Search results for: Online Arabic language learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3190

Search results for: Online Arabic language learning

670 Automated Java Testing: JUnit versus AspectJ

Authors: Manish Jain, Dinesh Gopalani

Abstract:

Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.

Keywords: Aspect oriented programming, AspectJ, Aspects, JUnit, software testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
669 Developing Research Involving Different Species: Opportunities and Empirical Foundations

Authors: A. V. Varfolomeeva, N. S. Tkachenko, A. G. Tishchenko

Abstract:

In this study, we addressed the problem of weak validity, implausible results, and inaccurate reporting in psychological research on different species. The theoretical basis of the study was the systems-evolutionary approach (SEA). We assumed that the root of the problem is the values and attitudes of the researchers (in particular anthropomorphism and anthropocentrism). The first aim of the study was the formulation of a research design that avoids this problem. Based on a literature review, we concluded that such design, amongst other things, should include methodics with playful components. The second aim was to conduct a series of studies on the differences in the formation of instrumental skill in rats raised and housed in different environments. As a result, we revealed that there are contradictions between some of the statements of SEA, so that it is not possible to choose one of the alternative hypotheses. We suggested that in order to get out of this problem, it is necessary to modify these provisions by aligning them with the attitude of multicentrism.

Keywords: epistemological attitudes, experimental design, validity, psychological structure, learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422
668 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods

Authors: M. Sinecen, M. Makinacı

Abstract:

The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.

Keywords: Artificial neural networks, texture classification, cancer diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
667 The Labeled Classification and its Application

Authors: M. Nemissi, H. Seridi, H. Akdag

Abstract:

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
666 Rapid Data Acquisition System for Complex Algorithm Testing in Plastic Molding Industry

Authors: A. Tellaeche, R. Arana

Abstract:

Injection molding is a very complicated process to monitor and control. With its high complexity and many process parameters, the optimization of these systems is a very challenging problem. To meet the requirements and costs demanded by the market, there has been an intense development and research with the aim to maintain the process under control. This paper outlines the latest advances in necessary algorithms for plastic injection process and monitoring, and also a flexible data acquisition system that allows rapid implementation of complex algorithms to assess their correct performance and can be integrated in the quality control process. This is the main topic of this paper. Finally, to demonstrate the performance achieved by this combination, a real case of use is presented.

Keywords: Plastic injection, machine learning, rapid complex algorithm prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
665 An Evaluation of the Opportunities and Challenges of Wi-Fi Adoption in Malaysian Institutions

Authors: Subrahmanyam Kodukula, Nurbiya Maimaiti

Abstract:

There have been many variations of technologies that helped educators in teaching & learning. From the past research it is evident that Information Technology significantly increases student participation and interactivity in the classrooms. This research started with a aim to find whether adoption of Wi-Fi environment by Malaysian Higher Educational Institutions (HEI) can benefit students and staff equally. The study was carried out in HEI-s of Klang Valley, Malaysia and the data is gathered through paper based surveys. A sample size of 237 units were randomly selected from 5 higher educational institutions in the Klang Valley using the Stratified Random sampling method and from the analysis of the data, it was found that the implementation of wireless technologies in HEIs have created lot of opportunities and also challenges.

Keywords: Wired Technologies, Wireless Classroom, HEI, Dense User Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
664 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

Authors: Danilo López, Nelson Vera, Luis Pedraza

Abstract:

This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.

Keywords: Neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
663 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: AlexNet, Deep learning, image recognition, 6D posture estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
662 Evolutionary Feature Selection for Text Documents using the SVM

Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.

Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
661 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
660 Lattice Boltzmann Simulation of Binary Mixture Diffusion Using Modern Graphics Processors

Authors: Mohammad Amin Safi, Mahmud Ashrafizaadeh, Amir Ali Ashrafizaadeh

Abstract:

A highly optimized implementation of binary mixture diffusion with no initial bulk velocity on graphics processors is presented. The lattice Boltzmann model is employed for simulating the binary diffusion of oxygen and nitrogen into each other with different initial concentration distributions. Simulations have been performed using the latest proposed lattice Boltzmann model that satisfies both the indifferentiability principle and the H-theorem for multi-component gas mixtures. Contemporary numerical optimization techniques such as memory alignment and increasing the multiprocessor occupancy are exploited along with some novel optimization strategies to enhance the computational performance on graphics processors using the C for CUDA programming language. Speedup of more than two orders of magnitude over single-core processors is achieved on a variety of Graphical Processing Unit (GPU) devices ranging from conventional graphics cards to advanced, high-end GPUs, while the numerical results are in excellent agreement with the available analytical and numerical data in the literature.

