Search results for: test method.
7556 Integrating Low and High Level Object Recognition Steps
Authors: András Barta, István Vajk
Abstract:
In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.Keywords: Object recognition, Bayesian network, Wavelets, Document processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14857555 Vitamin D Deficiency and Insufficiency in Postmenopausal Women with Obesity
Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk, Oksana Ivanyk
Abstract:
Deficiency and insufficiency of Vitamin D is a pandemic of the 21st century. Obesity patients have a lower level of vitamin D, but the literature data are contradictory. The purpose of this study is to investigate deficiency and insufficiency vitamin D in postmenopausal women with obesity. We examined 1007 women aged 50-89 years. Mean age was 65.74±8.61 years; mean height was 1.61±0.07 m; mean weight was 70.65±13.50 kg; mean body mass index was 27.27±4.86 kg/m2, and mean 25(OH) D levels in serum was 26.00±12.00 nmol/l. The women were divided into the following six groups depending on body mass index: I group – 338 women with normal body weight, II group – 16 women with insufficient body weight, III group – 382 women with excessive body weight, IV group – 199 women with obesity of class I, V group – 60 women with obesity of class II, and VI group – 12 women with obesity of class III. Level of 25(OH)D in serum was measured by means of an electrochemiluminescent method - Elecsys 2010 analyzer (Roche Diagnostics, Germany) and cobas test-systems. 34.4% of the examined women have deficiency of vitamin D and 31.4% insufficiency. Women with obesity of class I (23.60±10.24 ng/ml) and obese of class II (22.38±10.34 ng/ml) had significantly lower levels of 25 (OH) D compared to women with normal body weight (28.24±12.99 ng/ml), p=0.00003. In women with obesity, BMI significantly influences vitamin D level, and this influence does not depend on the season.
Keywords: Obesity, body mass index, vitamin D deficiency/insufficiency, postmenopausal women, age.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10597554 The Effect of Sport Specific Exercises on the Visual Skills of Rugby Players
Authors: P.J. Du Toit, P. Janse Van Vuuren , S. Le Roux , E. Henning, M. Kleynhans, H.C. Terblanche, D. Crafford, C. Grobbelaar, P.S. Wood, C.C. Grant, L. Fletcher
Abstract:
Introduction: Visual performance is an important factor in sport excellence. Visual involvement in a sport varies according to environmental demands associated with that sport. These environmental demands are matched by a task specific motor response. The purpose of this study was to determine if sport specific exercises will improve the visual performance of male rugby players, in order to achieve maximal results on the sports field. Materials & Methods: Twenty six adult male rugby players, aged 16-22, were chosen as subjects. In order to evaluate the effect of sport specific exercises on visual skills, a pre-test - post-test experimental group design was adopted for the study. Results: Significant differences (p≤0.05) were seen in the focussing, tracking, vergence, sequencing, eye-hand coordination and visualisation components Discussion & Conclusions: Sport specific exercises improved visual skills in rugby players which may provide them with an advantage over their opponents. This study suggests that these training programs and participation in regular on-line EyeDrills sports vision exercises (www.eyedrills.co.za) aimed at improving the athlete-s visual coordination, concentration, focus, hand-eye co-ordination, anticipation and motor response should be incorpotated in the rugby players exercise regime.
Keywords: Rugby players, sport specific exercises, visual skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22577553 Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint
Authors: M. Najafi, S. Bab, F. Rahimi Dehgolan
Abstract:
The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations.Keywords: Axially moving beam, Galerkin method, non-linear vibration, super harmonic resonances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10037552 IMM based Kalman Filter for Channel Estimation in MB OFDM Systems
Abstract:
Ultra-wide band (UWB) communication is one of the most promising technologies for high data rate wireless networks for short range applications. This paper proposes a blind channel estimation method namely IMM (Interactive Multiple Model) Based Kalman algorithm for UWB OFDM systems. IMM based Kalman filter is proposed to estimate frequency selective time varying channel. In the proposed method, two Kalman filters are concurrently estimate the channel parameters. The first Kalman filter namely Static Model Filter (SMF) gives accurate result when the user is static while the second Kalman filter namely the Dynamic Model Filter (DMF) gives accurate result when the receiver is in moving state. The static transition matrix in SMF is assumed as an Identity matrix where as in DMF, it is computed using Yule-Walker equations. The resultant filter estimate is computed as a weighted sum of individual filter estimates. The proposed method is compared with other existing channel estimation methods.Keywords: Channel estimation, Kalman filter, UWB, Channel model, AR model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20907551 Semilocal Convergence of a Three Step Fifth Order Iterative Method under Höolder Continuity Condition in Banach Spaces
Authors: Ramandeep Behl, Prashanth Maroju, S. S. Motsa
Abstract:
In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equation of the second kind.Keywords: Hölder continuity condition, Fréchet derivative, fifth order convergence, recurrence relations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19357550 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours
Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic
Abstract:
Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.
