Search results for: deep learning algorithms
1027 Investigating Student Behavior in Adopting Online Formative Assessment Feedback
Authors: Peter Clutterbuck, Terry Rowlands, Owen Seamons
Abstract:
In this paper we describe one critical research program within a complex, ongoing multi-year project (2010 to 2014 inclusive) with the overall goal to improve the learning outcomes for first year undergraduate commerce/business students within an Information Systems (IS) subject with very large enrolment. The single research program described in this paper is the analysis of student attitudes and decision making in relation to the availability of formative assessment feedback via Web-based real time conferencing and document exchange software (Adobe Connect). The formative assessment feedback between teaching staff and students is in respect of an authentic problem-based, team-completed assignment. The analysis of student attitudes and decision making is investigated via both qualitative (firstly) and quantitative (secondly) application of the Theory of Planned Behavior (TPB) with a two statistically-significant and separate trial samples of the enrolled students. The initial qualitative TPB investigation revealed that perceived self-efficacy, improved time-management, and lecturer-student relationship building were the major factors in shaping an overall favorable student attitude to online feedback, whilst some students expressed valid concerns with perceived control limitations identified within the online feedback protocols. The subsequent quantitative TPB investigation then confirmed that attitude towards usage, subjective norms surrounding usage, and perceived behavioral control of usage were all significant in shaping student intention to use the online feedback protocol, with these three variables explaining 63 percent of the variance in the behavioral intention to use the online feedback protocol. The identification in this research of perceived behavioral control as a significant determinant in student usage of a specific technology component within a virtual learning environment (VLE) suggests that VLEs could now be viewed not as a single, atomic entity, but as a spectrum of technology offerings ranging from the mature and simple (e.g., email, Web downloads) to the cutting-edge and challenging (e.g., Web conferencing and real-time document exchange). That is, that all VLEs should not be considered the same. The results of this research suggest that tertiary students have the technological sophistication to assess a VLE in this more selective manner.
Keywords: Formative assessment feedback, virtual learning environment, theory of planned behavior, perceived behavioral control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20891026 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.
Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12331025 Geo-Spatial Methods to Better Understand Urban Food Deserts
Authors: Brian Ceh, Alison Jackson-Holland
Abstract:
Food deserts are a reality in some cities. These deserts can be described as a shortage of healthy food options within close proximity of consumers. The shortage in this case is typically facilitated by a lack of stores in an urban area that provide adequate fruit and vegetable choices. This study explores new avenues to better understand food deserts by examining modes of transportation that are available to shoppers or consumers, e.g. walking, automobile, or public transit. Further, this study is unique in that it not only explores the location of large grocery stores, but small grocery and convenience stores too. In this study, the relationship between some socio-economic indicators, such as personal income, are also explored to determine any possible association with food deserts. In addition, to help facilitate our understanding of food deserts, complex network spatial models that are built on adequate algorithms are used to investigate the possibility of food deserts in the city of Hamilton, Canada. It is found that Hamilton, Canada is adequate serviced by retailers who provide healthy food choices and that the food desert phenomena is almost absent.Keywords: Canada, desert, food, Hamilton, stores.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12991024 Fault Localization and Alarm Correlation in Optical WDM Networks
Authors: G. Ramesh, S. Sundara Vadivelu
Abstract:
For several high speed networks, providing resilience against failures is an essential requirement. The main feature for designing next generation optical networks is protecting and restoring high capacity WDM networks from the failures. Quick detection, identification and restoration make networks more strong and consistent even though the failures cannot be avoided. Hence, it is necessary to develop fast, efficient and dependable fault localization or detection mechanisms. In this paper we propose a new fault localization algorithm for WDM networks which can identify the location of a failure on a failed lightpath. Our algorithm detects the failed connection and then attempts to reroute data stream through an alternate path. In addition to this, we develop an algorithm to analyze the information of the alarms generated by the components of an optical network, in the presence of a fault. It uses the alarm correlation in order to reduce the list of suspected components shown to the network operators. By our simulation results, we show that our proposed algorithms achieve less blocking probability and delay while getting higher throughput.
