point of line maximum loadability of radial distribution system (RDS) with different realistic load models at different substation voltages. The proposed method involves a simple line loadability index (LLI) that gives a measure of the proximity of the present state of a line in the distribution system. The LLI can use to assess voltage instability and the line loading margin. The proposed method also compares with the existing method of maximum loadability index [10]. The simulation results show that the LLI can identify not only the weakest line/branch causing system instability but also the system voltage collapse point when it is near one. This feature enables us to set an index threshold to monitor and predict system stability on-line so that a proper action can be taken to prevent the system from collapse. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on two bus and 69 bus RDS.Keywords: line loadability index, line loading margin, maximum line loadability, system stability, radial distribution system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965835 The Comparation of Activation Nuclear Factor Kappa Beta (NFKB) at Rattus Novergicus Strain Wistar Induced by Various Duration High Fat Diet (HFD)
Authors: Titin Andri Wihastuti, Djanggan Sargowo
Abstract:
NFκB is a transcription factor regulating many function of the vessel wall. In the normal condition , NFκB is revealed diffuse cytoplasmic expressionsuggesting that the system is inactive. The presence of activation NFκB provide a potential pathway for the rapid transcriptional of a variety of genes encoding cytokines, growth factors, adhesion molecules and procoagulatory factors. It is likely to play an important role in chronic inflamatory disease involved atherosclerosis. There are many stimuli with the potential to active NFκB, including hyperlipidemia. We used 24 mice which was divided in 6 groups. The HFD given by et libitum procedure during 2, 4, and 6 months. The parameters in this study were the amount of NFKB activation ,H2O2 as ROS and VCAM-1 as a product of NFKB activation. H2O2 colorimetryc assay performed directly using Anti Rat H2O2 ELISA Kit. The NFKB and VCAM-1 detection obtained from aorta mice, measured by ELISA kit and imunohistochemistry. There was a significant difference activation of H2O2, NFKB and VCAM-1 level at induce HFD after 2, 4 and 6 months. It suggest that HFD induce ROS formation and increase the activation of NFKB as one of atherosclerosis marker that caused by hyperlipidemia as classical atheroschlerosis risk factor.Keywords: High Fat Diet, NFKB, H2O2, atherosclerosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036834 Studying the Spatial Variations of Stable Isotopes (18O and 2H) in Precipitation and Groundwater Resources in Zagros Region
Authors: Mojtaba Heydarizad
Abstract:
Zagros mountain range is a very important precipitation zone in Iran as it receives high average annual precipitation compared to other parts of this country. Although this region is important precipitation zone in semi-arid an arid country like Iran, accurate method to study water resources in this region has not been applied yet. In this study, stable isotope δ18O content of precipitation and groundwater resources showed spatial variations across Zagros region as southern parts of Zagros region showed more enriched isotope values compared to the northern parts. This is normal as southern Zagros region is much drier with higher air temperature and evaporation compared to northern parts. In addition, the spatial variations of stable isotope δ18O in precipitation in Zagros region have been simulated by the models which consider the altitude and latitude variations as input to simulate δ18O in precipitation.Keywords: Groundwater, precipitation, simulation, stable isotopes, Zagros region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676833 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations
Authors: K. Noah, F.-S. Lien
Abstract:
In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.
Keywords: Compressible lattice Boltzmann metho-, large eddy simulation, turbulent jet flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960832 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency
Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao
Abstract:
A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.
Keywords: Absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588831 Providing Emotional Support to Children under Long-Term Health Treatments
Authors: Ramón Cruzat, Sergio F. Ochoa, Ignacio Casas, Luis A. Guerrero, José Bravo
Abstract:
Patients under health treatments that involve long stays at a hospital or health center (e.g. cancer, organ transplants and severe burns), tend to get bored or depressed because of the lack of social interaction with family and friends. Such a situation also affects the evolution and effectiveness of their treatments. In many cases, the solution to this problem involves extra challenges, since many patients need to rest quietly (or remain in bed) to their being contagious. Considering the weak health condition in which usually are these kinds, keeping them motivated and quiet represents an important challenge for nurses and caregivers. This article presents a mobile ubiquitous game called MagicRace, which allows hospitalized kinds to interact socially with one another without putting to risk their sensitive health conditions. The game does not require a communication infrastructure at the hospital, but instead, it uses a mobile ad hoc network composed of the handheld devices used by the kids to play. The usability and performance of this application was tested in two different sessions. The preliminary results show that users experienced positive feelings from this experience.
