Search results for: Wearable Technology.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2534

Search results for: Wearable Technology.

104 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
103 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations

Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta

Abstract:

The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).

Keywords: Absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
102 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth

Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey

Abstract:

Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with  nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.

Keywords: Nanoparticles, seed germination, seed soaking, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
101 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR power plants commercially generate steam directly and indirectly in order to produce electricity with high technical efficiency and lower its costs. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the DSG of the LFR. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: Concentrated Solar Power, Levelized cost of electricity, Linear Fresnel reflectors, Steam generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208
100 Phelipanche ramosa (L. - Pomel) Control in Field Tomato Crop

Authors: Disciglio G., Lops F., Carlucci A., Gatta G., Tarantino A., Frabboni L., Carriero F., Cibelli F., Raimondo M. L., Tarantino E.

Abstract:

The tomato is a very important crop, whose cultivation in the Mediterranean basin is severely affected by the phytoparasitic weed Phelipanche ramosa. The semiarid regions of the world are considered the main areas where this parasitic weed is established causing heavy infestation as it is able to produce high numbers of seeds (up to 500,000 per plant), which remain viable for extended period (more than 20 years). In this paper the results obtained from eleven treatments in order to control this parasitic weed including chemical, agronomic, biological and biotechnological methods compared with the untreated test under two plowing depths (30 and 50 cm) are reported. The split-plot design with 3 replicates was adopted. In 2014 a trial was performed in Foggia province (southern Italy) on processing tomato (cv Docet) grown in the field infested by Phelipanche ramosa. Tomato seedlings were transplant on May 5, on a clay-loam soil. During the growing cycle of the tomato crop, at 56-78 and 92 days after transplantation, the number of parasitic shoots emerged in each plot was detected. At tomato harvesting, on August 18, the major quantity-quality yield parameters were determined (marketable yield, mean weight, dry matter, pH, soluble solids and color of fruits). All data were subjected to analysis of variance (ANOVA) and the means were compared by Tukey's test. Each treatment studied did not provide complete control against Phelipanche ramosa. However, among the different methods tested, some of them which Fusarium, gliphosate, radicon biostimulant and Red Setter tomato cv (improved genotypes obtained by Tilling technology) under deeper plowing (50 cm depth) proved to mitigate the virulence of the Phelipanche ramose attacks. It is assumed that these effects can be improved combining some of these treatments each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.

Keywords: Control methods, Phelipanche ramosa, tomato crop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
99 Exploring the Perspective of Service Quality in mHealth Services during the COVID-19 Pandemic

Authors: Wan-I Lee, Nelio Mendoza Figueredo

Abstract:

The impact of COVID-19 has a significant effect on all sectors of society globally. Health information technology (HIT) has become an effective health strategy in this age of distancing. In this regard, Mobile Health (mHealth) plays a critical role in managing patient and provider workflows during the COVID-19 pandemic. Therefore, the users' perception of service quality about mHealth services plays a significant role in shaping confidence and subsequent behaviors regarding the mHealth users' intention of use. This study's objective was to explore levels of user attributes analyzed by a qualitative method of how health practitioners and patients are satisfied or dissatisfied with using mHealth services; and analyzed the users' intention in the context of Taiwan during the COVID-19 pandemic. This research explores the experienced usability of a mHealth services during the Covid-19 pandemic. This study uses qualitative methods that include in-depth and semi-structured interviews that investigate participants' perceptions and experiences and the meanings they attribute to them. The five cases consisted of health practitioners, clinic staff, and patients' experiences using mHealth services. This study encourages participants to discuss issues related to the research question by asking open-ended questions, usually in one-to-one interviews. The findings show the positive and negative attributes of mHealth service quality. Hence, the significant importance of patients' and health practitioners' issues on several dimensions of perceived service quality is system quality, information quality, and interaction quality. A concept map for perceptions regards to emergency uses' intention of mHealth services process is depicted. The findings revealed that users pay more attention to "Medical care", "ease of use" and "utilitarian benefits" and have less importance for "Admissions and Convenience" and "Social influence". To improve mHealth services, the mHealth providers and health practitioners should better manage users' experiences to enhance mHealth services. This research contributes to the understanding of service quality issues in mHealth services during the COVID-19 pandemic.

Keywords: COVID-19, mobile health, mHealth, service quality, use intention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
98 Corporate Information System Educational Center

Authors: Alquliyev R.M., Kazimov T.H., Mahmudova Sh.C., Mahmudova R.Sh.