Keywords: Lattice Boltzmann model, Graphical processing unit, Binary mixture diffusion, 2D flow simulations, Optimized algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
659 Feature Selection Methods for an Improved SVM Classifier

Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

Keywords: Feature Selection, Learning with Kernels, SupportVector Machine, and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
658 Developing Rice Disease Analysis System on Mobile via iOS Operating System

Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit

Abstract:

This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.

Keywords: Rice disease, analysis system, mobile application, iOS operating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
657 Prediction of Location of High Energy Shower Cores using Artificial Neural Networks

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Artificial Neural Network (ANN)s can be modeled for High Energy Particle analysis with special emphasis on shower core location. The work describes the use of an ANN based system which has been configured to predict locations of cores of showers in the range 1010.5 to 1020.5 eV. The system receives density values as inputs and generates coordinates of shower events recorded for values captured by 20 core positions and 80 detectors in an area of 100 meters. Twenty ANNs are trained for the purpose and the positions of shower events optimized by using cooperative ANN learning. The results derived with variations of input upto 50% show success rates in the range of 90s.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
656 Vision Based People Tracking System

Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti

Abstract:

In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.

Keywords: Camshift Algorithm, Computer Vision, Kalman Filter, Object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
655 Inadequate Requirements Engineering Process: A Key Factor for Poor Software Development in Developing Nations: A Case Study

Authors: K. Adu Michael, K. Alese Boniface

Abstract:

Developing a reliable and sustainable software products is today a big challenge among up–coming software developers in Nigeria. The inability to develop a comprehensive problem statement needed to execute proper requirements engineering process is missing. The need to describe the ‘what’ of a system in one document, written in a natural language is a major step in the overall process of Software Engineering. Requirements Engineering is a process use to discover, analyze and validate system requirements. This process is needed in reducing software errors at the early stage of the development of software. The importance of each of the steps in Requirements Engineering is clearly explained in the context of using detailed problem statement from client/customer to get an overview of an existing system along with expectations from the new system. This paper elicits inadequate Requirements Engineering principle as the major cause of poor software development in developing nations using a case study of final year computer science students of a tertiary-education institution in Nigeria.

Keywords: Client/Customer, Problem Statement, Requirements Engineering, Software Developers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
654 A Multi-Radio Multi-Channel Unification Power Control for Wireless Mesh Networks

Authors: T. O. Olwal, K. Djouani, B. J. van Wyk, Y. Hamam, P. Siarry

Abstract:

Multi-Radio Multi-Channel Wireless Mesh Networks (MRMC-WMNs) operate at the backbone to access and route high volumes of traffic simultaneously. Such roles demand high network capacity, and long “online" time at the expense of accelerated transmission energy depletion and poor connectivity. This is the problem of transmission power control. Numerous power control methods for wireless networks are in literature. However, contributions towards MRMC configurations still face many challenges worth considering. In this paper, an energy-efficient power selection protocol called PMMUP is suggested at the Link-Layer. This protocol first divides the MRMC-WMN into a set of unified channel graphs (UCGs). A UCG consists of multiple radios interconnected to each other via a common wireless channel. In each UCG, a stochastic linear quadratic cost function is formulated. Each user minimizes this cost function consisting of trade-off between the size of unification states and the control action. Unification state variables come from independent UCGs and higher layers of the protocol stack. The PMMUP coordinates power optimizations at the network interface cards (NICs) of wireless mesh routers. The proposed PMMUP based algorithm converges fast analytically with a linear rate. Performance evaluations through simulations confirm the efficacy of the proposed dynamic power control.