Keywords: player number, soccer video, HSV color space
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19887549 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting
Authors: I. Falconett, K. Nagasaka
Abstract:
This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.
Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15387548 Customer Need Type Classification Model using Data Mining Techniques for Recommender Systems
Authors: Kyoung-jae Kim
Abstract:
Recommender systems are usually regarded as an important marketing tool in the e-commerce. They use important information about users to facilitate accurate recommendation. The information includes user context such as location, time and interest for personalization of mobile users. We can easily collect information about location and time because mobile devices communicate with the base station of the service provider. However, information about user interest can-t be easily collected because user interest can not be captured automatically without user-s approval process. User interest usually represented as a need. In this study, we classify needs into two types according to prior research. This study investigates the usefulness of data mining techniques for classifying user need type for recommendation systems. We employ several data mining techniques including artificial neural networks, decision trees, case-based reasoning, and multivariate discriminant analysis. Experimental results show that CHAID algorithm outperforms other models for classifying user need type. This study performs McNemar test to examine the statistical significance of the differences of classification results. The results of McNemar test also show that CHAID performs better than the other models with statistical significance.Keywords: Customer need type, Data mining techniques, Recommender system, Personalization, Mobile user.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21467547 Automatic Segmentation of Thigh Magnetic Resonance Images
Authors: Lorena Urricelqui, Armando Malanda, Arantxa Villanueva
Abstract:
Purpose: To develop a method for automatic segmentation of adipose and muscular tissue in thighs from magnetic resonance images. Materials and methods: Thirty obese women were scanned on a Siemens Impact Expert 1T resonance machine. 1500 images were finally used in the tests. The developed segmentation method is a recursive and multilevel process that makes use of several concepts such as shaped histograms, adaptative thresholding and connectivity. The segmentation process was implemented in Matlab and operates without the need of any user interaction. The whole set of images were segmented with the developed method. An expert radiologist segmented the same set of images following a manual procedure with the aid of the SliceOmatic software (Tomovision). These constituted our 'goal standard'. Results: The number of coincidental pixels of the automatic and manual segmentation procedures was measured. The average results were above 90 % of success in most of the images. Conclusions: The proposed approach allows effective automatic segmentation of MRIs from thighs, comparable to expert manual performance.
Keywords: Segmentation, thigh, magnetic resonance image, fat, muscle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19057546 Motor Coordination and Body Mass Index in Primary School Children
Authors: Ingrid Ruzbarska, Martin Zvonar, Piotr Oleśniewicz, Julita Markiewicz-Patkowska, Krzysztof Widawski, Daniel Puciato
Abstract:
Obese children will probably become obese adults, consequently exposed to an increased risk of comorbidity and premature mortality. Body weight may be indirectly determined by continuous development of coordination and motor skills. The level of motor skills and abilities is an important factor that promotes physical activity since early childhood. The aim of the study is to thoroughly understand the internal relations between motor coordination abilities and the somatic development of prepubertal children and to determine the effect of excess body weight on motor coordination by comparing the motor ability levels of children with different body mass index (BMI) values. The data were collected from 436 children aged 7–10 years, without health limitations, fully participating in school physical education classes. Body height was measured with portable stadiometers (Harpenden, Holtain Ltd.), and body mass—with a digital scale (HN-286, Omron). Motor coordination was evaluated with the Kiphard-Schilling body coordination test, Körperkoordinationstest für Kinder. The normality test by Shapiro-Wilk was used to verify the data distribution. The correlation analysis revealed a statistically significant negative association between the dynamic balance and BMI, as well as between the motor quotient and BMI (p<0.01) for both boys and girls. The results showed no effect of gender on the difference in the observed trends. The analysis of variance proved statistically significant differences between normal weight children and their overweight or obese counterparts. Coordination abilities probably play an important role in preventing or moderating the negative trajectory leading to childhood overweight and obesity. At this age, the development of coordination abilities should become a key strategy, targeted at long-term prevention of obesity and the promotion of an active lifestyle in adulthood. Motor performance is essential for implementing a healthy lifestyle in childhood already. Physical inactivity apparently results in motor deficits and a sedentary lifestyle in children, which may be accompanied by excess energy intake and overweight.
