

Abstract—Developing a reliable and sustainable software

products is today a big challenge among up–coming software
developers in Nigeria. The inability to develop a comprehensive
problem statement needed to execute proper requirements
engineering process is missing. The need to describe the ‘what’ of a
system in one document, written in a natural language is a major step
in the overall process of Software Engineering. Requirements
Engineering is a process use to discover, analyze and validate system
requirements. This process is needed in reducing software errors at
the early stage of the development of software. The importance of
each of the steps in Requirements Engineering is clearly explained in
the context of using detailed problem statement from client/customer
to get an overview of an existing system along with expectations
from the new system. This paper elicits inadequate Requirements
Engineering principle as the major cause of poor software
development in developing nations using a case study of final year
computer science students of a tertiary-education institution in
Nigeria.

Keywords—Client/Customer, Problem Statement, Requirements
Engineering, Software Developers.

I. INTRODUCTION

EQUIREMENTS Engineering is an all encompassing
process of producing a comprehensive document in a

natural language (not any programming language) that
contains a description of only what a system is expected to do.
The end product of sound requirements engineering is
Software Requirement Specification (SRS). This is expected
to be the working document for the design and implementation
of the system. However, Problem Statement is the ingredient
for the process of requirements engineering to produce the
needed guiding document for a successful software product.
Requirements engineering involves a systematic investigation
into an existing system or process, and studying of materials
and sources in order to establish facts and reach new
conclusions. It is normally borne out of a problem, and hence
the input to it is the problem statement. A ‘Problem Statement’
is a description of a difficulty in a system or lack of needed
resources that need to be solved or at least researched into, and
see whether a solution can be found. It can also describe the

M. K. Adu is a Senior Lecturer with the Computer Science Department,

the Federal Polytechnic, Ado Ekiti, Nigeria (phone: +2348066714060; e-mail:
memokadu@yahoo.co.uk).

B. K. Alese is an Associate Professor with the Computer Science
Department and Acting Dean, Students’ Affairs, the Federal university of
Technology, Akure, Nigeria (phone: +2348034540465; e-mail:
bkalese@futa.edu.ng).

gap between the real and the desired or contradiction between
principle and practice. According to [2], the importance of
complete, consistent and well documented software
requirements is difficult to overstate. The process is very
important for up-coming software developers to understand in
great detail. There is no greater risk to a software project than
incomplete, misunderstood, or under-emphasized software
requirements. Software requirements and the efforts
undertaken to gather them are very germane to successfully
understanding the users’ problems and addressing these
problems in a way satisfactory to them. Without requirements,
there is no frame of reference and no benchmark to measure
success. The process is illustrated in Fig. 1.

Problem
Statement

Software
Requirement
Specification

(SRS)

Requirement
Engineering

Fig. 1 Software Requirements Specifications (SRS)

The ultimate goal of writing a problem statement is to

transform a generalized problem that bothers the users into a
targeted, well-defined statement that can be resolved through a
process of requirements engineering. It clearly identifies the
purpose of the project. In most developing nations especially
Nigeria, up-coming software developers have not been able to
capture the local markets in terms of quality, basic and needed
software product deliverables. One of the most important
aspects of software design is the quality of the finished
product. The finished product quality is measured by the users
and it is measured by how well it satisfies their needs. The
users’ needs will be exposed via requirements and input that
they provide to the development team which is the problem
statement. These requirements and the problem statement
should be provided throughout the design and development of
the software system. Without the path provided by this
information, the development team will quickly run off track
and provide a product that does not satisfy the users’ problems
and needs. As [7] stated, a critical consideration of

Inadequate Requirements Engineering Process: A Key
Factor for Poor Software Development in Developing

Nations: A Case Study
K. Adu Michael, K. Alese Boniface

R

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:9, 2014

1578International Scholarly and Scientific Research & Innovation 8(9) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

9,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
92

44
.p

df

information systems is that they satisfy users’ needs. The
experiences of students who are up-coming software
developers in the field during their final year projects and
reports gathered from some of the case study organizations are
presented in Tables I and II respectively. This is to harmonize
their views in order to bring out the exact cause of the
inadequate requirements engineering process and
consequently be able to propose holistic solution to the

problem. Few of the organizations affirmed that home grown
software products were usable, but they believed that they
were not so reliable and maintainable. They opined that they
were delivered without necessary documentations. They also
established the fact that up-coming software developers were
in a hurry to code rather than taking enough time to interact
with the users and interpret their intentions as a problem
statement.