Keywords: Alarm correlation, blocking probability, delay, fault localization, WDM networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681023 An Optimization of the New Die Design of Sheet Hydroforming by Taguchi Method
Authors: M. Hosseinzadeh, S. A. Zamani, A. Taheri
Abstract:
During the last few years, several sheet hydroforming processes have been introduced. Despite the advantages of these methods, they have some limitations. Of the processes, the two main ones are the standard hydroforming and hydromechanical deep drawing. A new sheet hydroforming die set was proposed that has the advantages of both processes and eliminates their limitations. In this method, a polyurethane plate was used as a part of the die-set to control the blank holder force. This paper outlines the Taguchi optimization methodology, which is applied to optimize the effective parameters in forming cylindrical cups by the new die set of sheet hydroforming process. The process parameters evaluated in this research are polyurethane hardness, polyurethane thickness, forming pressure path and polyurethane hole diameter. The design of experiments based upon L9 orthogonal arrays by Taguchi was used and analysis of variance (ANOVA) was employed to analyze the effect of these parameters on the forming pressure. The analysis of the results showed that the optimal combination for low forming pressure is harder polyurethane, bigger diameter of polyurethane hole and thinner polyurethane. Finally, the confirmation test was derived based on the optimal combination of parameters and it was shown that the Taguchi method is suitable to examine the optimization process.Keywords: Sheet Hydroforming, Optimization, Taguchi Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25961022 A Distance Function for Data with Missing Values and Its Application
Authors: Loai AbdAllah, Ilan Shimshoni
Abstract:
Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.
Keywords: Missing values, Distance metric, Bhattacharyya distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27511021 Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem
Authors: D.Venkatesan, K.Kannan, S. Raja Balachandar
Abstract:
In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.
Keywords: Genetic Algorithm, Unbounded Knapsack Problem, Combinatorial Optimization, Meta-Heuristic, Center of Mass
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16991020 Modeling the Symptom-Disease Relationship by Using Rough Set Theory and Formal Concept Analysis
Authors: Mert Bal, Hayri Sever, Oya Kalıpsız
Abstract:
Medical Decision Support Systems (MDSSs) are sophisticated, intelligent systems that can provide inference due to lack of information and uncertainty. In such systems, to model the uncertainty various soft computing methods such as Bayesian networks, rough sets, artificial neural networks, fuzzy logic, inductive logic programming and genetic algorithms and hybrid methods that formed from the combination of the few mentioned methods are used. In this study, symptom-disease relationships are presented by a framework which is modeled with a formal concept analysis and theory, as diseases, objects and attributes of symptoms. After a concept lattice is formed, Bayes theorem can be used to determine the relationships between attributes and objects. A discernibility relation that forms the base of the rough sets can be applied to attribute data sets in order to reduce attributes and decrease the complexity of computation.
Keywords: Formal Concept Analysis, Rough Set Theory, Granular Computing, Medical Decision Support System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141019 AC Signals Estimation from Irregular Samples
Authors: Predrag B. Petrović
Abstract:
The paper deals with the estimation of amplitude and phase of an analogue multi-harmonic band-limited signal from irregularly spaced sampling values. To this end, assuming the signal fundamental frequency is known in advance (i.e., estimated at an independent stage), a complexity-reduced algorithm for signal reconstruction in time domain is proposed. The reduction in complexity is achieved owing to completely new analytical and summarized expressions that enable a quick estimation at a low numerical error. The proposed algorithm for the calculation of the unknown parameters requires O((2M+1)2) flops, while the straightforward solution of the obtained equations takes O((2M+1)3) flops (M is the number of the harmonic components). It is applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The proposed method of processing can be used for precise RMS measurements (for power and energy) of a periodic signal based on the presented signal reconstruction. The paper investigates the errors related to the signal parameter estimation, and there is a computer simulation that demonstrates the accuracy of these algorithms.
Keywords: Band-limited signals, Fourier coefficient estimation, analytical solutions, signal reconstruction, time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17491018 Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm
Authors: Mahmoud Saeidi, Khadijeh Saeidi, Mahmoud Khaleghi
Abstract:
In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.Keywords: Image Sequences, Noise Reduction, fuzzy algorithm, triangular membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18801017 Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses
Authors: M.V Rajesh, Archana R, A Unnikrishnan, R Gopikakumari, Jeevamma Jacob
Abstract:
The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.Keywords: Multilayer neural networks, Radial Basis Functions, Clustering algorithm, Back Propagation training, Extended Kalmanfiltering, Mean Square Error, Nonlinear Modeling, Cramer RaoLower Bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16461016 Optimal Transmission Network Usage and Loss Allocation Using Matrices Methodology and Cooperative Game Theory
Authors: Baseem Khan, Ganga Agnihotri
Abstract:
Restructuring of Electricity supply industry introduced many issues such as transmission pricing, transmission loss allocation and congestion management. Many methodologies and algorithms were proposed for addressing these issues. In this paper a power flow tracing based method is proposed which involves Matrices methodology for the transmission usage and loss allocation for generators and demands. This method provides loss allocation in a direct way because all the computation is previously done for usage allocation. The proposed method is simple and easy to implement in a large power system. Further it is less computational because it requires matrix inversion only a single time. After usage and loss allocation cooperative game theory is applied to results for finding efficient economic signals. Nucleolus and Shapely value approach is used for optimal allocation of results. Results are shown for the IEEE 6 bus system and IEEE 14 bus system.