Keywords: Ubiquitous game, children's emotional support, social isolation, mobile collaborative interactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670830 FIR Filter Design via Linear Complementarity Problem, Messy Genetic Algorithm, and Ising Messy Genetic Algorithm
Authors: A.M. Al-Fahed Nuseirat, R. Abu-Zitar
Abstract:
In this paper the design of maximally flat linear phase finite impulse response (FIR) filters is considered. The problem is handled with totally two different approaches. The first one is completely deterministic numerical approach where the problem is formulated as a Linear Complementarity Problem (LCP). The other one is based on a combination of Markov Random Fields (MRF's) approach with messy genetic algorithm (MGA). Markov Random Fields (MRFs) are a class of probabilistic models that have been applied for many years to the analysis of visual patterns or textures. Our objective is to establish MRFs as an interesting approach to modeling messy genetic algorithms. We establish a theoretical result that every genetic algorithm problem can be characterized in terms of a MRF model. This allows us to construct an explicit probabilistic model of the MGA fitness function and introduce the Ising MGA. Experimentations done with Ising MGA are less costly than those done with standard MGA since much less computations are involved. The least computations of all is for the LCP. Results of the LCP, random search, random seeded search, MGA, and Ising MGA are discussed.Keywords: Filter design, FIR digital filters, LCP, Ising model, MGA, Ising MGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026829 A Smart Monitoring System for Preventing Gas Risks in Indoor
Authors: Gyoutae Park, Geunjun Lyu, Yeonjae Lee, Wooksuk Kim, Jaheon Gu, Sanguk Ahn, Hiesik Kim
Abstract:
In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.Keywords: Gas sensor, leak, gas safety, gas meter, gas risk, wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722828 Distributed Case Based Reasoning for Intelligent Tutoring System: An Agent Based Student Modeling Paradigm
Authors: O. P. Rishi, Rekha Govil, Madhavi Sinha
Abstract:
Online learning with Intelligent Tutoring System (ITS) is becoming very popular where the system models the student-s learning behavior and presents to the student the learning material (content, questions-answers, assignments) accordingly. In today-s distributed computing environment, the tutoring system can take advantage of networking to utilize the model for a student for students from other similar groups. In the present paper we present a methodology where using Case Based Reasoning (CBR), ITS provides student modeling for online learning in a distributed environment with the help of agents. The paper describes the approach, the architecture, and the agent characteristics for such system. This concept can be deployed to develop ITS where the tutor can author and the students can learn locally whereas the ITS can model the students- learning globally in a distributed environment. The advantage of such an approach is that both the learning material (domain knowledge) and student model can be globally distributed thus enhancing the efficiency of ITS with reducing the bandwidth requirement and complexity of the system.
Keywords: CBR, ITS, student modeling, distributed system, intelligent agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166827 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.
Keywords: Time series, fluctuation in statistical characteristics, optimal learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821826 Bayesian Inference for Phase Unwrapping Using Conjugate Gradient Method in One and Two Dimensions
Authors: Yohei Saika, Hiroki Sakaematsu, Shota Akiyama
Abstract:
We investigated statistical performance of Bayesian inference using maximum entropy and MAP estimation for several models which approximated wave-fronts in remote sensing using SAR interferometry. Using Monte Carlo simulation for a set of wave-fronts generated by assumed true prior, we found that the method of maximum entropy realized the optimal performance around the Bayes-optimal conditions by using model of the true prior and the likelihood representing optical measurement due to the interferometer. Also, we found that the MAP estimation regarded as a deterministic limit of maximum entropy almost achieved the same performance as the Bayes-optimal solution for the set of wave-fronts. Then, we clarified that the MAP estimation perfectly carried out phase unwrapping without using prior information, and also that the MAP estimation realized accurate phase unwrapping using conjugate gradient (CG) method, if we assumed the model of the true prior appropriately.
Keywords: Bayesian inference using maximum entropy, MAP estimation using conjugate gradient method, SAR interferometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755825 Ensembling Adaptively Constructed Polynomial Regression Models
Authors: Gints Jekabsons
Abstract:
The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675824 Numerical Study on Parametrical Design of Long Shrouded Contra-Rotating Propulsion System in Hovering
Authors: Chao. Huo, Roger. Barènes, Jérémie. Gressier, Gilles.Grondin
Abstract:
The parametrical study of Shrouded Contra-rotating Rotor was done in this paper based on 2D axisymmetric simulations. The calculations were made with an actuator disk as double rotor model. It objects to explore and quantify the effects of different shroud geometry parameters mainly using the performance of power loading (PL), which could evaluate the whole propulsion system capability as 5 Newtontotal thrust generationfor hover demand. The numerical results show that:The increase of nozzle radius is desired but limited by the flow separation, its optimal design is around 1.15 times rotor radius, the viscosity effects greatly constraint the influence of nozzle shape, the divergent angle around 10.5° performs best for chosen nozzle length;The parameters of inlet such as leading edge curvature, radius and internal shape do not affect thrust great but play an important role in pressure distribution which could produce most part of shroud thrust, they should be chosen according to the reduction of adverse pressure gradients to reduce the risk of boundary separation.Keywords: Axisymmetric simulation, parametrical design, power loading, Shrouded Contra-Rotating Rotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876823 Image Clustering Framework for BAVM Segmentation in 3DRA Images: Performance Analysis
Authors: FH. Sarieddeen, R. El Berbari, S. Imad, J. Abdel Baki, M. Hamad, R. Blanc, A. Nakib, Y.Chenoune
Abstract:
Brain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3- D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations.