Abstract:

The given work is devoted to the description of Information Technologies NAS of Azerbaijan created and successfully maintained in Institute. On the basis of the decision of board of the Supreme Certifying commission at the President of the Azerbaijan Republic and Presidium of National Academy of Sciences of the Azerbaijan Republic, the organization of training courses on Computer Sciences for all post-graduate students and dissertators of the republic, taking of examinations of candidate minima, it was on-line entrusted to Institute of Information Technologies of the National Academy of Sciences of Azerbaijan. Therefore, teaching the computer sciences to post-graduate students and dissertators a scientific - methodological manual on effective application of new information technologies for research works by post-graduate students and dissertators and taking of candidate minima is carried out in the Educational Center. Information and communication technologies offer new opportunities and prospects of their application for teaching and training. The new level of literacy demands creation of essentially new technology of obtaining of scientific knowledge. Methods of training and development, social and professional requirements, globalization of the communicative economic and political projects connected with construction of a new society, depends on a level of application of information and communication technologies in the educational process. Computer technologies develop ideas of programmed training, open completely new, not investigated technological ways of training connected to unique opportunities of modern computers and telecommunications. Computer technologies of training are processes of preparation and transfer of the information to the trainee by means of computer. Scientific and technical progress as well as global spread of the technologies created in the most developed countries of the world is the main proof of the leading role of education in XXI century. Information society needs individuals having modern knowledge. In practice, all technologies, using special technical information means (computer, audio, video) are called information technologies of education.

Keywords: Educational Center, post-graduate, database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
97 Ethically Integrating Robots in Elder Care

Authors: Suresh Lokiah, Samarth Suresh, Yashaswini Vismaya, Sudha Jamthe

Abstract:

The emerging trend of integrating robots into elderly care, particularly for assisting patients with dementia, holds the potential to greatly transform the sector. Assisted living facilities, which house a significant number of elderly individuals and dementia patients, constantly strive to engage their residents in stimulating activities. However, due to staffing shortages, they often rely on volunteers to introduce new activities. Despite the availability of social interaction, the residents are in desperate need of additional support. Robots designed for elder care are categorized based on their design and functionality. These categories include Companion Robots, Telepresence Robots, Health Monitoring Robots, and Rehab Robots. However, the integration of such robots raises significant ethical concerns, notably regarding privacy, autonomy, and the risk of dehumanization. Privacy issues arise when robots need to continually monitor patient activities. There is also a risk of patients becoming overly dependent on these robots, potentially undermining patients’ autonomy. Furthermore, the replacement of human touch with robotic interaction can lead to the dehumanization of care. This positional paper delves into the ethical considerations of incorporating robotic assistance in eldercare. It proposes a series of guidelines and strategies to ensure the ethical deployment of these robots. These guidelines suggest involving patients in the design and development process of robots and emphasize the critical need for human oversight to respect the dignity and rights of elderly and dementia patients. The paper also recommends implementing robust privacy measures, including secure data transmission and data anonymization. In conclusion, this paper offers a thorough examination of the ethical implications of using robotic assistance in elder care. It provides a strategic roadmap to ensure this technology is utilized ethically, thereby maximizing its potential benefits and minimizing any potential harm.

Keywords: Robots for eldercare, ethics, human-robot interaction, assisted living.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73
96 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain

Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper

Abstract:

Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.

Keywords: Additive manufacturing, lean production, reproducibility, work safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861
95 Effect of Good Agriculture Management Practices and Constraints on Grape Farming: A Case Study in Mirbachakot, Kalakan and Shakardara Districts Kabul, Afghanistan

Authors: Mohammad Mirwais Yusufi

Abstract:

Skillful management is one of the most important success factors for today’s farms. When a farm is well managed, it can generate funds for its sustainability. Grape is one of the most diffused fruits in the world and one of the most important cash crops with high potential of production in Afghanistan as well. While there are several organizations intervening for improvement of this cash crop, the quality and quantity are still not satisfactory for producers and external markets. The situation has not changed over the years. Therefore, a survey was conducted in 2017 with 60 grape growers, supported by questionnaires in Mirbachakot, Kalakan and Shakardara districts of Kabul province. The purpose was to get an understanding of the current socio-demographic characteristics of farmers, management methods, constraints, farm size, yield and contribution of grape farming to household income. Findings indicate that grape farming was predominant 83.3% male, 16.6% female and small-scale farmers were the main grape producers, 60% < 1 ha of land under grape production. Likewise, 50% had more than > 10 years and 33.3% between 1-5 years’ experience in grape farming. The high level of illiteracy and diseases had significant digit effect on growth, yield and quality of grapes. The results showed that vineyard management operations to protect grapes from mechanical damage are very poor or completely absent. Comparing developed countries, table grape is one of the fruits with the highest input of technology, while in developing countries the cost of labor is low but the purchase of the equipment is very high due to financial situation. Hence the low quality and quantity of grape are influenced by poor management methods, such as non-availability of experts and lack of technical guidance in the study site. Thereby, the study suggested that improved agricultural extension services and managerial skills could contribute to addressing the problems.

Keywords: Efficient resources use, management skills, constraints factors, Kabul.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
94 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving

Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries

Abstract:

Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.

