Search results for: Artificial Neural Network.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3499

Search results for: Artificial Neural Network.

889 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: Ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
888 Spike Sorting Method Using Exponential Autoregressive Modeling of Action Potentials

Authors: Sajjad Farashi

Abstract:

Neurons in the nervous system communicate with each other by producing electrical signals called spikes. To investigate the physiological function of nervous system it is essential to study the activity of neurons by detecting and sorting spikes in the recorded signal. In this paper a method is proposed for considering the spike sorting problem which is based on the nonlinear modeling of spikes using exponential autoregressive model. The genetic algorithm is utilized for model parameter estimation. In this regard some selected model coefficients are used as features for sorting purposes. For optimal selection of model coefficients, self-organizing feature map is used. The results show that modeling of spikes with nonlinear autoregressive model outperforms its linear counterpart. Also the extracted features based on the coefficients of exponential autoregressive model are better than wavelet based extracted features and get more compact and well-separated clusters. In the case of spikes different in small-scale structures where principal component analysis fails to get separated clouds in the feature space, the proposed method can obtain well-separated cluster which removes the necessity of applying complex classifiers.

Keywords: Exponential autoregressive model, Neural data, spike sorting, time series modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
887 Power Control in a Doubly Fed Induction Machine

Authors: A. Ourici

Abstract:

This paper proposes a direct power control for doubly-fed induction machine for variable speed wind power generation. It provides decoupled regulation of the primary side active and reactive power and it is suitable for both electric energy generation and drive applications. In order to control the power flowing between the stator of the DFIG and the network, a decoupled control of active and reactive power is synthesized using PI controllers.The obtained simulation results show the feasibility and the effectiveness of the suggested method

Keywords: Doubly fed induction machine , decoupled power control , vector control , active and reactive power, PWM inverter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
886 Infrared Face Recognition Using Distance Transforms

Authors: Moulay A. Akhloufi, Abdelhakim Bendada

Abstract:

In this work we present an efficient approach for face recognition in the infrared spectrum. In the proposed approach physiological features are extracted from thermal images in order to build a unique thermal faceprint. Then, a distance transform is used to get an invariant representation for face recognition. The obtained physiological features are related to the distribution of blood vessels under the face skin. This blood network is unique to each individual and can be used in infrared face recognition. The obtained results are promising and show the effectiveness of the proposed scheme.

Keywords: Face recognition, biometrics, infrared imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
885 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

Authors: A. Kablan

Abstract:

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.

Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396
884 A Decision Support System Based on Leprosy Scales

Authors: Dennys Robson Girardi, Hugo Bulegon, Claudia Maria Moro Barra

Abstract:

Leprosy is an infectious disease caused by Mycobacterium Leprae, this disease, generally, compromises the neural fibers, leading to the development of disability. Disabilities are changes that limit daily activities or social life of a normal individual. When comes to leprosy, the study of disability considered the functional limitation (physical disabilities), the limitation of activity and social participation, which are measured respectively by the scales: EHF, SALSA and PARTICIPATION SCALE. The objective of this work is to propose an on-line monitoring of leprosy patients, which is based on information scales EHF, SALSA and PARTICIPATION SCALE. It is expected that the proposed system is applied in monitoring the patient during treatment and after healing therapy of the disease. The correlations that the system is between the scales create a variety of information, presented the state of the patient and full of changes or reductions in disability. The system provides reports with information from each of the scales and the relationships that exist between them. This way, health professionals, with access to patient information, can intervene with techniques for the Prevention of Disability. Through the automated scale, the system shows the level of the patient and allows the patient, or the responsible, to take a preventive measure. With an online system, it is possible take the assessments and monitor patients from anywhere.

Keywords: Leprosy, Medical Informatics, Decision SupportSystem, Disability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
883 Impact of Similarity Ratings on Human Judgement

Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos

Abstract:

Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. In the study, 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests that the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.