Keywords: Brain arteriovenous malformation (BAVM), 3-D rotational angiography (3DRA), K-Means (KM) clustering, Fuzzy CMeans (FCM) clustering, Expectation Maximization (EM) clustering, volume rendering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915822 The Effect of Failure Rate on Repair and Maintenance Costs of Four Agricultural Tractor Models
Authors: Fatemeh Afsharnia, Mohammad Amin Asoodar, Abbas Abdeshahi
Abstract:
In economical evaluation literature, although the combination of some variables such as repair and maintenance costs and accumulated use hours has been widely considered in determining of optimum life for tractor, no investigation has indicated the influence of failure rate on repair and maintenance costs. In this study, the owners of three hundred tractors, which include Massey Ferguson, John Deere and Universal, were interviewed, from five regions of Khouzestan Province. A regression model was used to predict the tractors annual repair and maintenance costs based on failure rate. Results showed that the maximum percentage of annual repair and maintenance costs occurred in engine parts for MF285, JD3140 and U650 tractors while these costs for tire, ring, ball bearing and operator seat were higher compared to other MF399 tractor systems. According to the results of the regression, the failure rate increase would lead to annual repair and maintenance costs increase for all tractors. But, of all the tractors, repair and maintenance costs of JD3140 tractors extremely affected by the failure rate increase.
Keywords: Failure rate, tractor, annual repair and maintenance costs, regression model, Khouzestan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4315821 The Effect of Cyclone Shape and Dust Collector on Gas-Solid Flow and Performance
Authors: Kyoungwoo Park, Chol-Ho Hong, Ji-Won Han, Byeong-Sam Kim, Cha-Sik Park, Oh Kyung Kwon
Abstract:
Numerical analysis of flow characteristics and separation efficiency in a high-efficiency cyclone has been performed. Several models based on the experimental observation for a design purpose were proposed. However, the model is only estimated the cyclone's performance under the limited environments; it is difficult to obtain a general model for all types of cyclones. The purpose of this study is to find out the flow characteristics and separation efficiency numerically. The Reynolds stress model (RSM) was employed instead of a standard k-ε or a k-ω model which was suitable for isotropic turbulence and it could predict the pressure drop and the Rankine vortex very well. For small particles, there were three significant components (entrance of vortex finder, cone, and dust collector) for the particle separation. In the present work, the particle re-entraining phenomenon from the dust collector to the cyclone body was observed after considerable time. This re-entrainment degraded the separation efficiency and was one of the significant factors for the separation efficiency of the cyclone.Keywords: CFD, High-efficiency cyclone, Pressure drop, Rankine vortex, Reynolds stress model (RSM), Separation efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4538820 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.
Keywords: Recurrent Neural Networks, Global Solar Radiation, Multi-layer perceptron, gradient, Root Mean Square Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566819 Study of EEGs from Somatosensory Cortex and Alzheimer's Disease Sources
Authors: Md R. Bashar, Yan Li, Peng Wen
Abstract:
This study is to investigate the electroencephalogram (EEG) differences generated from a normal and Alzheimer-s disease (AD) sources. We also investigate the effects of brain tissue distortions due to AD on EEG. We develop a realistic head model from T1 weighted magnetic resonance imaging (MRI) using finite element method (FEM) for normal source (somatosensory cortex (SC) in parietal lobe) and AD sources (right amygdala (RA) and left amygdala (LA) in medial temporal lobe). Then, we compare the AD sourced EEGs to the SC sourced EEG for studying the nature of potential changes due to sources and 5% to 20% brain tissue distortions. We find an average of 0.15 magnification errors produced by AD sourced EEGs. Different brain tissue distortion models also generate the maximum 0.07 magnification. EEGs obtained from AD sources and different brain tissue distortion levels vary scalp potentials from normal source, and the electrodes residing in parietal and temporal lobes are more sensitive than other electrodes for AD sourced EEG.