Keywords: Air jet weaving, aerodynamic simulation, energy efficiency, experimental measurements, power costs, weft insertion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
93 Enhancing Learning for Research Higher Degree Students

Authors: Jenny Hall, Alison Jaquet

Abstract:

Universities’ push toward the production of high quality research is not limited to academic staff and experienced researchers. In this environment of research rich agendas, Higher Degree Research (HDR) students are increasingly expected to engage in the publishing of good quality papers in high impact journals. IFN001: Advanced Information Research Skills (AIRS) is a credit bearing mandatory coursework requirement for Queensland University of Technology (QUT) doctorates. Since its inception in 1989, this unique blended learning program has provided the foundations for new researchers to produce original and innovative research. AIRS was redeveloped in 2012, and has now been evaluated with reference to the university’s strategic research priorities. Our research is the first comprehensive evaluation of the program from the learner perspective. We measured whether the program develops essential transferrable skills and graduate capabilities to ensure best practice in the areas of publishing and data management. In particular, we explored whether AIRS prepares students to be agile researchers with the skills to adapt to different research contexts both within and outside academia. The target group for our study consisted of HDR students and supervisors at QUT. Both quantitative and qualitative research methods were used for data collection. Gathering data was by survey and focus groups with qualitative responses analyzed using NVivo. The results of the survey show that 82% of students surveyed believe that AIRS assisted their research process and helped them learn skills they need as a researcher. The 18% of respondents who expressed reservation about the benefits of AIRS were also examined to determine the key areas of concern. These included trends related to the timing of the program early in the candidature and a belief among some students that their previous research experience was sufficient for postgraduate study. New insights have been gained into how to better support HDR learners in partnership with supervisors and how to enhance learning experiences of specific cohorts, including international students and mature learners.

Keywords: Data management, enhancing learning experience, publishing, research higher degree students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
92 Production of Apricot Vinegar Using an Isolated Acetobacter Strain from Iranian Apricot

Authors: Keivan Beheshti Maal, Rasoul Shafiei, Noushin Kabiri

Abstract:

Vinegar or sour wine is a product of alcoholic and subsequent acetous fermentation of sugary precursors derived from several fruits or starchy substrates. This delicious food additive and supplement contains not less than 4 grams of acetic acid in 100 cubic centimeters at 20°C. Among the large number of bacteria that are able to produce acetic acid, only few genera are used in vinegar industry most significant of which are Acetobacter and Gluconobacter. In this research we isolated and identified an Acetobacter strain from Iranian apricot, a very delicious and sensitive summer fruit to decay, we gathered from fruit's stores in Isfahan, Iran. The main culture media we used were Carr, GYC, Frateur and an industrial medium for vinegar production. We isolated this strain using a novel miniature fermentor we made at Pars Yeema Biotechnologists Co., Isfahan Science and Technology Town (ISTT), Isfahan, Iran. The microscopic examinations of isolated strain from Iranian apricot showed gram negative rods to cocobacilli. Their catalase reaction was positive and oxidase reaction was negative and could ferment ethanol to acetic acid. Also it showed an acceptable growth in 5%, 7% and 9% ethanol concentrations at 30°C using modified Carr media after 24, 48 and 96 hours incubation respectively. According to its tolerance against high concentrations of ethanol after four days incubation and its high acetic acid production, 8.53%, after 144 hours, this strain could be considered as a suitable industrial strain for a production of a new type of vinegar, apricot vinegar, with a new and delicious taste. In conclusion this is the first report of isolation and identification of an Acetobacter strain from Iranian apricot with a very good tolerance against high ethanol concentrations as well as high acetic acid productivity in an acceptable incubation period of time industrially. This strain could be used in vinegar industry to convert apricot spoilage to a beneficiary product and mentioned characteristics have made it as an amenable strain in food and agricultural biotechnology.

Keywords: Acetic Acid Bacteria, Acetobacter, Fermentation, Food and Agricultural Biotechnology, Iranian Apricot, Vinegar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3979
91 Conceptual Design of the TransAtlantic as a Research Platform for the Development of “Green” Aircraft Technologies

Authors: Victor Maldonado

Abstract:

Recent concerns of the growing impact of aviation on climate change has prompted the emergence of a field referred to as Sustainable or “Green” Aviation dedicated to mitigating the harmful impact of aviation related CO2 emissions and noise pollution on the environment. In the current paper, a unique “green” business jet aircraft called the TransAtlantic was designed (using analytical formulation common in conceptual design) in order to show the feasibility for transatlantic passenger air travel with an aircraft weighing less than 10,000 pounds takeoff weight. Such an advance in fuel efficiency will require development and integration of advanced and emerging aerospace technologies. The TransAtlantic design is intended to serve as a research platform for the development of technologies such as active flow control. Recent advances in the field of active flow control and how this technology can be integrated on a sub-scale flight demonstrator are discussed in this paper. Flow control is a technique to modify the behavior of coherent structures in wall-bounded flows (over aerodynamic surfaces such as wings and turbine nozzles) resulting in improved aerodynamic cruise and flight control efficiency. One of the key challenges to application in manned aircraft is development of a robust high-momentum actuator that can penetrate the boundary layer flowing over aerodynamic surfaces. These deficiencies may be overcome in the current development and testing of a novel electromagnetic synthetic jet actuator which replaces piezoelectric materials as the driving diaphragm. One of the overarching goals of the TranAtlantic research platform include fostering national and international collaboration to demonstrate (in numerical and experimental models) reduced CO2/ noise pollution via development and integration of technologies and methodologies in design optimization, fluid dynamics, structures/ composites, propulsion, and controls.

Keywords: Aircraft Design, Sustainable “Green” Aviation, Active Flow Control, Aerodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
90 An Investigation into the Potential of Industrial Low Grade Heat in Membrane Distillation for Freshwater Production

Authors: Yehia Manawi, Ahmad Kayvani Fard

Abstract:

Membrane distillation is an emerging technology which has been used to produce freshwater and purify different types of aqueous mixtures. Qatar is an arid country where almost 100% of its freshwater demand is supplied through the energy-intensive thermal desalination process. The country’s need for water has reached an all-time high which stipulates finding an alternative way to augment freshwater without adding any drastic affect to the environment. The objective of this paper was to investigate the potential of using the industrial low grade waste heat to produce freshwater using membrane distillation. The main part of this work was conducting a heat audit on selected Qatari chemical industries to estimate the amounts of freshwater produced if such industrial waste heat were to be recovered. By the end of this work, the main objective was met and the heat audit conducted on the Qatari chemical industries enabled us to estimate both the amounts of waste heat which can be potentially recovered in addition to the amounts of freshwater which can be produced if such waste heat were to be recovered.

By the end, the heat audit showed that around 605 Mega Watts of waste heat can be recovered from the studied Qatari chemical industries which resulted in a total daily production of 5078.7 cubic meter of freshwater.

This water can be used in a wide variety of applications such as human consumption or industry. The amount of produced freshwater may look small when compared to that produced through thermal desalination plants; however, one must bear in mind that this water comes from waste and can be used to supply water for small cities or remote areas which are not connected to the water grid. The idea of producing freshwater from the two widely-available wastes (thermal rejected brine and waste heat) seems promising as less environmental and economic impacts will be associated with freshwater production which may in the near future augment the conventional way of producing freshwater currently being thermal desalination. This work has shown that low grade waste heat in the chemical industries in Qatar and perhaps the rest of the world can contribute to additional production of freshwater using membrane distillation without significantly adding to the environmental impact.

Keywords: Membrane distillation, desalination, heat recovery, environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
89 Creating Smart and Healthy Cities by Exploring the Potentials of Emerging Technologies and Social Innovation for Urban Efficiency: Lessons from the Innovative City of Boston

Authors: Mohammed Agbali, Claudia Trillo, Yusuf Arayici, Terrence Fernando

Abstract:

The wide-spread adoption of the Smart City concept has introduced a new era of computing paradigm with opportunities for city administrators and stakeholders in various sectors to re-think the concept of urbanization and development of healthy cities. With the world population rapidly becoming urban-centric especially amongst the emerging economies, social innovation will assist greatly in deploying emerging technologies to address the development challenges in core sectors of the future cities. In this context, sustainable health-care delivery and improved quality of life of the people is considered at the heart of the healthy city agenda. This paper examines the Boston innovation landscape from the perspective of smart services and innovation ecosystem for sustainable development, especially in transportation and healthcare. It investigates the policy implementation process of the Healthy City agenda and eHealth economy innovation based on the experience of Massachusetts’s City of Boston initiatives. For this purpose, three emerging areas are emphasized, namely the eHealth concept, the innovation hubs, and the emerging technologies that drive innovation. This was carried out through empirical analysis on results of public sector and industry-wide interviews/survey about Boston’s current initiatives and the enabling environment. The paper highlights few potential research directions for service integration and social innovation for deploying emerging technologies in the healthy city agenda. The study therefore suggests the need to prioritize social innovation as an overarching strategy to build sustainable Smart Cities in order to avoid technology lock-in. Finally, it concludes that the Boston example of innovation economy is unique in view of the existing platforms for innovation and proper understanding of its dynamics, which is imperative in building smart and healthy cities where quality of life of the citizenry can be improved.

Keywords: Smart city, social innovation, eHealth, innovation hubs, emerging technologies, equitable healthcare, healthy cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
88 Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors

Authors: Andres Gonzalez, Adam Boies, Jacob Swanson, David Kittelson

Abstract:

The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO2). The particles measured are particle matter (PM) 2.5 micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation. 3The results of experiments show that natural ventilation is most efficient system to control particles and CO2. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM2.5, compared to the no ventilation. In the same way, CO2 reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM2.5, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations.

