Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33035
The Effect of Cyclone Shape and Dust Collector on Gas-Solid Flow and Performance
Authors: Kyoungwoo Park, Chol-Ho Hong, Ji-Won Han, Byeong-Sam Kim, Cha-Sik Park, Oh Kyung Kwon
Abstract:
Numerical analysis of flow characteristics and separation efficiency in a high-efficiency cyclone has been performed. Several models based on the experimental observation for a design purpose were proposed. However, the model is only estimated the cyclone's performance under the limited environments; it is difficult to obtain a general model for all types of cyclones. The purpose of this study is to find out the flow characteristics and separation efficiency numerically. The Reynolds stress model (RSM) was employed instead of a standard k-ε or a k-ω model which was suitable for isotropic turbulence and it could predict the pressure drop and the Rankine vortex very well. For small particles, there were three significant components (entrance of vortex finder, cone, and dust collector) for the particle separation. In the present work, the particle re-entraining phenomenon from the dust collector to the cyclone body was observed after considerable time. This re-entrainment degraded the separation efficiency and was one of the significant factors for the separation efficiency of the cyclone.Keywords: CFD, High-efficiency cyclone, Pressure drop, Rankine vortex, Reynolds stress model (RSM), Separation efficiency.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079212
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4523References:
[1] D. Leith, W. Licht, the Collection Efficiency of Cyclone Type Particle Collectors-A New Theoretical Approach, AIChE Symp. Ser. 68, pp.196-206, 1972.
[2] A.J. Hoekstra, H.J Derksen, H.E.A. Van Den Akker, An Experimental and numerical study of turbulent swirling flow in gas cyclones, Chem. Eng. Sci. Vol.54, pp.2055-2065, 1999.
[3] A.J. Hoekstra, Gas flow field and collection efficiency of cyclone separators, Ph.D. Thesis, Technical University Delft, 2000.
[4] J.W. Lee, H.J. Yang, and D. Y. Lee, Effect of cylinder shape of a long-coned cyclone on the stable flow-field establishment, Powder Technology, Vol.165, pp.30-38, 2006.
[5] A. Raoufi, M. Shams, M. Farzaneh, and R. Ebrahimi, Numerical simulation and optimization of fluid flow in a cyclone vortex finder, Chemical Engineering and Processing, vol. 47pp. 128-137, 2008.
[6] K. Elsayed and C. Lacor, The effect of cyclone inlet dimensions on the flow pattern and performance", Applied Mathematical Modeling, vol.35, pp. 1952-1968, 2011.
[7] J.J. Derksen, Separation performance predictions of a Stairmand high efficiency cyclone, AIChE Journal, Vol.49, pp.1359-1371, 2003.
[8] G. Wan, G. Sun, X. Xue, and M. Shi, Solid concentration simulation of different size particles in a cyclone separator, Powder Technology, vol. 183, pp.94-104, 2008.
[9] B.E. Launder, G.J. Reece, and W. Rodi, Progress in the development of a Reynolds stress turbulent closure, J. of Fluid Mechanics, vol.68, pp. 537-538, 1975.
[10] B. Zhao, Y. Su, and J, Zhang, Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration, Chemical Engineering Research and Design, vol.84, pp.1158-1165, 2006.
[11] W.C. Hinds, Aerosol Technology: Properties Behavior and Measurement of Airborne Particles, John Wiley & Sons, New York, 1982.
[12] STAR-CCM+ v4.02 Methodology, 2007.
[13] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, 1980.
[14] B. Wang, L.L. Xu, K.W. Chu, and A.B. Yu, Numerical study of gassolid Flow in a Cyclone Separator, Applied Mathematical Modeling, vol.30, pp.1326-1342, 2006.
[15] R. Clift, M. Ghadiri and A.C. Hoffman, A Critique of two models for cyclone performance, AIChE Journal, vol.37, No.2, pp.285-289, 1991.
[16] F. Qian, M. Zhang, An Extended model for determining the separation performance of a cyclone, Chem. Eng. Technol, vol.29, no.6, pp.724-728, 2006.
[17] A.C. Hoffman and L.E. Stein, Gas Cyclones and Swirl Tubes:Principles , Design, and Operation, 2nd Ed. Springer, 2008.