Keywords: Childhood, KTK test, Physical education, Psychomotor competence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13647545 The Development of a Teachers- Self-Efficacy Instrument for High School Physical Education Teacher
Authors: Yi-Hsiang Pan
Abstract:
The purpose of this study was to develop a “teachers’ self-efficacy scale for high school physical education teachers (TSES-HSPET)” in Taiwan. This scale is based on the self-efficacy theory of Bandura [1], [2]. This study used exploratory and confirmatory factor analyses to test the reliability and validity. The participants were high school physical education teachers in Taiwan. Both stratified random sampling and cluster sampling were used to sample participants for the study. 350 teachers were sampled in the first stage and 234 valid scales (male 133, female 101) returned. During the second stage, 350 teachers were sampled and 257 valid scales (male 143, female 110, 4 did not indicate gender) returned. The exploratory factor analysis was used in the first stage, and it got 60.77% of total variance for construct validity. The Cronbach’s alpha coefficient of internal consistency was 0.91 for sumscale, and subscales were 0.84 and 0.90. In the second stage, confirmatory factor analysis was used to test construct validity. The result showed that the fit index could be accepted (χ2 (75) =167.94, p <.05, RMSEA =0.07, SRMR=0.05, GFI=0.92, NNFI=0.97, CFI=0.98, PNFI=0.79). Average variance extracted of latent variables were 0.43 and 0.53, which composite reliability are 0.78 and 0.90. It is concluded that the TSES-HSPET is a well-considered measurement instrument with acceptable validity and reliability. It may be used to estimate teachers’ self-efficacy for high school physical education teachers.Keywords: teaching in physical education, teacher's self-efficacy, teacher's belief
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31807544 Amplified Ribosomal DNA Restriction Analysis Method to Assess Rumen Microbial Diversity of Ruminant
Authors: A. Natsir, M. Nadir, S. Syahrir, A. Mujnisa, N. Purnomo, A. R. Egan, B. J. Leury
Abstract:
Rumen degradation characteristic of feedstuff is one of the prominent factors affecting microbial population in rumen of animal. High rumen degradation rate of faba bean protein may lead to inconstant rumen conditions that could have a prominent impact on rumen microbial diversity. Amplified Ribosomal DNA Restriction Analysis (ARDRA) is utilized to monitor diversity of rumen microbes on sheep fed low quality forage supplemented by faba beans. Four mature merino sheep with existing rumen cannula were used in this study according to 4 x 4 Latin square design. The results of study indicated that there were 37 different ARDRA types identified out of 136 clones examined. Among those clones, five main clone types existed across the treatments with different percentages. In conclusion, the ARDRA method is potential to be used as a routine tool to assess the temporary changes in the rumen community as a result of different feeding strategies.
Keywords: ARDRA method, clones, microbial diversity, ribotypes, ruminants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14667543 Shunt Power Active Filter Control under NonIdeal Voltages Conditions
Authors: H. Abaali, M. T. Lamchich, M. Raoufi
Abstract:
In this paper, we propose the Modified Synchronous Detection (MSD) Method for determining the reference compensating currents of the shunt active power filter under non sinusoidal voltages conditions. For controlling the inverter switching we used the PI regulator. The numerical simulation results, using Power System Blockset Toolbox PSB of Matlab, from a complete structure, are presented and discussed.