Keywords: Ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 424
882 Distribution Centers Reliability Cost in Capacitated Facility Location Problem

Authors: Mehdi Seifbarghy, Sajjad Jalali, Seyed Habib A. Rahmati

Abstract:

Recently studies in area of supply chain network (SCN) have focused on the disruption issues in distribution systems. Also this paper extends the previous literature by providing a new biobjective model for cost minimization of designing a three echelon SCN across normal and failure scenarios with considering multi capacity option for manufacturers and distribution centers. Moreover, in order to solve the problem by means of LINGO software, novel model will be reformulated through a branch of LP-Metric method called Min-Max approach.

Keywords: Scenario programming, Distribution, Multi-echelon supply chain design, Reliable facility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
881 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE

Authors: A. Lakrim, D. Tahri

Abstract:

This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.

Keywords: SiC MPS Diode, electro-thermal, SPICE Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
880 Effect of Exercise on Sexual Behavior and Semen Quality of Sahiwal Bulls

Authors: Abdelrasoul, Khalid Ahmed Elrabie

Abstract:

The study was conducted on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to determine the effect of exercise on the sexual behavior and semen quality. Fourteen Sahiwal bulls were classified into two groups of seven each. Group-1, bulls were exercised by walking in a bull exerciser once a week one hour before semen collection, whereas bulls in group-2 were exercised daily. Sexual behavior and semen quality traits studied were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-2 showed significantly (p < 0.01) higher value in RT (sec), DMT (sec), TTTM (sec), ES, PS, ITS, LS, semen volume, semen color density and mass activity.

Keywords: Exercise, Sahiwal bulls, semen quality, sexual behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
879 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484
878 Collaborative Design System based on Object- Oriented Modeling of Supply Chain Simulation: A Case Study of Thai Jewelry Industry

Authors: Somlak Wannarumon, Apichai Ritvirool, Thana Boonrit

Abstract:

The paper proposes a new concept in developing collaborative design system. The concept framework involves applying simulation of supply chain management to collaborative design called – 'SCM–Based Design Tool'. The system is developed particularly to support design activities and to integrate all facilities together. The system is aimed to increase design productivity and creativity. Therefore, designers and customers can collaborate by the system since conceptual design. JAG: Jewelry Art Generator based on artificial intelligence techniques is integrated into the system. Moreover, the proposed system can support users as decision tool and data propagation. The system covers since raw material supply until product delivery. Data management and sharing information are visually supported to designers and customers via user interface. The system is developed on Web–assisted product development environment. The prototype system is presented for Thai jewelry industry as a system prototype demonstration, but applicable for other industry.

Keywords: Collaborative design, evolutionary art, jewelry design, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
877 Collaborative Design System based on Object-Oriented Modeling of Supply Chain Simulation: A Case Study of Thai Jewelry Industry

Authors: Somlak Wannarumon, Apichai Ritvirool, Thana Boonrit

Abstract:

The paper proposes a new concept in developing collaborative design system. The concept framework involves applying simulation of supply chain management to collaborative design called – 'SCM–Based Design Tool'. The system is developed particularly to support design activities and to integrate all facilities together. The system is aimed to increase design productivity and creativity. Therefore, designers and customers can collaborate by the system since conceptual design. JAG: Jewelry Art Generator based on artificial intelligence techniques is integrated into the system. Moreover, the proposed system can support users as decision tool and data propagation. The system covers since raw material supply until product delivery. Data management and sharing information are visually supported to designers and customers via user interface. The system is developed on Web–assisted product development environment. The prototype system is presented for Thai jewelry industry as a system prototype demonstration, but applicable for other industry.