Keywords: Cooking, indoor air quality, low-cost sensor, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
87 Automated Transformation of 3D Point Cloud to Building Information Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Petar Penchev

Abstract:

The digital era has revolutionized architectural practices, with Building Information Modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research presents a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data — a collection of data points in space, typically produced by 3D scanners — into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historical preservation.

Keywords: Algorithmic modeling, Building Information Modeling, point cloud, reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76
86 Library Aware Power Conscious Realization of Complementary Boolean Functions

Authors: Padmanabhan Balasubramanian, C. Ardil

Abstract:

In this paper, we consider the problem of logic simplification for a special class of logic functions, namely complementary Boolean functions (CBF), targeting low power implementation using static CMOS logic style. The functions are uniquely characterized by the presence of terms, where for a canonical binary 2-tuple, D(mj) ∪ D(mk) = { } and therefore, we have | D(mj) ∪ D(mk) | = 0 [19]. Similarly, D(Mj) ∪ D(Mk) = { } and hence | D(Mj) ∪ D(Mk) | = 0. Here, 'mk' and 'Mk' represent a minterm and maxterm respectively. We compare the circuits minimized with our proposed method with those corresponding to factored Reed-Muller (f-RM) form, factored Pseudo Kronecker Reed-Muller (f-PKRM) form, and factored Generalized Reed-Muller (f-GRM) form. We have opted for algebraic factorization of the Reed-Muller (RM) form and its different variants, using the factorization rules of [1], as it is simple and requires much less CPU execution time compared to Boolean factorization operations. This technique has enabled us to greatly reduce the literal count as well as the gate count needed for such RM realizations, which are generally prone to consuming more cells and subsequently more power consumption. However, this leads to a drawback in terms of the design-for-test attribute associated with the various RM forms. Though we still preserve the definition of those forms viz. realizing such functionality with only select types of logic gates (AND gate and XOR gate), the structural integrity of the logic levels is not preserved. This would consequently alter the testability properties of such circuits i.e. it may increase/decrease/maintain the same number of test input vectors needed for their exhaustive testability, subsequently affecting their generalized test vector computation. We do not consider the issue of design-for-testability here, but, instead focus on the power consumption of the final logic implementation, after realization with a conventional CMOS process technology (0.35 micron TSMC process). The quality of the resulting circuits evaluated on the basis of an established cost metric viz., power consumption, demonstrate average savings by 26.79% for the samples considered in this work, besides reduction in number of gates and input literals by 39.66% and 12.98% respectively, in comparison with other factored RM forms.

Keywords: Reed-Muller forms, Logic function, Hammingdistance, Algebraic factorization, Low power design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
85 Association of Phosphorus and Magnesium with Fat Indices in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Metabolic syndrome (MetS) is a disease associated with obesity. It is a complicated clinical problem possibly affecting body composition as well as macrominerals. These parameters gain further attention particularly in pediatric population. The aim of this study is to investigate the amount of discrete body composition fractions in groups that differ in the severity of obesity. Also, the possible associations with calcium (Ca), phosphorus (P), magnesium (Mg) will be examined. The study population was divided into four groups. 28, 29, 34 and 34 children were involved in Group 1 (healthy), Group 2 (obese), Group 3 (morbid obese) and Group 4 (MetS), respectively. Institutional Ethical Committee approved the study protocol. Informed consent forms were obtained from the parents of the participants. The classification of obese groups was performed based upon the recommendations of World Health Organization. MetS components were defined. Serum Ca, P, Mg concentrations were measured. Within the scope of body composition, fat mass, fat-free mass, protein mass, mineral mass were determined by body composition monitor using bioelectrical impedance analysis technology. Weight, height, waist circumference, hip circumference, head circumference and neck circumference values were recorded. Body mass index, diagnostic obesity notation model assessment index, fat mass index and fat-free mass index values were calculated. Data were statistically evaluated and interpreted. There was no statistically significant difference among the groups in terms of Ca and P concentrations. Magnesium concentrations differed between Group 1 and Group 4. Strong negative correlations were detected between P as well as Mg and fat mass index as well as diagnostic obesity notation model assessment index in Group 4, which comprised morbid obese children with MetS. This study emphasized unique associations of P and Mg minerals with diagnostic obesity notation model assessment index and fat mass index during the evaluation of morbid obese children with MetS. It was also concluded that diagnostic obesity notation model assessment index and fat mass index were more proper indices in comparison with body mass index and fat-free mass index for the purpose of defining body composition in children.

Keywords: Children, fat mass, fat-free mass, macrominerals, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 480
84 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment

Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane

Abstract:

Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence (AI) is invaluable in identifying crime. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISAs). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The proposed framework development is implemented using the Java Agent Development Framework, Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISAs and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5% of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.