TABLE I

SUMMARY OF STUDENTS’ ACTIVITIES/EXPERIENCES DURING SOFTWARE DEVELOPMENT PROCESS WITH SOME CASE STUDY ORGANISATIONS

Reg No Project topic Case study
No of
visit

successful
interview
conducted

No. of
questionnaires
administered

Responses
Able to get enough facts

for software
development?

CS/2-206
Development of

Inventory System.
Memolinks Computer System,

Akure, Nigeria
7 2 50 15

NO

NO
CS/2-017

Development of
Course Allocation

System

Federal Polytechnic Ado-
Ekiti, CEC.

10 1 - -

CS/2-062
Development of Drug
Administration System

Eben Pharmaceutical, Akure,
Nigeria.

6 2 - - NO

TABLE II

SOME ORGANISATION’S ASSESSMENTS OF DEVELOPED SOFTWARE PRODUCTS BY UP-COMING DEVELOPERS

Assessment Factors Memolinks Associates Eben Pharmaceutical Company Limited CEC, Federal Polytechnic, Ado-Ekiti, Nigeria.

Usability Fail Pass Pass

Reliability Fail Pass Fail

Maintainability Pass Fail Fail

Availability of Relevant documentations Fail Fail Fail

II. INDENTIFIED CAUSES OF INADEQUATE ENGINEERING

PROCESS

There is no real step-by-step guide that leads to failure of
software development project among these up-coming
developers; however, there are many factors that contribute.
They include and are not limited to the following:

A. Lack of End User Involvement

Users can be very busy people with regular day jobs. They
are not always given sufficient time to devote to the software
development team. Without involvement from the end users
(or their representatives), requirements specification and
product quality are likely to suffer and the user community
may feel less committed to the end product. If the users are not
sufficiently committed or if they cannot clearly articulate what
they want, then there will be limited ways to assure the quality
of deliverables.

B. Poor Planning and Estimation Processes

A project that is poorly planned and estimated is risky,
difficult, and can lead to system failure. Without a decent plan
and estimate, resources cannot be managed and organized,
risks cannot be mitigated, dates and budgets cannot be
forecasted, effective reporting cannot take place, and the
measures of success will be flawed from the outset.

C. Failure to Effectively Manage Changes to Scope

Incorporating necessary scope changes into a system is
often a prerequisite for delivering a fit-for-purpose product. If
scope is not controlled, changes will creep in unnoticed and
quality may be adversely affected.

D. Inadequate Man Power Resources

A system can fall apart quickly if the developers are not
sufficiently skilled.

E. Too Long or Unrealistic Time Scales

When system development becomes too long, the project
can lose momentum or one can end up delivering products and
services that are no longer of any benefit to the customer and
organization. On the other hand, senior managers may set
unrealistically short project time scales in an attempt to speed
up delivery without considering the volume of work that needs
to be done. These anomalies can either lead to the system
being delivered late, or a significant amount of features being
cut out.

F. Failure to Adequately Identify and Document
Requirements

Some software development processes have high-level,
vague, or poorly documented requirements. If design is kicked
off too early without the core requirements having been
adequately identified, documented, and agreed on by the users,
the software so developed has every chance of producing the
wrong product and consuming more time and money during
testing and rework phases than planned.

