Search results for: hybrid learning (HL)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2737

Search results for: hybrid learning (HL)

337 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
336 A Local Decisional Algorithm Using Agent- Based Management in Constrained Energy Environment

Authors: C. Adam, G. Henri, T. Levent, J-B Mauro, A-L Mayet

Abstract:

Energy Efficiency Management is the heart of a worldwide problem. The capability of a multi-agent system as a technology to manage the micro-grid operation has already been proved. This paper deals with the implementation of a decisional pattern applied to a multi-agent system which provides intelligence to a distributed local energy network considered at local consumer level. Development of multi-agent application involves agent specifications, analysis, design, and realization. Furthermore, it can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach for a decisional pattern involving a multi-agent system to control a distributed local energy network in a decentralized competitive system. The proposed solution is the result of a dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems and converges monotonically very fast to system attracting operation point.

Keywords: Energy Efficiency Management, Distributed Smart- Grid, Multi-Agent System, Decisional Decentralized Competitive System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
335 The Role of Planning and Memory in the Navigational Ability

Authors: Greeshma Sharma, Sushil Chandra, Vijander Singh, Alok Prakash Mittal

Abstract:

Navigational ability requires spatial representation, planning, and memory. It covers three interdependent domains, i.e. cognitive and perceptual factors, neural information processing, and variability in brain microstructure. Many attempts have been made to see the role of spatial representation in the navigational ability, and the individual differences have been identified in the neural substrate. But, there is also a need to address the influence of planning, memory on navigational ability. The present study aims to evaluate relations of aforementioned factors in the navigational ability. Total 30 participants volunteered in the study of a virtual shopping complex and subsequently were classified into good and bad navigators based on their performances. The result showed that planning ability was the most correlated factor for the navigational ability and also the discriminating factor between the good and bad navigators. There was also found the correlations between spatial memory recall and navigational ability. However, non-verbal episodic memory and spatial memory recall were also found to be correlated with the learning variable. This study attempts to identify differences between people with more and less navigational ability on the basis of planning and memory.

Keywords: Memory, planning navigational ability, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
334 Inter-Organizational Knowledge Transfer Through Malaysia E-government IT Outsourcing: A Theoretical Review

Authors: Nor Aziati Abdul Hamid, Juhana Salim

Abstract:

The main objective of this paper is to contribute the existing knowledge transfer and IT Outsourcing literature specifically in the context of Malaysia by reviewing the current practices of e-government IT outsourcing in Malaysia including the issues and challenges faced by the public agencies in transferring the knowledge during the engagement. This paper discusses various factors and different theoretical model of knowledge transfer starting from the traditional model to the recent model suggested by the scholars. The present paper attempts to align organizational knowledge from the knowledge-based view (KBV) and organizational learning (OL) lens. This review could help shape the direction of both future theoretical and empirical studies on inter-firm knowledge transfer specifically on how KBV and OL perspectives could play significant role in explaining the complex relationships between the client and vendor in inter-firm knowledge transfer and the role of organizational management information system and Transactive Memory System (TMS) to facilitate the organizational knowledge transferring process. Conclusion is drawn and further research is suggested.

Keywords: E-government, IT Outsourcing, Knowledge Management, Knowledge Transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
333 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: Time series, fluctuation in statistical characteristics, optimal learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
332 A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm

Authors: Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet Kaur, Gurvinder Singh

Abstract:

Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.

Keywords: Genetic Algorithm, Fault Proneness, Software Faultand Software Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
331 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: Autonomous surveillance, Bayesian reasoning, decision-support, interventions, patterns-of-life, predictive analytics, predictive insights.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
330 Using Project MIND - Math Is Not Difficult Strategies to Help Children with Autism Improve Mathematics Skills

Authors: Hui Fang Huang Su, Leanne Lai, Pei-Fen Li, Mei-Hwei Ho, Yu-Wen Chiu

Abstract:

This study aimed to provide a practical, systematic, and comprehensive intervention for children with Autism Spectrum Disorder (ASD). A pilot study of quasi-experimental pre-post intervention with control group design was conducted to evaluate if the mathematical intervention (Project MIND - Math Is Not Difficult) increases the math comprehension of children with ASD Children with ASD in the primary grades (K-1, 2) participated in math interventions to enhance their math comprehension and cognitive ability. The Bracken basic concept scale was used to evaluate subjects’ language skills, cognitive development, and school readiness. The study found that our systemic interventions of Project MIND significantly improved the mathematical and cognitive abilities in children with autism. The results of this study may lead to a major change in effective and adequate health care services for children with ASD and their families. All statistical analyses were performed with the IBM SPSS Statistics Version 25 for Windows. The significant level was set at 0.05 P-value.