Keywords: Effective band inference based power control algorithm (EBIA), Power Selection MRMC Unification Protocol (PMMUP), MRMC State unification Variable Prediction (MRSUP), Wireless Mesh Networks (WMNs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
653 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto γ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Catalytic combustion of methane is imperative due to stability of methane at low temperature. Methane (CH4), therefore, remains unconverted in vehicle exhausts thereby causing greenhouse gas GHG emission problem. In this study, heterogeneous catalysts of palladium with bio-char (2 wt% Pd/Bc) and Al2O3 (2wt% Pd/ Al2O3) supports were prepared by incipient wetness impregnation and then subsequently tested for catalytic combustion of CH4. Support-porous heterogeneous catalytic combustion (HCC) material were selected based on factors such as surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. Sustainable and renewable support-material of bio-mass char derived from palm shell waste material was compared with those from the conventional support-porous materials. Kinetic rate of reaction was determined for combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc). Material characterization was done using TGA, SEM, and BET surface area. The performance test was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. The methane porous-HCC conversion was carried out using online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature was 2wt% Pd/Bc>calcined 2wt% Pd/ Al2O3> 2wt% Pd/ Al2O3>calcined 2wt% Pd/Bc. Hence agro waste material can successfully be utilized as an inexpensive catalyst support material for enhanced CH4 catalytic combustion.

Keywords: Catalytic-combustion, Environmental, Support-bio-char material, Sustainable, Renewable material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6038
652 Advanced Geolocation of IP Addresses

Authors: Robert Koch, Mario Golling, Gabi Dreo Rodosek

Abstract:

Tracing and locating the geographical location of users (Geolocation) is used extensively in todays Internet. Whenever we, e.g., request a page from google we are - unless there was a specific configuration made - automatically forwarded to the page with the relevant language and amongst others, dependent on our location identified, specific commercials are presented. Especially within the area of Network Security, Geolocation has a significant impact. Because of the way the Internet works, attacks can be executed from almost everywhere. Therefore, for an attribution, knowledge of the origination of an attack - and thus Geolocation - is mandatory in order to be able to trace back an attacker. In addition, Geolocation can also be used very successfully to increase the security of a network during operation (i.e. before an intrusion actually has taken place). Similar to greylisting in emails, Geolocation allows to (i) correlate attacks detected with new connections and (ii) as a consequence to classify traffic a priori as more suspicious (thus particularly allowing to inspect this traffic in more detail). Although numerous techniques for Geolocation are existing, each strategy is subject to certain restrictions. Following the ideas of Endo et al., this publication tries to overcome these shortcomings with a combined solution of different methods to allow improved and optimized Geolocation. Thus, we present our architecture for improved Geolocation, by designing a new algorithm, which combines several Geolocation techniques to increase the accuracy.

Keywords: IP geolocation, prosecution of computer fraud, attack attribution, target-analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4722
651 Children’s Literature in Primary School: An Opportunity to Develop Soft Skills

Authors: C. Cruz, A. Breda

Abstract:

Emotions are manifestations of everything that happens around us, influencing, consequently, our actions. People experience emotions continuously when socialize with friends, when facing complex situations, and when at school, among many other situations. Although the influence of emotions in the teaching and learning process is nothing new, its study in the academic field has been more popular in recent years, distinguishing between positive (e.g., enjoyment and curiosity) and negative emotions (e.g., boredom and frustration). There is no doubt that emotions play an important role in the students’ learning process since the development of knowledge involves thoughts, actions, and emotions. Nowadays, one of the most significant changes in acquiring knowledge, accessing information, and communicating is the way we do it through technological and digital resources. Faced with an increasingly frequent use of technological or digital means with different purposes, whether in the acquisition of knowledge or in communicating with others, the emotions involved in these processes change naturally. The speed with which the Internet provides information reduces the excitement for searching for the answer, the gratification of discovering something through our own effort, the patience, the capacity for effort, and resilience. Thus, technological and digital devices are bringing changes to the emotional domain. For this reason and others, it is essential to educate children from an early age to understand that it is not possible to have everything with just one click and to deal with negative emotions. Currently, many curriculum guidelines highlight the importance of the development of so-called soft skills, in which the emotional domain is present, in academic contexts. Within the scope of the Portuguese reality, the “Students’ profile by the end of compulsory schooling” and the “Health education reference” also emphasize the importance of emotions in education. There are several resources to stimulate good emotions in articulation with cognitive development. One of the most predictable and not very used resources in the most diverse areas of knowledge after pre-school education is the literature. Due to its characteristics, in the narrative or in the illustrations, literature provides the reader with a journey full of emotions. On the other hand, literature makes it possible to establish bridges between narrative and different areas of knowledge, reconciling the cognitive and emotional domains. This study results from the presentation session of a children's book, entitled “From the Outside to Inside and from the Inside to Outside”, to children attending the 2nd, 3rd, and 4th years of basic education in the Portuguese education system. In this book, rationale and emotion are in constant dialogue, so in this session, based on excerpts from the book dramatized by the authors, some questions were asked to the children in a large group, with an aim to explore their perception regarding certain emotions or events that trigger them. According to the aim of this study, qualitative, descriptive, and interpretative research was carried out based on participant observation and audio records.