Keywords: Distorted, harmonic, Modified Synchronous Detection Method, PI regulator, Shunt Active Power Filter, unbalanced.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17207542 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording
Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy
Abstract:
Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23297541 Construction 4.0: The Future of the Construction Industry in South Africa
Authors: Temidayo. O. Osunsanmi, Clinton Aigbavboa, Ayodeji Oke
Abstract:
The construction industry is a renowned latecomer to the efficiency offered by the adoption of information technology. Whereas, the banking, manufacturing, retailing industries have keyed into the future by using digitization and information technology as a new approach for ensuring competitive gain and efficiency. The construction industry has yet to fully realize similar benefits because the adoption of ICT is still at the infancy stage with a major concentration on the use of software. Thus, this study evaluates the awareness and readiness of construction professionals towards embracing a full digitalization of the construction industry using construction 4.0. The term ‘construction 4.0’ was coined from the industry 4.0 concept which is regarded as the fourth industrial revolution that originated from Germany. A questionnaire was utilized for sourcing data distributed to practicing construction professionals through a convenience sampling method. Using SPSS v24, the hypotheses posed were tested with the Mann Whitney test. The result revealed that there are no differences between the consulting and contracting organizations on the readiness for adopting construction 4.0 concepts in the construction industry. Using factor analysis, the study discovers that adopting construction 4.0 will improve the performance of the construction industry regarding cost and time savings and also create sustainable buildings. In conclusion, the study determined that construction professionals have a low awareness towards construction 4.0 concepts. The study recommends an increase in awareness of construction 4.0 concepts through seminars, workshops and training, while construction professionals should take hold of the benefits of adopting construction 4.0 concepts. The study contributes to the roadmap for the implementation of construction industry 4.0 concepts in the South African construction industry.
Keywords: Building information technology, Construction 4.0, Industry 4.0, Smart Site.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58187540 A Finite Difference Calculation Procedure for the Navier-Stokes Equations on a Staggered Curvilinear Grid
Authors: R. M. Barron, B. Zogheib
Abstract:
A new numerical method for solving the twodimensional, steady, incompressible, viscous flow equations on a Curvilinear staggered grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well-established numerical formulations, the finite difference and finite volume methods. Some weaknesses of the finite difference approach are removed by exploiting the strengths of the finite volume method. In particular, the issue of velocity-pressure coupling is dealt with in the proposed finite difference formulation by developing a pressure correction equation in a manner similar to the SIMPLE approach commonly used in finite volume formulations. However, since this is purely a finite difference formulation, numerical approximation of fluxes is not required. Results obtained from the present method are based on the first-order upwind scheme for the convective terms, but the methodology can easily be modified to accommodate higher order differencing schemes.Keywords: Curvilinear, finite difference, finite volume, SIMPLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32037539 Aircraft Supplier Selection Process with Fuzzy Proximity Measure Method using Multiple Criteria Group Decision Making Analysis
Authors: C. Ardil
Abstract:
Being effective in every organizational activity has become necessary due to the escalating level of competition in all areas of corporate life. In the context of supply chain management, aircraft supplier selection is currently one of the most crucial activities. It is possible to choose the best aircraft supplier and deliver efficiency in terms of cost, quality, delivery time, economic status, and institutionalization if a systematic supplier selection approach is used. In this study, an effective multiple criteria decision-making methodology, proximity measure method (PMM), is used within a fuzzy environment based on the vague structure of the real working environment. The best appropriate aircraft suppliers are identified and ranked after the proposed multiple criteria decision making technique is used in a real-life scenario.
Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3447538 Parallezation Protein Sequence Similarity Algorithms using Remote Method Interface
Authors: Mubarak Saif Mohsen, Zurinahni Zainol, Rosalina Abdul Salam, Wahidah Husain
Abstract:
One of the major problems in genomic field is to perform sequence comparison on DNA and protein sequences. Executing sequence comparison on the DNA and protein data is a computationally intensive task. Sequence comparison is the basic step for all algorithms in protein sequences similarity. Parallel computing is an attractive solution to provide the computational power needed to speedup the lengthy process of the sequence comparison. Our main research is to enhance the protein sequence algorithm using dynamic programming method. In our approach, we parallelize the dynamic programming algorithm using multithreaded program to perform the sequence comparison and also developed a distributed protein database among many PCs using Remote Method Interface (RMI). As a result, we showed how different sizes of protein sequences data and computation of scoring matrix of these protein sequence on different number of processors affected the processing time and speed, as oppose to sequential processing.
Keywords: Protein sequence algorithm, dynamic programming algorithm, multithread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19037537 Dempster-Shafer Evidence Theory for Image Segmentation: Application in Cells Images
Authors: S. Ben Chaabane, M. Sayadi, F. Fnaiech, E. Brassart
Abstract:
In this paper we propose a new knowledge model using the Dempster-Shafer-s evidence theory for image segmentation and fusion. The proposed method is composed essentially of two steps. First, mass distributions in Dempster-Shafer theory are obtained from the membership degrees of each pixel covering the three image components (R, G and B). Each membership-s degree is determined by applying Fuzzy C-Means (FCM) clustering to the gray levels of the three images. Second, the fusion process consists in defining three discernment frames which are associated with the three images to be fused, and then combining them to form a new frame of discernment. The strategy used to define mass distributions in the combined framework is discussed in detail. The proposed fusion method is illustrated in the context of image segmentation. Experimental investigations and comparative studies with the other previous methods are carried out showing thus the robustness and superiority of the proposed method in terms of image segmentation.Keywords: Fuzzy C-means, Color image, data fusion, Dempster-Shafer's evidence theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22007536 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR) of 0.04% and the highest False Rejection Rate (FRR) of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.