Keywords: Young Children, Autism, Mathematics, Curriculum, teaching and learning, children with special needs, Project MIND.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926
329 Stop Texting While Learning: A Meta-Analysis of Social Networks Use and Academic Performances

Authors: Proud Arunrangsiwed, Sarinya Kongtieng

Abstract:

Teachers and university lecturers face an unsolved problem, which is students’ multitasking behaviors during class time, such as texting or playing a game. It is important to examine the most powerful predictor that can result in students’ educational performances. Meta-analysis was used to analyze the research articles, which were published with the keywords, multitasking, class performance, and texting. We selected 14 research articles published during 2008-2013 from online databases, and four articles met the predetermined inclusion criteria. Effect size of each pair of variables was used as the dependent variable. The findings revealed that the students’ expectancy and value on SNSs usages is the best significant predictor of their educational performances, followed by their motivation and ability in using SNSs, prior educational performances, usage behaviors of SNSs in class, and their personal characteristics, respectively. Future study should conduct a longitudinal design to better understand the effect of multitasking in the classroom.

Keywords: Meta-regression analysis, social networking site use, academic performance, multitasking, motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
328 Operating System Based Virtualization Models in Cloud Computing

Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi

Abstract:

Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.

Keywords: Virtualization, OS based virtualization, container and hypervisor based virtualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
327 A Web-Based Self-Learning Grammar for Spoken Language Understanding

Authors: S. M. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno

Abstract:

One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.

Keywords: Spoken Dialog System, Spoken Language Understanding, Web Semantic, Name Entity Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
326 Machine Learning Approach for Identifying Dementia from MRI Images

Authors: S. K. Aruna, S. Chitra

Abstract:

This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.

Keywords: Magnetic resonance imaging, dementia, Gabor filter, gray level co-occurrence matrix, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
325 Predicting the Three Major Dimensions of the Learner-s Emotions from Brainwaves

Authors: Alicia Heraz, Claude Frasson

Abstract:

This paper investigates how the use of machine learning techniques can significantly predict the three major dimensions of learner-s emotions (pleasure, arousal and dominance) from brainwaves. This study has adopted an experimentation in which participants were exposed to a set of pictures from the International Affective Picture System (IAPS) while their electrical brain activity was recorded with an electroencephalogram (EEG). The pictures were already rated in a previous study via the affective rating system Self-Assessment Manikin (SAM) to assess the three dimensions of pleasure, arousal, and dominance. For each picture, we took the mean of these values for all subjects used in this previous study and associated them to the recorded brainwaves of the participants in our study. Correlation and regression analyses confirmed the hypothesis that brainwave measures could significantly predict emotional dimensions. This can be very useful in the case of impassive, taciturn or disabled learners. Standard classification techniques were used to assess the reliability of the automatic detection of learners- three major dimensions from the brainwaves. We discuss the results and the pertinence of such a method to assess learner-s emotions and integrate it into a brainwavesensing Intelligent Tutoring System.

Keywords: Algorithms, brainwaves, emotional dimensions, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
324 Reform-Oriented Teaching of Introductory Statistics in the Health, Social and Behavioral Sciences – Historical Context and Rationale

Authors: Rossi A. Hassad

Abstract:

There is widespread emphasis on reform in the teaching of introductory statistics at the college level. Underpinning this reform is a consensus among educators and practitioners that traditional curricular materials and pedagogical strategies have not been effective in promoting statistical literacy, a competency that is becoming increasingly necessary for effective decision-making and evidence-based practice. This paper explains the historical context of, and rationale for reform-oriented teaching of introductory statistics (at the college level) in the health, social and behavioral sciences (evidence-based disciplines). A firm understanding and appreciation of the basis for change in pedagogical approach is important, in order to facilitate commitment to reform, consensus building on appropriate strategies, and adoption and maintenance of best practices. In essence, reform-oriented pedagogy, in this context, is a function of the interaction among content, pedagogy, technology, and assessment. The challenge is to create an appropriate balance among these domains.