Keywords: Artificial intelligence, computer science, criminal investigation, digital forensics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
83 Dry Binder Mixing of Field Trial Investigation Using Soil Mix Technology: A Case Study on Contaminated Site Soil

Authors: M. Allagoa, A. Al-Tabbaa

Abstract:

The study explores the use of binders and additives, such as Portland cement, pulverized fuel ash, ground granulated blast furnace slag, and MgO, to reduce the concentration and leachability of pollutants in contaminated site soils. The research investigates their effectiveness and associated risks of binders, with a focus on Total Heavy Metals (THM) and Total Petroleum Hydrocarbon (TPH). The goal of this research is to evaluate the performance and effectiveness of binders and additives in remediating soil pollutants. The study aims to assess the suitability of the mixtures for ground improvement purposes, determine the optimal dosage, and investigate the associated risks. The research utilizes physical (unconfined compressive strength) and chemical tests (batch leachability test) to assess the efficacy of the binders and additives. A completely randomized design one-way ANOVA is used to determine the significance within mix binders of THM. The study also employs incremental lifetime cancer risk (ILCR) assessments and other indices to evaluate the associated risks. The study finds that Ground Granulated Blast Furnace Slag (GGBS): MgO is the most effective binder for remediation, particularly when using low dosages of MgO combined with higher dosages of GGBS binders on TPH. The results indicate that binders and additives can encapsulate and immobilize pollutants, thereby reducing their leachability and toxicity. The mean unconfined compressive strength of the soil ranges from 285.0-320.5 kPa, while THM levels with a combination of Ground granulated blast furnace slag and Magnesium oxide, Portland cement and Pulverised fuel ash were less than 10 µg/l. Portland cement was below 1 µg/l. The ILCR ranged from 6.77E-02 - 2.65E-01 and 5.444E-01 - 3.20 E+00, with the highest values observed under extreme conditions. The hazard index (HI), risk allowable daily dose intake (ADI), and risk chronic daily intake (CDI) were all less than 1 for the THM. The study identifies MgO as the best additive for use in soil remediation.

Keywords: Risk daily dose intake, risk chronic daily intake, incremental lifetime cancer risk, ILCR, novel binders, additives binders, hazard index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273
82 Pilot Scale Investigation on the Removal of Pollutants from Secondary Effluent to Meet Botswana Irrigation Standards Using Roughing and Slow Sand Filters

Authors: Moatlhodi Wise Letshwenyo, Lesedi Lebogang

Abstract:

Botswana is an arid country that needs to start reusing wastewater as part of its water security plan. Pilot scale slow sand filtration in combination with roughing filter was investigated for the treatment of effluent from Botswana International University of Science and Technology to meet Botswana irrigation standards. The system was operated at hydraulic loading rates of 0.04 m/hr and 0.12 m/hr. The results show that the system was able to reduce turbidity from 262 Nephelometric Turbidity Units to a range between 18 and 0 Nephelometric Turbidity Units which was below 30 Nephelometric Turbidity Units threshold limit. The overall efficacy ranged between 61% and 100%. Suspended solids, Biochemical Oxygen Demand, and Chemical Oxygen Demand removal efficiency averaged 42.6%, 45.5%, and 77% respectively and all within irrigation standards. Other physio-chemical parameters were within irrigation standards except for bicarbonate ion which averaged 297.7±44 mg L-1 in the influent and 196.22±50 mg L-1 in the effluent which was above the limit of 92 mg L-1, therefore averaging a reduction of 34.1% by the system. Total coliforms, fecal coliforms, and Escherichia coli in the effluent were initially averaging 1.1 log counts, 0.5 log counts, and 1.3 log counts respectively compared to corresponding influent log counts of 3.4, 2.7 and 4.1, respectively. As time passed, it was observed that only roughing filter was able to reach reductions of 97.5%, 86% and 100% respectively for faecal coliforms, Escherichia coli, and total coliforms. These organism numbers were observed to have increased in slow sand filter effluent suggesting multiplication in the tank. Water quality index value of 22.79 for the physio-chemical parameters suggests that the effluent is of excellent quality and can be used for irrigation purposes. However, the water quality index value for the microbial parameters (1820) renders the quality unsuitable for irrigation. It is concluded that slow sand filtration in combination with roughing filter is a viable option for the treatment of secondary effluent for reuse purposes. However, further studies should be conducted especially for the removal of microbial parameters using the system.