Keywords: Biometrics, dense networks, identification rate, train/test split ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5427535 A New Quantile Based Fuzzy Time Series Forecasting Model
Authors: Tahseen A. Jilani, Aqil S. Burney, C. Ardil
Abstract:
Time series models have been used to make predictions of academic enrollments, weather, road accident, casualties and stock prices, etc. Based on the concepts of quartile regression models, we have developed a simple time variant quantile based fuzzy time series forecasting method. The proposed method bases the forecast using prediction of future trend of the data. In place of actual quantiles of the data at each point, we have converted the statistical concept into fuzzy concept by using fuzzy quantiles using fuzzy membership function ensemble. We have given a fuzzy metric to use the trend forecast and calculate the future value. The proposed model is applied for TAIFEX forecasting. It is shown that proposed method work best as compared to other models when compared with respect to model complexity and forecasting accuracy.
Keywords: Quantile Regression, Fuzzy time series, fuzzy logicalrelationship groups, heuristic trend prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19997534 String Searching in Dispersed Files using MDS Convolutional Codes
Authors: A. S. Poornima, R. Aparna, B. B. Amberker, Prashant Koulgi
Abstract:
In this paper, we propose use of convolutional codes for file dispersal. The proposed method is comparable in complexity to the information Dispersal Algorithm proposed by M.Rabin and for particular choices of (non-binary) convolutional codes, is almost as efficient as that algorithm in terms of controlling expansion in the total storage. Further, our proposed dispersal method allows string search.Keywords: Convolutional codes, File dispersal, Filereconstruction, Information Dispersal Algorithm, String search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12797533 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement
Authors: Maatoug Hassine, Mourad Hrizi
Abstract:
In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.Keywords: Geometric inverse source problem, heat equation, topological sensitivity, topological optimization, Kohn-Vogelius formulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11197532 Effect of Sensory Manipulations on Human Joint Stiffness Strategy and Its Adaptation for Human Dynamic Stability
Authors: Aizreena Azaman, Mai Ishibashi, Masanori Ishizawa, Shin-Ichiroh Yamamoto
Abstract:
Sensory input plays an important role to human posture control system to initiate strategy in order to counterpart any unbalance condition and thus, prevent fall. In previous study, joint stiffness was observed able to describe certain issues regarding to movement performance. But, correlation between balance ability and joint stiffness is still remains unknown. In this study, joint stiffening strategy at ankle and hip were observed under different sensory manipulations and its correlation with conventional clinical test (Functional Reach Test) for balance ability was investigated. In order to create unstable condition, two different surface perturbations (tilt up-tilt (TT) down and forward-backward (FB)) at four different frequencies (0.2, 0.4, 0.6 and 0.8 Hz) were introduced. Furthermore, four different sensory manipulation conditions (include vision and vestibular system) were applied to the subject and they were asked to maintain their position as possible. The results suggested that joint stiffness were high during difficult balance situation. Less balance people generated high average joint stiffness compared to balance people. Besides, adaptation of posture control system under repetitive external perturbation also suggested less during sensory limited condition. Overall, analysis of joint stiffening response possible to predict unbalance situation faced by human
Keywords: Balance ability, joint stiffness, sensory, adaptation, dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19537531 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches
Authors: Fereydoon Sarmadian, Ali Keshavarzi
Abstract:
Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.
Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18207530 Determination of Vitamin C (Ascorbic Acid) in Orange Juices Product
Authors: Wanida Wonsawat
Abstract:
This research describes a voltammetric approach to determine amounts of vitamin C (Ascorbic acid) in orange juice sample, using three screen printed electrode. The anodic currents of vitamin C were proportional to vitamin C concentration in the range of 0 – 10.0 mM with the limit of detection of 1.36 mM. The method was successfully employed with 2 µL of the working solution dropped on the electrode surface. The proposed method was applied for the analysis of vitamin C in packed orange juice without sample purification or complexion of sample preparation step.