Keywords: Emotions, children’s literature, basic education, soft skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 338
650 Edit Distance Algorithm to Increase Storage Efficiency of Javanese Corpora

Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy

Abstract:

Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).

Keywords: edit distance coefficient, Javanese, parallel text alignment, phrase pair combination

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
649 The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions

Authors: S. Pattanapairoj, D. Chetchotsak

Abstract:

This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass" or “Fail". These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method". Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests.

Keywords: Sparse data, Classifications, Committee network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
648 BugCatcher.Net: Detecting Bugs and Proposing Corrective Solutions

Authors: Sheetal Chavan, P. J. Kulkarni, Vivek Shanbhag

Abstract:

Although achieving zero-defect software release is practically impossible, software industries should take maximum care to detect defects/bugs well ahead in time allowing only bare minimums to creep into released version. This is a clear indicator of time playing an important role in the bug detection. In addition to this, software quality is the major factor in software engineering process. Moreover, early detection can be achieved only through static code analysis as opposed to conventional testing. BugCatcher.Net is a static analysis tool, which detects bugs in .NET® languages through MSIL (Microsoft Intermediate Language) inspection. The tool utilizes a Parser based on Finite State Automata to carry out bug detection. After being detected, bugs need to be corrected immediately. BugCatcher.Net facilitates correction, by proposing a corrective solution for reported warnings/bugs to end users with minimum side effects. Moreover, the tool is also capable of analyzing the bug trend of a program under inspection.

Keywords: Dependence, Early solution, Finite State Automata, Grammar, Late solution, Parser State Transition Diagram, StaticProgram Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
647 Humans as Enrichment: Human-Animal Interactions and the Perceived Benefit to the Cheetah (Acinonyx jubatus), Human and Zoological Establishment

Authors: S. J. Higgs, E. Van Eck, K. Heynis, S. H. Broadberry

Abstract:

Engagement with non-human animals is a rapidly-growing field of study within the animal science and social science sectors, with human-interactions occurring in many forms; interactions, encounters and animal-assisted therapy. To our knowledge, there has been a wide array of research published on domestic and livestock human-animal interactions, however, there appear to be fewer publications relating to zoo animals and the effect these interactions have on the animal, human and establishment. The aim of this study was to identify if there were any perceivable benefits from the human-animal interaction for the cheetah, the human and the establishment. Behaviour data were collected before, during and after the interaction on the behaviour of the cheetah and the human participants to highlight any trends with nine interactions conducted. All 35 participants were asked to fill in a questionnaire prior to the interaction and immediately after to ascertain if their perceptions changed following an interaction with the cheetah. An online questionnaire was also distributed for three months to gain an understanding of the perceptions of human-animal interactions from members of the public, gaining 229 responses. Both questionnaires contained qualitative and quantitative questions to allow for specific definitive answers to be analysed, but also expansion on the participants perceived perception of human-animal interactions. In conclusion, it was found that participants’ perceptions of human-animal interactions saw a positive change, with 64% of participants altering their opinion and viewing the interaction as beneficial for the cheetah (reduction in stress assumed behaviours) following participation in a 15-minute interaction. However, it was noted that many participants felt the interaction lacked educational values and therefore this is an area in which zoological establishments can work to further improve upon. The results highlighted many positive benefits for the human, animal and establishment, however, the study does indicate further areas for research in order to promote positive perceptions of human-animal interactions and to further increase the welfare of the animal during these interactions, with recommendations to create and regulate legislation.