Keywords: Irrigation, roughing filter, slow sand filter, turbidity, water quality index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
81 A Traditional Settlement in a Modernized City: Yanbu, Saudi Arabia

Authors: Hisham Mortada

Abstract:

Transition in the urban configuration of Arab cities has never been as radical and visible as it has been since the turn of the last century. The emergence of new cities near historical settlements of Arabia has spawned a series of developments in and around the old city precincts. New developments are based on advanced technology and conform to globally prevalent standards of city planning, superseding the vernacular arrangements based on traditional norms that guided so-called ‘city planning’. Evidence to this fact are the extant Arab buildings present at the urban core of modern cities, which inform us about intricate spatial organization. Organization that subscribed to multiple norms such as, satisfying gender segregation and socialization, economic sustainability, and ensuring security and environmental coherence etc., within settlement compounds. Several participating factors achieved harmony in such an inclusive city—an organization that was challenged and apparently replaced by the new planning order in the face of growing needs of globalized, economy-centric and high-tech models of development. Communities found it difficult to acclimatize with the new western planning models that were implemented at a very large scale throughout the Kingdom, which later experienced spatial re-structuring to suit users’ needs. A closer look the ancient city of Yanbu, now flanked with such new developments, allows us to differentiate and track the beginnings of this unprecedented transition in settlement formations. This paper aims to elaborate the Arabian context offered to both the ‘traditional’ and ‘modern’ planning approaches, in order to understand challenges and solutions offered by both at different times. In the process it will also establish the inconsistencies and conflicts that arose with the shift in planning paradigm, from traditional-'cultural norms’, to modern-'physical planning', in the Arabian context. Thus, by distinguishing the two divergent planning philosophies, their impact of the Arabian morphology, relevance to lifestyle and suitability to the biophysical environment, it concludes with a perspective on sustainability particularly for in case of Yanbu.

Keywords: Yanbu, traditional architecture, Hijaz, coral building, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
80 Tactile Sensory Digit Feedback for Cochlear Implant Electrode Insertion

Authors: Yusuf Bulale, Mark Prince, Geoff Tansley, Peter Brett

Abstract:

Cochlear Implantation (CI) which became a routine procedure for the last decades is an electronic device that provides a sense of sound for patients who are severely and profoundly deaf. The optimal success of this implantation depends on the electrode technology and deep insertion techniques. However, this manual insertion procedure may cause mechanical trauma which can lead to severe destruction of the delicate intracochlear structure. Accordingly, future improvement of the cochlear electrode implant insertion needs reduction of the excessive force application during the cochlear implantation which causes tissue damage and trauma. This study is examined tool-tissue interaction of large prototype scale digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. The digit, distributive tactile sensors embedded with silicon-substrate was inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit have provided tactile information from the digitphantom insertion interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implant surgery and other lumen mapping applications by providing tactile sensory feedback information and thus controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied to other minimally invasive surgery applications as well as diagnosis and path navigation procedures.

Keywords: Cochlear electrode insertion, distributive tactile sensory feedback information, flexible digit, minimally invasive surgery, tool/tissue interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
79 Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer

Authors: G.–A. Constantin, G. Voicu, E.–M. Stefan, P. Tudor, G. Paraschiv, M.–G. Munteanu

Abstract:

In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).

Keywords: Biscuits resistance/texture, penetration depth, penetration velocity, sharp pin penetrometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642
78 Characterization of an Acetobacter Strain Isolated from Iranian Peach that Tolerates High Temperatures and Ethanol Concentrations

Authors: K. Beheshti Maal, R. Shafiee

Abstract:

Vinegar is a precious food additive and complement as well as effective preservative against food spoilage. Recently traditional vinegar production has been improved using various natural substrates and fruits such as grape, palm, cherry, coconut, date, sugarcane, rice and balsam. These neoclassical fermentations resulted in several vinegar types with different tastes, fragrances and nutritional values because of applying various acetic acid bacteria as starters. Acetic acid bacteria include genera Acetobacter, Gluconacetobacter and Gluconobacter according to latest edition of Bergy-s Manual of Systematic Bacteriology that classifies genera on the basis of their 16s RNA differences. Acetobacter spp as the main vinegar starters belong to family Acetobacteraceae that are gram negative obligate aerobes, chemoorganotrophic bacilli that are oxidase negative and oxidize ethanol to acetic acid. In this research we isolated and identified a native Acetobacter strain with high acetic acid productivity and tolerance against high ethanol concentrations from Iranian peach as a summer delicious fruit that is very susceptible to food spoilage and decay. We used selective and specific laboratorial culture media such as Standard GYC, Frateur and Carr medium. Also we used a new industrial culture medium and a miniature fermentor with a new aeration system innovated by Pars Yeema Biotechnologists Co., Isfahan Science and Technology Town (ISTT), Isfahan, Iran. The isolated strain was successfully cultivated in modified Carr media with 2.5% and 5% ethanol simultaneously in high temperatures, 34 - 40º C after 96 hours of incubation period. We showed that the increase of ethanol concentration resulted in rising of strain sensitivity to high temperature. In conclusion we isolated and characterized a new Acetobacter strain from Iranian peach that could be considered as a potential strain for production of a new vinegar type, peach vinegar, with a delicious taste and advantageous nutritional value in food biotechnology and industrial microbiology.