Keywords: Collaborative design, evolutionary art, jewelry design, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
876 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora

Abstract:

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: Parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
875 XML based Safe and Scalable Multi-Agent Development Framework

Authors: Rinkaj Goyal, Pravin Chandra, Yogesh Singh

Abstract:

In this paper we describe our efforts to design and implement an agent development framework that has the potential to scale to the size of any underlying network suitable for various ECommerce activities. The main novelty in our framework is it-s capability to allow the development of sophisticated, secured agents which are simple enough to be practical. We have adopted FIPA agent platform reference Model as backbone for implementation along with XML for agent Communication and Java Cryptographic Extension and architecture to realize the security of communication information between agents. The advantage of our architecture is its support of agents development in different languages and Communicating with each other using a more open standard i.e. XML

Keywords: Agent, Agent Development Framework, Agent Coordination, Security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
874 Analysis of Event-related Response in Human Visual Cortex with fMRI

Authors: Ayesha Zaman, Tanvir Atahary, Shahida Rafiq

Abstract:

Functional Magnetic Resonance Imaging(fMRI) is a noninvasive imaging technique that measures the hemodynamic response related to neural activity in the human brain. Event-related functional magnetic resonance imaging (efMRI) is a form of functional Magnetic Resonance Imaging (fMRI) in which a series of fMRI images are time-locked to a stimulus presentation and averaged together over many trials. Again an event related potential (ERP) is a measured brain response that is directly the result of a thought or perception. Here the neuronal response of human visual cortex in normal healthy patients have been studied. The patients were asked to perform a visual three choice reaction task; from the relative response of each patient corresponding neuronal activity in visual cortex was imaged. The average number of neurons in the adult human primary visual cortex, in each hemisphere has been estimated at around 140 million. Statistical analysis of this experiment was done with SPM5(Statistical Parametric Mapping version 5) software. The result shows a robust design of imaging the neuronal activity of human visual cortex.

Keywords: Echo Planner Imaging, Event related Response, General Linear Model, Visual Neuronal Response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
873 Business Intelligence for N=1 Analytics using Hybrid Intelligent System Approach

Authors: Rajendra M Sonar

Abstract:

The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-based reasoning, neural-networks play important role in building business intelligent systems. Since BI involves various tasks and models various types of problems, hybrid intelligent techniques can be better choice. Intelligent systems accessible through web services make it easier to integrate them into existing operational systems to add intelligence in every business processes. These can be built to be invoked in modular and distributed way to work in real time. Functionality of such systems can be extended to get external inputs compatible with formats like RSS. In this paper, we describe a framework that use effective combinations of these techniques, accessible through web services and work in real-time. We have successfully developed various prototype systems and done few commercial deployments in the area of personalization and recommendation on mobile and websites.

Keywords: Business Intelligence, Customer Relationship Management, Hybrid Intelligent Systems, Personalization and Recommendation (P&R), Recommender Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
872 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
871 Collaborative and Experimental Cultures in Virtual Reality Journalism: From the Perspective of Content Creators

Authors: Radwa Mabrook

Abstract:

Virtual Reality (VR) content creation is a complex and an expensive process, which requires multi-disciplinary teams of content creators. Grant schemes from technology companies help media organisations to explore the VR potential in journalism and factual storytelling. Media organisations try to do as much as they can in-house, but they may outsource due to time constraints and skill availability. Journalists, game developers, sound designers and creative artists work together and bring in new cultures of work. This study explores the collaborative experimental nature of VR content creation, through tracing every actor involved in the process and examining their perceptions of the VR work. The study builds on Actor Network Theory (ANT), which decomposes phenomena into their basic elements and traces the interrelations among them. Therefore, the researcher conducted 22 semi-structured interviews with VR content creators between November 2017 and April 2018. Purposive and snowball sampling techniques allowed the researcher to recruit fact-based VR content creators from production studios and media organisations, as well as freelancers. Interviews lasted up to three hours, and they were a mix of Skype calls and in-person interviews. Participants consented for their interviews to be recorded, and for their names to be revealed in the study. The researcher coded interviews’ transcripts in Nvivo software, looking for key themes that correspond with the research questions. The study revealed that VR content creators must be adaptive to change, open to learn and comfortable with mistakes. The VR content creation process is very iterative because VR has no established work flow or visual grammar. Multi-disciplinary VR team members often speak different languages making it hard to communicate. However, adaptive content creators perceive VR work as a fun experience and an opportunity to learn. The traditional sense of competition and the strive for information exclusivity are now replaced by a strong drive for knowledge sharing. VR content creators are open to share their methods of work and their experiences. They target to build a collaborative network that aims to harness VR technology for journalism and factual storytelling. Indeed, VR is instilling collaborative and experimental cultures in journalism.