Keywords: Reform-oriented, reform, introductory statistics, health, behavioral sciences, evidence-based, psychology, teaching, learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996
323 Hearing Aids Maintenance Training for Hearing-Impaired Preschool Children with the Help of Motion Graphic Tools

Authors: M. Mokhtarzadeh, M. Taheri Qomi, M. Nikafrooz, A. Atashafrooz

Abstract:

The purpose of the present study was to investigate the effectiveness of using motion graphics as a learning medium on training hearing aids maintenance skills to hearing-impaired children. The statistical population of this study consisted of all children with hearing loss in Ahvaz city, at age 4 to 7 years old. As the sample, 60, whom were selected by multistage random sampling, were randomly assigned to two groups; experimental (30 children) and control (30 children) groups. The research method was experimental and the design was pretest-posttest with the control group. The intervention consisted of a 2-minute motion graphics clip to train hearing aids maintenance skills. Data were collected using a 9-question researcher-made questionnaire. The data were analyzed by using one-way analysis of covariance. Results showed that the training of hearing aids maintenance skills with motion graphics was significantly effective for those children. The results of this study can be used by educators, teachers, professionals, and parents to train children with disabilities or normal students.

Keywords: Hearing-impaired children, hearing aids, hearing aids maintenance skill, and motion graphics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
322 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation

Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita

Abstract:

In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during fluctuations in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain a balanced power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.

Keywords: Droop control, droop characteristic, grid-connected inverter, microgrid, power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3075
321 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
320 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: Ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
319 A Study of Primary School Parents’ Interaction with Teachers’ in Malaysia

Authors: Shireen Simon

Abstract:

This study explores the interactions between primary school parents-teachers in Malaysia. Schools in the country are organized to promote participation between parents and teachers. Exchanges of dialogue are most valued between parents and teachers because teachers are in daily contact with pupils’ and the first line of communication with parents. Teachers are considered by parents as the most important connection to improve children learning and well-being. Without a good communication, interaction or involvement between parent-teacher might tarnish a pupils’ performance in school. This study tries to find out multiple emotions among primary school parents-teachers, either estranged or cordial, when they communicate in a multi-cultured society in Malaysia. Important issues related to parent-teacher interactions are discussed further. Parents’ involvement in an effort to boost better education in school is significantly more effective with parents’ involvement. Lastly, this article proposes some suggestions for parents and teachers to build a positive relationship with effective communication and establish more democratic open door policy.

Keywords: Multi-cultured society, parental involvement, parent-teacher relationships, parents’ interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
318 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
317 Thai Student Ability on Speexx Language Training Program

Authors: Toby Gibbs, Glen Craigie, Suwaree Yordchim

Abstract:

The Speexx results revealed four main factors affecting the success of 190 Thai sophomores as follows: 1) Future English training should be pursued in applied Speexx development. 2) Thai students didn’t see the benefit of having an Online Language Training Program. 3) There is a great need to educate the next generation of learners on the benefits of Speexx within the community. 4) A great majority of Thai Sophomores didn't know what Speexx was. A guideline for self-reliance planning consisted of four aspects: 1) Development planning: by arranging groups to further improve English abilities with the Speexx Language Training program and encourage using Speexx into every day practice. Local communities need to develop awareness of the usefulness of Speexx and share the value of using the program among family and friends. 2) Humanities and Social Science staff should develop skills using this Online Language Training Program to expand on the benefits of Speexx within their departments. 3) Further research should be pursued on the Thai Students progression with Speexx and how it helps them improve their language skills with Business English. 4) University’s and Language centers should focus on using Speexx to encourage learning for any language, not just English.

Keywords: Ability, Comprehension, Sophomore, Speexx.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
316 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Disease

Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang

Abstract:

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.

Keywords: Alzheimer’s disease, Speech Emotion Recognition, longitudinal biomarker, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274
315 Multi-Modal Visualization of Working Instructions for Assembly Operations

Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger

Abstract:

Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.

Keywords: Assembly, assistive technologies, augmented reality, manufacturing, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
314 Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives

Authors: K.Sedhuraman, S.Himavathi, A.Muthuramalingam

Abstract:

The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.

Keywords: Sensorless IM drives, rotor speed estimators, artificial neural network, feed- forward architecture, single neuron cascaded architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
313 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm

Authors: Ovidiu Domşa, Nicolae Bold

Abstract:

Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.

Keywords: Chromosome, genetic algorithm, subtree, test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
312 Integrating HOTS Activities with GeoGebra in Pre-Service Teachers’ Preparation

Authors: Wajeeh Daher, Nimer Baya'a

Abstract:

High Order Thinking Skills (HOTS) are suggested today as essential for the cognitive development of students and as preparing them for real life skills. Teachers are encouraged to use HOTS activities in the classroom to help their students develop higher order skills and deep thinking. So it is essential to prepare preservice teachers to write and use HOTS activities for their students. This paper describes a model for integrating HOTS activities with GeoGebra in pre-service teachers’ preparation. This model describes four aspects of HOTS activities and working with them: activity components, preparation procedure, strategies and processes used in writing a HOTS activity and types of the HOTS activities. In addition, the paper describes the pre-service teachers' difficulties in preparing and working with HOTS activities, as well as their perceptions regarding the use of these activities and GeoGebra in the mathematics classroom. The paper also describes the contribution of a HOTS activity to pupils' learning of mathematics, where this HOTS activity was prepared and taught by one pre-service teacher.