III. SOLUTION THROUGH ADEQUATE REQUIREMENTS

ENGINEERING PROCESS

Requirements are the “what” of a system. A requirement is
a feature of the system (being designed) or a description of
something the system is capable of doing in order to fulfill the
system's purpose [6]. It is further defined as a basic need of a

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:9, 2014

1579International Scholarly and Scientific Research & Innovation 8(9) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

9,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
92

44
.p

df

system to perform or facilitate a user's particular work or task.
Both natural need and diligent effort cause software
requirements to surface in a software project. Different types
of requirements exist as well. A functional requirement is one
that is specific to a particular software need and that can be
addressed directly via code. Functional requirements define
acceptable states that a system can be in [6]. Non-functional
requirements define issues of performance, security, and
hardware considerations.

Requirements Engineering is a process of producing one
comprehensive document in a natural language and contains a
description of what the system will do. It does not specify how
it will be done. The input to requirements engineering is the
problem statement prepared by the user of the system. If there
is already a computer based system in existence, then problem
statement will give an overview of the existing system along
with expectations from the new system. Therefore, for an
effective system to be developed, the software developer must
religiously follow the prescribed steps in requirements
engineering as illustrated in Fig. 2.

Problem
Statement

SRS

Requirements
Engineering

Requirements Elicitation

Requirements Analysis

Requirements Documentation

Requirements Review

Software Requirements Specifications

Fig. 2 Steps of Requirements Engineering

A. Requirements Elicitation

This is the process of gathering the requirements from the
users or the customers in order to have first hand information
on the proposed system [1]. It is always good that the
developer does not assume anything but get the details from
the end users. Every program solves a problem. A tax return
program solves the problem of organizing and filing taxes. A
word processor solves the problem of writing, editing,
formatting, and printing text. Even a video game solves the
problem of keeping people amused. A program is only as
useful as the problem it solves. Most programs simplify and
automate an existing problem, such as a money management
program that simplifies organizing and paying bills instead of
using paper and an adding machine [5]. The goal of any
program is to make a specific task faster, easier, and more
convenient. The only way to reach that goal is to identify what
task your program is trying to solve in the first place. The

summary of all these is that it is about identifying the
problems.

B. Requirement Analysis

The requirements are analyzed in order to identify
inconsistencies, defects and omissions [4]. If a software
product is for personal use, one can make a program look and
act any way he wants, just as long as he knows how to make it
work. But if such application is planned to be given or sold to
others, there is need to know who is going to use it. Knowing
your program's typical user is critical. If users do not like the
program for any reason, they are unlikely to use it. Whether
the program works or not is often irrelevant. By designing
your program with the user in mind, then there is hope that
customer will buy a copy. Even if you write a program that
works perfectly, users may ignore it because they don't like
the way it looks, they don't understand how to give it
commands, it doesn't work the same way as the old program
they currently use, the colours do not look right to them, and
so on. The goal is to make your program meet your users'
needs, no matter how bizarre or illogical they may seem. After
you identify the user, you need to know what type of computer
the user intends to run the program on. The type of computer
that your program runs on can determine which computer
languages you can use, the hardware that your program can
expect to find, and even the maximum size of your program
[3]. When designing any program, consider your programming
skill as well.

C. Requirements Documentation

This is the end product of requirements elicitation and
analysis. The documentation is very important as it will be the
foundation for the design of the software. The documentation
is known as Software Requirements Specification (SRS).

D. Requirements Review

The review process is carried out to improve the quality of
SRS. It may also be called as requirements verification.

IV. SOFTWARE RE-ENGINEERING

It is a common practice among up-coming software
developers to simply adapt a software system of an
organization A for another organization B simply because of
perceived similarities in operations. As an example, in
educational institutions where a developer has successfully
developed a software package for an operation, he simply
changes the headings and adopts same for another institution
because same operation is involved, say Students’ Results
Processing. This is wrong. There is need for adequate re-
engineering to suite the specific and peculiar needs of the new
organization, even if there is need for any adaptation of some
similar feature. Software Re-engineering is concerned with
taking existing legacy system and re-implementing them to
make them suitable and maintainable either for present or new
users. This is illustrated in Fig. 3.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:9, 2014

1580International Scholarly and Scientific Research & Innovation 8(9) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