Keywords: Collaborative culture, content creation, experimental culture, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
870 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms

Authors: Divya Agarwal, Pushpendra S. Bharti

Abstract:

Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.

Keywords: Autonomous mobile robots, obstacle avoidance, path planning, and processing time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
869 Effect of Various Pollen Sources to Ability Fruit Set and Quality in ‘Long Red B’ Wax Apple

Authors: Nguyen Minh Tuan, Yen Chung-Ruey

Abstract:

By hand pollination was conducted to evaluated different pollen sources and their affects on fruit set and quality of wax apple. The following parameters were recorded: fruit set, seed set, fruit characteristics. Results showed that fruit set percentage with seed were significantly high in ‘Long Red B’ when ‘Black’, ‘Thyto’ were used as pollen parents. Pollen of ‘Black’, ‘Thyto’ resulted in high fruit weight, fruit diameter, fruit length, bigger flesh thickness, better total soluble solids as compared with other pollens. The observation of pollen-growth in vitro revealed that pollen germination at 15% sucrose concentration are required for optimum pollen germination with the high pollen germination were found in ‘Black’, ‘Thyto’. From the result, we concluded that ‘Black’, ‘Thyto’ were proved to be good pollinizers in ‘Long Red B’. Therefore, artificial cross-pollination using ‘Black’, ‘Thyto’ as pollinizers were strongly recommended for ‘Long Red B’ cultivar in wax apple orchard.

Keywords: Wax apple, pollination, pollen source, in vitro, fruit quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
868 Bitrate Reduction Using FMO for Video Streaming over Packet Networks

Authors: Le Thanh Ha, Hye-Soo Kim, Chun-Su Park, Seung-Won Jung, Sung-Jea Ko

Abstract:

Flexible macroblock ordering (FMO), adopted in the H.264 standard, allows to partition all macroblocks (MBs) in a frame into separate groups of MBs called Slice Groups (SGs). FMO can not only support error-resilience, but also control the size of video packets for different network types. However, it is well-known that the number of bits required for encoding the frame is increased by adopting FMO. In this paper, we propose a novel algorithm that can reduce the bitrate overhead caused by utilizing FMO. In the proposed algorithm, all MBs are grouped in SGs based on the similarity of the transform coefficients. Experimental results show that our algorithm can reduce the bitrate as compared with conventional FMO.

Keywords: Data Partition, Entropy Coding, Greedy Algorithm, H.264/AVC, Slice Group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
867 The Relations of Volatile Compounds, Some Parameters and Consumer Preference of Commercial Fermented Milks in Thailand

Authors: Suttipong Phosuksirikul, Rawichar Chaipojjana, Arunsri Leejeerajumnean

Abstract:

The aim of research was to define the relations between volatile compounds, some parameters (pH, titratable acidity (TA), total soluble solid (TSS), lactic acid bacteria count) and consumer preference of commercial fermented milks. These relations tend to be used for controlling and developing new fermented milk product. Three leading commercial brands of fermented milks in Thailand were evaluated by consumers (n=71) using hedonic scale for four attributes (sweetness, sourness, flavour, and overall liking), volatile compounds using headspace-solid phase microextraction (HS-SPME) GC-MS, pH, TA, TSS and LAB count. Then the relations were analyzed by principal component analysis (PCA). The PCA data showed that all of four attributes liking scores were related to each other. They were also related to TA, TSS and volatile compounds. The related volatile compounds were mainly on fermented produced compounds including acetic acid, furanmethanol, furfural, octanoic acid and the volatiles known as artificial fruit flavour (beta pinene, limonene, vanillin, and ethyl vanillin). These compounds were provided the information about flavour addition in commercial fermented milk in Thailand.