Keywords: Modified Kirchhoff Matrix, Power flow tracing, Transmission Pricing, Transmission Loss Allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25931015 Renovation Planning Model for a Shopping Mall
Authors: Hsin-Yun Lee
Abstract:
In this study, the pedestrian simulation VISWALK integration and application platform ant algorithms written program made to construct a renovation engineering schedule planning mode. The use of simulation analysis platform construction site when the user running the simulation, after calculating the user walks in the case of construction delays, the ant algorithm to find out the minimum delay time schedule plan, and add volume and unit area deactivated loss of business computing, and finally to the owners and users of two different positions cut considerations pick out the best schedule planning. To assess and validate its effectiveness, this study constructed the model imported floor of a shopping mall floor renovation engineering cases. Verify that the case can be found from the mode of the proposed project schedule planning program can effectively reduce the delay time and the user's walking mall loss of business, the impact of the operation on the renovation engineering facilities in the building to a minimum.Keywords: Pedestrian, renovation, schedule, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23311014 Entrepreneur Universal Education System: Future Evolution
Authors: Khaled Elbehiery, Hussam Elbehiery
Abstract:
The success of education is dependent on evolution and adaptation, while the traditional system has worked before, one type of education evolved with the digital age is virtual education that has influenced efficiency in today’s learning environments. Virtual learning has indeed proved its efficiency to overcome the drawbacks of the physical environment such as time, facilities, location, etc., but despite what it had accomplished, the educational system over all is not adequate for being a productive system yet. Earning a degree is not anymore enough to obtain a career job; it is simply missing the skills and creativity. There are always two sides of a coin; a college degree or a specialized certificate, each has its own merits, but having both can put you on a successful IT career path. For many of job-seeking individuals across world to have a clear meaningful goal for work and education and positively contribute the community, a productive correlation and cooperation among employers, universities alongside with the individual technical skills is a must for generations to come. Fortunately, the proposed research “Entrepreneur Universal Education System” is an evolution to meet the needs of both employers and students, in addition to gaining vital and real-world experience in the chosen fields is easier than ever. The new vision is to empower the education to improve organizations’ needs which means improving the world as its primary goal, adopting universal skills of effective thinking, effective action, effective relationships, preparing the students through real-world accomplishment and encouraging them to better serve their organization and their communities faster and more efficiently.
Keywords: Virtual education, academic degree, certificates, internship, amazon web services, Microsoft Azure, Google cloud platform, hybrid models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9131013 Genetic Folding: Analyzing the Mercer-s Kernels Effect in Support Vector Machine using Genetic Folding
Authors: Mohd A. Mezher, Maysam F. Abbod
Abstract:
Genetic Folding (GF) a new class of EA named as is introduced for the first time. It is based on chromosomes composed of floating genes structurally organized in a parent form and separated by dots. Although, the genotype/phenotype system of GF generates a kernel expression, which is the objective function of superior classifier. In this work the question of the satisfying mapping-s rules in evolving populations is addressed by analyzing populations undergoing either Mercer-s or none Mercer-s rule. The results presented here show that populations undergoing Mercer-s rules improve practically models selection of Support Vector Machine (SVM). The experiment is trained multi-classification problem and tested on nonlinear Ionosphere dataset. The target of this paper is to answer the question of evolving Mercer-s rule in SVM addressed using either genetic folding satisfied kernel-s rules or not applied to complicated domains and problems.Keywords: Genetic Folding, GF, Evolutionary Algorithms, Support Vector Machine, Genetic Algorithm, Genetic Programming, Multi-Classification, Mercer's Rules
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271012 Optimization of Process Parameters Affecting on Spring-Back in V-Bending Process for High Strength Low Alloy Steel HSLA 420 Using FEA (HyperForm) and Taguchi Technique
Authors: Navajyoti Panda, R. S. Pawar
Abstract:
In this study, process parameters like punch angle, die opening, grain direction, and pre-bend condition of the strip for deep draw of high strength low alloy steel HSLA 420 are investigated. The finite element method (FEM) in association with the Taguchi and the analysis of variance (ANOVA) techniques are carried out to investigate the degree of importance of process parameters in V-bending process for HSLA 420&ST12 grade material. From results, it is observed that punch angle had a major influence on the spring-back. Die opening also showed very significant role on spring back. On the other hand, it is revealed that grain direction had the least impact on spring back; however, if strip from flat sheet is taken, then it is less prone to spring back as compared to the strip from sheet metal coil. HyperForm software is used for FEM simulation and experiments are designed using Taguchi method. Percentage contribution of the parameters is obtained through the ANOVA techniques.