Keywords: Ascorbic acid, Vitamin C, Juice, Voltammetry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84817529 Performance of Concrete Grout under Aggressive Chloride Environment in Sabah
Authors: S. Imbin, S. Dullah, H. Asrah, P. S. Kumar, M. E. Rahman, M. A. Mannan
Abstract:
Service life of existing reinforced concrete (RC) structures in coastal towns of Sabah has been affected very much. Concrete crack, spalling of concrete cover and reinforcement rusting of RC buildings are seen even within 5 years of construction in Sabah. Hence, in this study a new mix design of concrete grout was developed using locally available materials and investigated under two curing conditions and workability, compressive strength, Accelerated Mortar Bar Test (AMBT), water absorption, volume of permeable voids (VPV), Sorptivity and 90-days salt ponding test were conducted. The compressive strength of concrete grout at the age 90 days was found to be 44.49 N/mm2 under water curing. It was observed that the percentage of mortar bar length change was below 1% for developed concrete grout. The water absorption of the concrete grout was in between the range of 0.88 % to 3.60 % under two different curing up to the age 90 days. It was also observed that the VPV of concrete was in the range of 0 % to 9.75 and 2.44% to 13.05% under water curing and site curing respectively. It was found that the Sorptivity of the concrete grout under water curing at the age of 28 days is 0.211mm/√min and at the age 90 day are 0.067 mm/√min. The chloride content decreased greatly, 90% after a depth of 15 mm. It was noticed that the site cured samples showed higher chloride contents near surface compared to water cured samples. This investigation suggested that the developed mix design of concrete grout using locally available construction materials can be used for crack repairing of existing RC structures in Sabah.Keywords: Concrete grout, Salt ponding, Sorptivity, Water absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28637528 A Ground Observation Based Climatology of Winter Fog: Study over the Indo-Gangetic Plains, India
Authors: Sanjay Kumar Srivastava, Anu Rani Sharma, Kamna Sachdeva
Abstract:
Every year, fog formation over the Indo-Gangetic Plains (IGPs) of Indian region during the winter months of December and January is believed to create numerous hazards, inconvenience, and economic loss to the inhabitants of this densely populated region of Indian subcontinent. The aim of the paper is to analyze the spatial and temporal variability of winter fog over IGPs. Long term ground observations of visibility and other meteorological parameters (1971-2010) have been analyzed to understand the formation of fog phenomena and its relevance during the peak winter months of January and December over IGP of India. In order to examine the temporal variability, time series and trend analysis were carried out by using the Mann-Kendall Statistical test. Trend analysis performed by using the Mann-Kendall test, accepts the alternate hypothesis with 95% confidence level indicating that there exists a trend. Kendall tau’s statistics showed that there exists a positive correlation between time series and fog frequency. Further, the Theil and Sen’s median slope estimate showed that the magnitude of trend is positive. Magnitude is higher during January compared to December for the entire IGP except in December when it is high over the western IGP. Decade wise time series analysis revealed that there has been continuous increase in fog days. The net overall increase of 99 % was observed over IGP in last four decades. Diurnal variability and average daily persistence were computed by using descriptive statistical techniques. Geo-statistical analysis of fog was carried out to understand the spatial variability of fog. Geo-statistical analysis of fog revealed that IGP is a high fog prone zone with fog occurrence frequency of more than 66% days during the study period. Diurnal variability indicates the peak occurrence of fog is between 06:00 and 10:00 local time and average daily fog persistence extends to 5 to 7 hours during the peak winter season. The results would offer a new perspective to take proactive measures in reducing the irreparable damage that could be caused due to changing trends of fog.
Keywords: Fog, climatology, Mann-Kendall test, trend analysis, spatial variability, temporal variability, visibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17557527 Robust Fuzzy Observer Design for Nonlinear Systems
Authors: Michal Polanský, C. Ardil
Abstract:
This paper shows a new method for design of fuzzy observers for Takagi-Sugeno systems. The method is based on Linear matrix inequalities (LMIs) and it allows to insert H constraint into the design procedure. The speed of estimation can tuned be specification of a decay rate of the observer closed loop system. We discuss here also the influence of parametric uncertainties at the output control system stability.
Keywords: H norm, Linear Matrix Inequalities, Observers, Takagi-Sugeno Systems, Parallel Distributed Compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541