9,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
92

44
.p

df

Fig. 3 The Difference between the processes of new software
development and software Re-engineering

V. SOFTWARE DESIGN

The next stage which is Design phase is made simple
through adequate requirements engineering process. Design is
a highly significant phase in the software development process
where the designer plans “how” a software system should be
produced in order to make it functional, reliable and
reasonably easy to understand, modify and maintain. A
Software Requirements Specifications (SRS) documents tells
us ‘what’ a system does, and becomes input to the design
process, which tells us ‘how’ the software system works.
Designing software system means determining how
requirements are realized and the result is the Software Design
Document (SDD). Therefore, the purpose of design phase is to
produce a solution to a problem given in SRS document.

Conceptual and Technical Designs

The process of software design involves the transformation
of ideas into detailed implementation description, with the
goal of satisfying the software requirements. The designer
must satisfy both users and the system builders (the
programmer). The user understands what the system is to do,
while the system builder on the other hand understands how
the system is to work [1]. For this reasons, the design must be
a two part iterative process. The first is the Conceptual design
that tells the customer/user exactly what the system will do
and the Technical design that allows system builder (the
programmer) to understand the actual hardware and software
needed and the logical steps to solve the customer/user
problem. This is illustrated in Fig. 4.

Fig. 4 Dual-process Software Design

VI. CONCLUSION

It is alarming that significant numbers of software
development projects by up-coming programmers still fail to
deliver benefits on time and to expectations in developing
nations like Nigeria, in a world that is being driven by
information technology of which software is a major
component. Many have attributed this to quality of teaching
process in information technology. However, beyond this is
inability of the software developers to fully integrate the
process of requirements engineering in their efforts at
developing a reliable software products. Students should be
good enough to develop a sellable software package after
graduation in higher educational institutions. This can only be
achieved by assisting them to get the needed inputs for their
research works. Also it should be impressed on the various
organizations that the young software developers are out to
solve problems that could add value to the organizational
operations of the users/customers. Towards this objective, this
paper has discussed the issues that many studies confirm as
significant causes of failure in software development projects
by attempting to draw inference from some selected students’
projects from the department of Computer Science, Federal
Polytechnic, Ado-Ekiti, Ekiti State, Nigeria. The overall
process of requirements engineering is explained and the
importance is clearly elucidated for clear understanding of its
application for developing reliable and marketable software
products. The paper has brought to fore the major factors
responsible for poor software development among up-coming
software developers in developing nations as incomplete
requirements specifications as a result of poor involvement of
the users.

ACKNOWLEDGMENT

Our thanks go to the department of computer science, the
Federal Polytechnic, Ado-Ekiti, Nigeria, the students of the
department and the case-study organizations of the students’
projects for their co-operations.

REFERENCES
[1] K.K. Aggrwal, S. Yogesh, Software Engineering. 3rd ed. New Delhi:

New Age International Publishers Limited, 2008.
[2] M. Early, Relating software requirements to software design. SIGSOFT

Software Engineering Notes, 11(3), 37-39. 1986
[3] J.A. Hoffer, J. F. George, & J.S. Valacich, Modern systems analysis and

design, 2005.
[4] J. Karlsson & K. Ryan, Supporting the Selection of Software

Requirements. Proceedings of the 8th International Workshop on
Software Specification and Design, 146, 1996

[5] D. Martin, J. Rooksby & M. Rouncefield, ‘Users as contextual features
of software product development and testing’. Proceedings of the 2007
international ACM conference on Conference on supporting group work,
301-310, 2007.

[6] S.L. Pfleeger, Software Engineering. Theory and Practice. Prentice Hall,
2001.

[7] J. Verner, K. Cox & S.J. Bleistein, ‘Predicting Good Requirements for
in-house Development Projects.’ Proceedings of the 2006 ACM/IEEE
International Symposium on Empirical Software Engineering, 154-163,
2006.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:9, 2014

1581International Scholarly and Scientific Research & Innovation 8(9) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

9,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
92

44
.p

df