Keywords: Bending, V-bending, FEM, spring-back, Taguchi, HyperForm, profile projector, HSLA 420 & St12 materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14501011 Accuracy of Displacement Estimation and Selection of Capacitors for a Four Degrees of Freedom Capacitive Force Sensor
Authors: Chisato Murakami, Makoto Takahashi
Abstract:
Force sensor has been used as requisite for knowing information on the amount and the directions of forces on the skin surface. We have developed a four-degrees-of-freedom capacitive force sensor (approximately 20×20×5 mm3) that has a flexible structure and sixteen parallel plate capacitors. An iterative algorithm was developed for estimating four displacements from the sixteen capacitances using fourth-order polynomial approximation of characteristics between capacitance and displacement. The estimation results from measured capacitances had large error caused by deterioration of the characteristics. In this study, effective capacitors had major information were selected on the basis of the capacitance change range and the characteristic shape. Maximum errors in calibration and non-calibration points were 25%and 6.8%.However the maximum error was larger than desired value, the smallness of averaged value indicated the occurrence of a few large error points. On the other hand, error in non-calibration point was within desired value.
Keywords: Force sensors, capacitive sensors, estimation, iterative algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161010 A Modern Review of the Non-Invasive Continuous Blood Glucose Measuring Devices and Techniques for Remote Patient Monitoring System
Authors: Muhibul Haque Bhuyan
Abstract:
Diabetes disease that arises from the higher glucose level due to insulin shortage or insulin opposition in the human body has become a common disease in the world. No medicine can cure it completely. However, by taking medicine, maintaining diets, and having exercises regularly, a diabetes patient can keep his glucose level within the specified limits and in this way, he/she can lead a normal life like a healthy person. But to control glucose levels, a patient needs to monitor them regularly. Various techniques are being used over the last four decades. This modern review article aims to provide a comparative study report on various blood glucose monitoring techniques in a very concise and organized manner. The review mainly emphasizes working principles, cost, technology, sensors, measurement types, measurement accuracy, advantages, and disadvantages, etc. of various techniques and then compares among each other. Besides, the use of algorithms and simulators for the growth of this technology is also presented. Finally, current research trends of this measurement technology have also been discussed.
Keywords: blood glucose measurement, sensors, measurement devices, invasive and non-invasive techniques
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9771009 Optimization of GAMM Francis Turbine Runner
Authors: Sh. Derakhshan, A. Mostafavi
Abstract:
Nowadays, the challenge in hydraulic turbine design is the multi-objective design of turbine runner to reach higher efficiency. The hydraulic performance of a turbine is strictly depends on runner blades shape. The present paper focuses on the application of the multi-objective optimization algorithm to the design of a small Francis turbine runner. The optimization exercise focuses on the efficiency improvement at the best efficiency operating point (BEP) of the GAMM Francis turbine. A global optimization method based on artificial neural networks (ANN) and genetic algorithms (GA) coupled by 3D Navier-Stokes flow solver has been used to improve the performance of an initial geometry of a Francis runner. The results show the good ability of optimization algorithm and the final geometry has better efficiency with initial geometry. The goal was to optimize the geometry of the blades of GAMM turbine runner which leads to maximum total efficiency by changing the design parameters of camber line in at least 5 sections of a blade. The efficiency of the optimized geometry is improved from 90.7% to 92.5%. Finally, design parameters and the way of selection have been considered and discussed.Keywords: Francis Turbine, Runner, Optimization, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33441008 CAPWAP Status and Design Considerations for Seamless Roaming Support
Authors: M. Balfaqih, S. Haseeb, M. H. Mazlan, S. N. Hasnan, O. Mahmoud, A. Hashim
Abstract:
Wireless LAN technologies have picked up momentum in the recent years due to their ease of deployment, cost and availability. The era of wireless LAN has also given rise to unique applications like VOIP, IPTV and unified messaging. However, these real-time applications are very sensitive to network and handoff latencies. To successfully support these applications, seamless roaming during the movement of mobile station has become crucial. Nowadays, centralized architecture models support roaming in WLANs. They have the ability to manage, control and troubleshoot large scale WLAN deployments. This model is managed by Control and Provision of Wireless Access Point protocol (CAPWAP). This paper covers the CAPWAP architectural solution along with its proposals that have emerged. Based on the literature survey conducted in this paper, we found that the proposed algorithms to reduce roaming latency in CAPWAP architecture do not support seamless roaming. Additionally, they are not sufficient during the initial period of the network. This paper also suggests important design consideration for mobility support in future centralized IEEE 802.11 networks.Keywords: 802.11, centralized Architecture, CAPWAP, Roaming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30381007 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.