Keywords: Alzheimer's disease (AD), brain tissue distortion, electroencephalogram, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926818 Regional Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS)
Authors: C. Ardil
Abstract:
The paper presents a multiple criteria decision making analysis process to determine the most suitable regional aircraft type according to a set of evaluation criteria. The main purpose of this study is to use different decision making methods to determine the most suitable regional aircraft for aviation operators. In this context, the nine regional aircraft types were analyzed using multiple criteria decision making analysis methods. Preference analysis for reference ideal solution (PARIS) was used in regional aircraft selection process. The findings of the proposed model show that the ranking results of the multiple criteria decision making models are consistent with each other, and the proposed method is efficient, and the results are valid. Finally, the Embraer E195-E2 model regional aircraft is chosen as the most suitable aircraft type.
Keywords: aircraft, regional aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453817 Evaluation of Attribute II Bt Sweet Corn Resistance and Reduced-Risk Insecticide Applications for Control of Corn Earworm
Authors: R. Weinzierl, R. Estes, N. Tinsley, M. Keshlaf
Abstract:
The corn earworm, Helicoverpa zea Boddie, is a serious pest of corn. Larval feeding in ear tips destroys kernels and allows growth of fungi and production of mycotoxins. Infested sweet corn is not marketable. Development of improved transgenic hybrids expressing insecticidal toxins from Bacillus thuringiensis (Bt) may limit or prevent crop losses. The effectiveness of Attribute® II Bt resistance and applications of Voliam Xpress insecticide were evaluated for effectiveness in controlling corn earworm in plots near Urbana, IL, USA, in 2013. Where no insecticides were applied, ear infestations and kernel damage in Attribute® II ‘Protector’ plots were consistently lower (near zero) than in plots of the non-Bt isoline ‘Garrison.’ Multiple applications of Voliam Xpress significantly reduced the number of corn earworm larvae and kernel damage in the Garrison plots, but infestations and damage in these plots were greater than in Protectorplots that did not receive insecticide applications. Our results indicate that Attribute® II Bt resistance is more effective than multiple applications of an insecticide for preventing losses caused by corn earworm in sweet corn.
Keywords: Bacillus thuringiensis, Helicoverpa zea, insect pest management, transgenic sweet corn.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232816 2D Spherical Spaces for Face Relighting under Harsh Illumination
Authors: Amr Almaddah, Sadi Vural, Yasushi Mae, Kenichi Ohara, Tatsuo Arai
Abstract:
In this paper, we propose a robust face relighting technique by using spherical space properties. The proposed method is done for reducing the illumination effects on face recognition. Given a single 2D face image, we relight the face object by extracting the nine spherical harmonic bases and the face spherical illumination coefficients. First, an internal training illumination database is generated by computing face albedo and face normal from 2D images under different lighting conditions. Based on the generated database, we analyze the target face pixels and compare them with the training bootstrap by using pre-generated tiles. In this work, practical real time processing speed and small image size were considered when designing the framework. In contrast to other works, our technique requires no 3D face models for the training process and takes a single 2D image as an input. Experimental results on publicly available databases show that the proposed technique works well under severe lighting conditions with significant improvements on the face recognition rates.Keywords: Face synthesis and recognition, Face illumination recovery, 2D spherical spaces, Vision for graphics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760815 A Comparative Study of International Tourists- Safety Needs and Thai Tourist Polices- Perception towards International Tourists- Safety Needs
Authors: Pimmada Wichasin, Nuntiya Doungphummes
Abstract:
While service quality is acceptably most valued in the tourism industry, the issue of safety and security plays a key role in sustaining the industry success. Such an issue has been part of Thailand-s tourism development and promotion for several years. Evidently, the Tourist Police Department was set up for this purpose. Its main responsibility is to deal with international tourists- safety and confidence in travelling within Thai territory. However, to strengthen the tourism safety of the country, it is important to better understand international tourists- safety concerns about Thailand. This article seeks to compare international tourists- safety needs and Thai tourist polices- perception towards the tourists- safety concern to determine what measure should be taken to assure the tourist of Thailand-s secure environment. Through the employment of quantitative and qualitative methodological approaches, the tourism safety need of international tourists from Europe, North America and Asia was excavated, how Thai tourist polices and local polices perceived the international tourist-s safety concern was investigated, and opinion and experiences about how the police deal with international tourists- problems in eight touristic areas were also explored. A comparative result reveals a certain degrees of differences in international tourists- safety needs and Thai polices- perception towards their needs. The tourism safety prevention and protection measure and practice are also suggested.
Keywords: Tourism risk, Tourism safety, Travel safety need, Travelling in Thailand
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3833814 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia
Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi
Abstract:
Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.
Keywords: Artificial neural networks, short-term load forecasting, back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115