Keywords: Acinonyx jubatus, encounters, human-animal interactions, perceptions, zoological establishments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
646 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)

Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos

Abstract:

The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.

Keywords: Rotor noise, acoustic tool, GPU Programming, UAV noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
645 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis

Authors: Carlos Huertas, Reyes Juarez-Ramirez

Abstract:

Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.

Keywords: Feature selection, mass spectrometry, biomarker discovery, cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
644 Maternal Smoking and Risk of Childhood Overweight and Obesity: A Meta-Analysis

Authors: Martina Kanciruk, Jac W. Andrews, Tyrone Donnon

Abstract:

The purpose of this study was to determine the significance of maternal smoking for the development of childhood overweight and/or obesity. Accordingly, a systematic literature review of English-language studies published from 1980 to 2012 using the following data bases: MEDLINE, PsychINFO, Cochrane Database of Systematic Reviews, and Dissertation Abstracts International was conducted. The following terms were used in the search: pregnancy, overweight, obesity, smoking, parents, childhood, risk factors. Eighteen studies of maternal smoking during pregnancy and obesity conducted in Europe, Asia, North America, and South America met the inclusion criteria. A meta-analysis of these studies indicated that maternal smoking during pregnancy is a significant risk factor for overweight and obesity; mothers who smoke during pregnancy are at a greater risk for developing obesity or overweight; the quantity of cigarettes consumed by the mother during pregnancy influenced the odds of offspring overweight and/or obesity. In addition, the results from moderator analyses suggest that part of the heterogeneity discovered between the studies can be explained by the region of world that the study occurred in and the age of the child at the time of weight assessment.

Keywords: Childhood obesity, overweight, smoking, parents, risk factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
643 Partner Selection in International Strategic Alliances: The Case of the Information Industry

Authors: H. Nakamura

Abstract:

This study analyzes international strategic alliances in the information industry. The purpose of this study is to clarify the strategic intention of an international alliance. Secondly, it investigates the influence of differences in the target markets of partner companies on alliances. Using an international strategy theory approach to analyze the global strategies of global companies, the study compares a database business and an electronic publishing business. In particular, these cases emphasized factors attributable to "people" and "learning", reliability and communication between organizations and the evolution of the IT infrastructure. The theory evolved in this study validates the effectiveness of these strategies.

Keywords: Database business, electronic library, international strategic alliances, partner selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
642 Corporate Cautionary Statement: A Genre of Professional Communication

Authors: Chie Urawa

Abstract:

Cautionary statements or disclaimers in corporate annual reports need to be carefully designed because clear cautionary statements may protect a company in the case of legal disputes and may undermine positive impressions. This study compares the language of cautionary statements using two corpora, Sony’s cautionary statement corpus (S-corpus) and Panasonic’s cautionary statement corpus (P-corpus), illustrating the differences and similarities in relation to the use of meaningful cautionary statements and critically analyzing why practitioners use the way. The findings describe the distinct differences between the two companies in the presentation of the risk factors and the way how they make the statements. The word ability is used more for legal protection in S-corpus whereas the word possibility is used more to convey a better impression in P-corpus. The main similarities are identified in the use of lexical words and pronouns, and almost the same wordings for eight years. The findings show how they make the statements unique to the company in the presentation of risk factors, and the characteristics of specific genre of professional communication. Important implications of this study are that more comprehensive approach can be applied in other contexts, and be used by companies to reflect upon their cautionary statements.

Keywords: Cautionary statements, corporate annual reports, corpus, risk factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861
641 Human Capital and the Innovation System – Case Study of the Mpumalanga Province, South Africa

Authors: Maria E. Eggink

Abstract:

Innovation plays an important role in economic growth and development. Evolutionary economics has entrepreneurs at the centre of the innovation system, but includes all other participants as contributors to the performance of the innovation system. Education and training institutions, one of the participants in the innovation system, contributes in different ways to human capital. The gap in literature on the competence building as part of human capital in the analysis of innovation systems is addressed in this paper. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.

Keywords: Education institutions, human capital, innovation systems, Mpumalanga Province.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032