Keywords: Iot, activity recognition, automatic classification, unconstrained environment, deep neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11341006 Modeling And Analysis of Simple Open Cycle Gas Turbine Using Graph Networks
Authors: Naresh Yadav, I.A. Khan, Sandeep Grover
Abstract:
This paper presents a unified approach based graph theory and system theory postulates for the modeling and analysis of Simple open cycle Gas turbine system. In the present paper, the simple open cycle gas turbine system has been modeled up to its subsystem level and system variables have been identified to develop the process subgraphs. The theorems and algorithms of the graph theory have been used to represent behavioural properties of the system like rate of heat and work transfers rates, pressure drops and temperature drops in the involved processes of the system. The processes have been represented as edges of the process subgraphs and their limits as the vertices of the process subgraphs. The system across variables and through variables has been used to develop terminal equations of the process subgraphs of the system. The set of equations developed for vertices and edges of network graph are used to solve the system for its process variables.Keywords: Simple open cycle gas turbine, Graph theoretic approach, process subgraphs, gas turbines system modeling, systemtheory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26421005 The Integrated Urban Strategies Based on Deep Urban History and Modern Technology Study: Tourism and Leisure Industries as Driving Force to Reactivate Historical Area
Authors: Cheng Li, Jie Shen, Yutian Tang
Abstract:
Embracing the upcoming era of urbanization with the challenges of limitation of resources, disappearing cultural identities and conflicts among different groups of stakeholders, new integrated approaches are offered in our urban practice to help decision-makers and stakeholders frame and develop well-conceived, practical strategies for urban developing trajectories to approach urban-level sustainability in multiple social, cultural, ecological dimensions. Through bottom-up participation, we take advantage of tourism and leisure industries as driving forces for urbanization in China to promote integrated sustainable systems, with the hope of approaching both historical and ecological aspects of urban sustainability; and also thanks to top-down participation, we have codes, standards and rules established by the governments to strengthen the implementation of ecological urban sustainability. The results are monitored and evaluated experimentally and multidimensionally and the sustainable systems we constructed with local stakeholder groups turned out to be effective. The presentation of our selected projects would indicate our different focuses on urban sustainability.Keywords: Urban sustainability, integrated urban strategy, tourism and leisure industries, history, modern technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15871004 Aspect Oriented Software Architecture
Authors: Pradip Peter Dey, Ronald F. Gonzales, Gordon W. Romney, Mohammad Amin, Bhaskar Raj Sinha
Abstract:
Natural language processing systems pose a unique challenge for software architectural design as system complexity has increased continually and systems cannot be easily constructed from loosely coupled modules. Lexical, syntactic, semantic, and pragmatic aspects of linguistic information are tightly coupled in a manner that requires separation of concerns in a special way in design, implementation and maintenance. An aspect oriented software architecture is proposed in this paper after critically reviewing relevant architectural issues. For the purpose of this paper, the syntactic aspect is characterized by an augmented context-free grammar. The semantic aspect is composed of multiple perspectives including denotational, operational, axiomatic and case frame approaches. Case frame semantics matured in India from deep thematic analysis. It is argued that lexical, syntactic, semantic and pragmatic aspects work together in a mutually dependent way and their synergy is best represented in the aspect oriented approach. The software architecture is presented with an augmented Unified Modeling Language.Keywords: Language engineering, parsing, software design, user experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17431003 A Universal Model for Content-Based Image Retrieval
Authors: S. Nandagopalan, Dr. B. S. Adiga, N. Deepak
Abstract:
In this paper a novel approach for generalized image retrieval based on semantic contents is presented. A combination of three feature extraction methods namely color, texture, and edge histogram descriptor. There is a provision to add new features in future for better retrieval efficiency. Any combination of these methods, which is more appropriate for the application, can be used for retrieval. This is provided through User Interface (UI) in the form of relevance feedback. The image properties analyzed in this work are by using computer vision and image processing algorithms. For color the histogram of images are computed, for texture cooccurrence matrix based entropy, energy, etc, are calculated and for edge density it is Edge Histogram Descriptor (EHD) that is found. For retrieval of images, a novel idea is developed based on greedy strategy to reduce the computational complexity. The entire system was developed using AForge.Imaging (an open source product), MATLAB .NET Builder, C#, and Oracle 10g. The system was tested with Coral Image database containing 1000 natural images and achieved better results.Keywords: Content Based Image Retrieval (CBIR), Cooccurrencematrix, Feature vector, Edge Histogram Descriptor(EHD), Greedy strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29341002 Jacobi-Based Methods in Solving Fuzzy Linear Systems
Authors: Lazim Abdullah, Nurhakimah Ab. Rahman
Abstract:
Linear systems are widely used in many fields of science and engineering. In many applications, at least some of the parameters of the system are represented by fuzzy rather than crisp numbers. Therefore it is important to perform numerical algorithms or procedures that would treat general fuzzy linear systems and solve them using iterative methods. This paper aims are to solve fuzzy linear systems using four types of Jacobi based iterative methods. Four iterative methods based on Jacobi are used for solving a general n × n fuzzy system of linear equations of the form Ax = b , where A is a crisp matrix and b an arbitrary fuzzy vector. The Jacobi, Jacobi Over-Relaxation, Refinement of Jacobi and Refinement of Jacobi Over-Relaxation methods was tested to a five by five fuzzy linear system. It is found that all the tested methods were iterated differently. Due to the effect of extrapolation parameters and the refinement, the Refinement of Jacobi Over-Relaxation method was outperformed the other three methods.
Keywords: Fuzzy linear systems, Jacobi, Jacobi Over- Relaxation, Refinement of Jacobi, Refinement of Jacobi Over- Relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24111001 An Efficient Data Mining Approach on Compressed Transactions
Authors: Jia-Yu Dai, Don-Lin Yang, Jungpin Wu, Ming-Chuan Hung
Abstract:
In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good solution which can lower the required space. Data mining has many useful applications in recent years because it can help users discover interesting knowledge in large databases. However, existing compression algorithms are not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then perform the data mining process. However, they all lack the ability to decompress the data to their original state and improve the data mining performance. In this research a new approach called Mining Merged Transactions with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which are impossible to become frequent in order to improve the performance of mining association rules. The experiments show that M2TQT performs better than existing approaches.Keywords: Association rule, data mining, merged transaction, quantification table.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19601000 Semantic Spatial Objects Data Structure for Spatial Access Method
Authors: Kalum Priyanath Udagepola, Zuo Decheng, Wu Zhibo, Yang Xiaozong
Abstract:
Modern spatial database management systems require a unique Spatial Access Method (SAM) in order solve complex spatial quires efficiently. In this case the spatial data structure takes a prominent place in the SAM. Inadequate data structure leads forming poor algorithmic choices and forging deficient understandings of algorithm behavior on the spatial database. A key step in developing a better semantic spatial object data structure is to quantify the performance effects of semantic and outlier detections that are not reflected in the previous tree structures (R-Tree and its variants). This paper explores a novel SSRO-Tree on SAM to the Topo-Semantic approach. The paper shows how to identify and handle the semantic spatial objects with outlier objects during page overflow/underflow, using gain/loss metrics. We introduce a new SSRO-Tree algorithm which facilitates the achievement of better performance in practice over algorithms that are superior in the R*-Tree and RO-Tree by considering selection queries.
Keywords: Outlier, semantic spatial object, spatial objects, SSRO-Tree, topo-semantic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695999 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: Cross-validation support vector machine, refined composite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857998 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.
Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411