Keywords: Acetobacter, Acetic Acid Bacteria, Vinegar, Peach, Food Biotechnology, Industrial Microbiology, Fermentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
77 Morphological Interaction of Porcine Oocyte and Cumulus Cells Study on in vitro Oocyte Maturation Using Electron Microscopy

Authors: M. Areekijseree, W. Pongsawat, M. Pumipaiboon, C. Thepsithar, S. Sengsai, T. Chuen-Im

Abstract:

Morphological interaction of porcine cumulus-oocyte complexes (pCOCs) was investigated on in vitro condition using electron microscope (SEM and TEM). The totals of 1,923 oocytes were round in shape, surrounded by Zona pellucida with layer of cumulus cells ranging between 59.29-202.14 μm in size. They were classified into intact-, multi-, partial cumulus cell layer oocyte, and completely denuded oocyte, at the percentage composition of 22.80% 32.70%, 18.60%, and 25.90 % respectively. The pCOCs classified as intact- and multi cumulus cell layer oocytes were further culturing at 37°C with 5% CO2, 95% air atmosphere and high humidity for 44 h in M199 with Earle’s salts supplemented with 10% HTFCS, 2.2 mg/mL NaHCO3, 1 M Hepes, 0.25 mM pyruvate, 15 μg/mL porcine follicle-stimulating hormone, 1 μg/mL LH, 1μg/mL estradiol with ethanol, and 50 μg/mL gentamycin sulfate. On electron microscope study, cumulus cells were found to stick their processes to secrete substance from the sac-shape end into Zona pellucida of the oocyte and also communicated with the neighboring cells through their microvilli on the beginning of incubation period. It is believed that the cumulus cells communicate with the oocyte by inserting the microvilli through this gap and embedded in the oocyte cytoplasm before secreting substance, through the sac-shape end of the microvilli, to inhibit primary oocyte development at the prophase I. Morphological changes of the complexes were observed after culturing for 24-44 h. One hundred percentages of the cumulus layers were expanded and cumulus cells were peeling off from the oocyte surface. In addition, the round-shape cumulus cells transformed themselves into either an elongate shape or a columnar shape, and no communication between cumulus neighboring cells. After 44 h of incubation time, diameter of oocytes surrounded by cumulus cells was larger than 0 h incubation. The effect of hormones in culture medium is exerted by their receptors present in porcine oocyte. It is likely that all morphological changes of the complexes after hormone treatment were to allow maturation of the oocyte. This study demonstrated that the association of hormones in M199 could promote porcine follicle activation in 44 h in vitro condition. This culture system should be useful for studying the regulation of early follicular growth and development, especially because these follicles represent a large source of oocytes that could be used in vitro for cell technology.

Keywords: Cumulus cells, electron microscopy (SEM and TEM), in vitro, porcine oocyte.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
76 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
75 Impact of the Non-Energy Sectors Diversification on the Energy Dependency Mitigation: Visualization by the “IntelSymb” Software Application

Authors: Ilaha Rzayeva, Emin Alasgarov, Orkhan Karim-Zada

Abstract:

This study attempts to consider the linkage between management and computer sciences in order to develop the software named “IntelSymb” as a demo application to prove data analysis of non-energy* fields’ diversification, which will positively influence on energy dependency mitigation of countries. Afterward, we analyzed 18 years of economic fields of development (5 sectors) of 13 countries by identifying which patterns mostly prevailed and which can be dominant in the near future. To make our analysis solid and plausible, as a future work, we suggest developing a gateway or interface, which will be connected to all available on-line data bases (WB, UN, OECD, U.S. EIA) for countries’ analysis by fields. Sample data consists of energy (TPES and energy import indicators) and non-energy industries’ (Main Science and Technology Indicator, Internet user index, and Sales and Production indicators) statistics from 13 OECD countries over 18 years (1995-2012). Our results show that the diversification of non-energy industries can have a positive effect on energy sector dependency (energy consumption and import dependence on crude oil) deceleration. These results can provide empirical and practical support for energy and non-energy industries diversification’ policies, such as the promoting of Information and Communication Technologies (ICTs), services and innovative technologies efficiency and management, in other OECD and non-OECD member states with similar energy utilization patterns and policies. Industries, including the ICT sector, generate around 4 percent of total GHG, but this is much higher — around 14 percent — if indirect energy use is included. The ICT sector itself (excluding the broadcasting sector) contributes approximately 2 percent of global GHG emissions, at just under 1 gigatonne of carbon dioxide equivalent (GtCO2eq). Ergo, this can be a good example and lesson for countries which are dependent and independent on energy, and mainly emerging oil-based economies, as well as to motivate non-energy industries diversification in order to be ready to energy crisis and to be able to face any economic crisis as well.

Keywords: Energy policy, energy diversification, “IntelSymb” software, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703