Keywords: Fermented milk, volatile compounds, preference, PCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
866 Extracting Attributes for Twitter Hashtag Communities

Authors: Ashwaq Alsulami, Jianhua Shao

Abstract:

Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.

Keywords: Attributed community, attribute detection, community, social network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 508
865 Breeding Biology and Induced Breeding Status of Freshwater Mud Eel, Monopterus cuchia

Authors: M. F. Miah, H. Ali, E. Zannath, T. M. Shuvra, M. N. Naser, M. K. Ahmed

Abstract:

In this study, breeding biology and induced breeding of freshwater mud eel, Monopterus cuchia was observed during the experimental period from February to June, 2013. Breeding biology of freshwater mud eel, Monopterus cuchia was considered in terms of gonadosomatic index, length-weight relationship of gonad, ova diameter and fecundity. The ova diameter was recorded from 0.3 mm to 4.30 mm and the individual fecundity was recorded from 155 to 1495 while relative fecundity was found from 2.64 to 12.45. The fecundity related to body weight and length of fish was also discussed. A peak of GSI was observed 2.14±0.2 in male and 5.1 ±1.09 in female. Induced breeding of freshwater mud eel, Monopterus cuchia was also practiced with different doses of different inducing agents like pituitary gland (PG), human chorionic gonadotropin (HCG), Gonadotropin releasing hormone (GnRH) and Ovuline-a synthetic hormone in different environmental conditions. However, it was observed that the artificial breeding of freshwater mud eel, Monopterus cuchia was not yet succeeded through inducing agents in captive conditions, rather the inducing agent showed negative impacts on fecundity and ovarian tissues. It was seen that mature eggs in the oviduct were reduced, absorbed and some eggs were found in spoiled condition.

Keywords: Breeding biology, induced breeding, Monopterus cuchia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3474
864 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem

Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih

Abstract:

Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.

Keywords: Evolutionary Algorithms, Chemical Reaction Optimization, Traveling Salesman, Board Drilling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231
863 Applications of Stable Distributions in Time Series Analysis, Computer Sciences and Financial Markets

Authors: Mohammad Ali Baradaran Ghahfarokhi, Parvin Baradaran Ghahfarokhi

Abstract:

In this paper, first we introduce the stable distribution, stable process and theirs characteristics. The a -stable distribution family has received great interest in the last decade due to its success in modeling data, which are too impulsive to be accommodated by the Gaussian distribution. In the second part, we propose major applications of alpha stable distribution in telecommunication, computer science such as network delays and signal processing and financial markets. At the end, we focus on using stable distribution to estimate measure of risk in stock markets and show simulated data with statistical softwares.

Keywords: stable distribution, SaS, infinite variance, heavy tail networks, VaR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
862 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data

Authors: Hyun-Woo Cho

Abstract:

Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
861 Applying Transformative Service Design to Develop Brand Community Service in Women, Children and Infants Retailing

Authors: Shian Wan, Yi-Chang Wang, Yu-Chien Lin

Abstract:

This research discussed the various theories of service design, the importance of service design methodology, and the development of transformative service design framework. In this study, transformative service design is applied while building a new brand community service for women, children and infants retailing business. The goal is to enhance the brand recognition and customer loyalty, effectively increase the brand community engagement by embedding the brand community in social network and ultimately, strengthen the impact and the value of the company brand.

Keywords: Service design, transformative service design, brand community.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
860 Power Minimization in Decode-and-XOR-Forward Two-Way Relay Networks

Authors: Dong-Woo Lim, Chang-Jae Chun, Hyung-Myung Kim

Abstract:

We consider a two-way relay network where two sources exchange information. A relay helps the two sources exchange information using the decode-and-XOR-forward protocol. We investigate the power minimization problem with minimum rate constraints. The system needs two time slots and in each time slot the required rate pair should be achievable. The power consumption is minimized in each time slot and we obtained the closed form solution. The simulation results confirm that the proposed power allocation scheme consumes lower total power than the conventional schemes.

Keywords: Decode-and-XOR-forward, power minimization, two-way relay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588