Keywords: Higher order thinking, HOTS activities, pre-service teachers, teachers' preparation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
311 Elevating User Experience for Thailand Drivers: Dash-Board Design Analysis in Electric Vehicles

Authors: Poom Thiparpakul, Tanat Jiravansirikul, Pakpoom Thongsari

Abstract:

This study explores the design of electric vehicle (EV) dashboards with a focus on user interaction. Findings from a Thai sample reveal a preference for physical buttons over touch interfaces due to their immediate feedback. Touchscreens lack this assurance, leading to potential uncertainty. Users' smartphone experiences create a learning curve that does not translate well to in-car touch systems. Gender-wise, females exhibit slightly longer decision times. Designing EV dashboards should consider these factors, prioritizing user experience while avoiding overreliance on smartphone principles. A successful example is Subaru XV's design, which calculates screen angles and button positions for targeted users. In summary, EV dashboards should be intuitive, minimize touch dependency, and accommodate user habits. Balancing modernity with functionality can enhance driving experiences while ensuring safety. A user-centered approach, acknowledging gender differences, will yield efficient and safe driving environments.

Keywords: User Experience Design, User Experience, Electric Vehicle, Dashboard Design, Thailand driver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77
310 Smart Cane Assisted Mobility for the Visually Impaired

Authors: Jayant Sakhardande, Pratik Pattanayak, Mita Bhowmick

Abstract:

An efficient reintegration of the disabled people in the family and society should be fulfilled; hence it is strongly needful to assist their diminished functions or to replace the totally lost functions. Assistive technology helps in neutralizing the impairment. Recent advancements in embedded systems have opened up a vast area of research and development for affordable and portable assistive devices for the visually impaired. Granted there are many assistive devices on the market that are able to detect obstacles, and numerous research and development currently in process to alleviate the cause, unfortunately the cost of devices, size of devices, intrusiveness and higher learning curve prevents the visually impaired from taking advantage of available devices. This project aims at the design and implementation of a detachable unit which is robust, low cost and user friendly, thus, trying to aggrandize the functionality of the existing white cane, to concede above-knee obstacle detection. The designed obstruction detector uses ultrasound sensors for detecting the obstructions before direct contact. It bestows haptic feedback to the user in accordance with the position of the obstacle.

Keywords: Visually impaired, Ultrasonic sensors, Obstruction detector, Mobility aid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6072
309 Educational Knowledge Transfer in Indigenous Mexican Areas Using Cloud Computing

Authors: L. R. Valencia Pérez, J. M. Peña Aguilar, A. Lamadrid Álvarez, A. Pastrana Palma, H. F. Valencia Pérez, M. Vivanco Vargas

Abstract:

This work proposes a Cooperation-Competitive (Coopetitive) approach that allows coordinated work among the Secretary of Public Education (SEP), the Autonomous University of Querétaro (UAQ) and government funds from National Council for Science and Technology (CONACYT) or some other international organizations. To work on an overall knowledge transfer strategy with e-learning over the Cloud, where experts in junior high and high school education, working in multidisciplinary teams, perform analysis, evaluation, design, production, validation and knowledge transfer at large scale using a Cloud Computing platform. Allowing teachers and students to have all the information required to ensure a homologated nationally knowledge of topics such as mathematics, statistics, chemistry, history, ethics, civism, etc. This work will start with a pilot test in Spanish and initially in two regional dialects Otomí and Náhuatl. Otomí has more than 285,000 speaking indigenes in Queretaro and Mexico´s central region. Náhuatl is number one indigenous dialect spoken in Mexico with more than 1,550,000 indigenes. The phase one of the project takes into account negotiations with indigenous tribes from different regions, and the Information and Communication technologies to deliver the knowledge to the indigenous schools in their native dialect. The methodology includes the following main milestones: Identification of the indigenous areas where Otomí and Náhuatl are the spoken dialects, research with the SEP the location of actual indigenous schools, analysis and inventory or current schools conditions, negotiation with tribe chiefs, analysis of the technological communication requirements to reach the indigenous communities, identification and inventory of local teachers technology knowledge, selection of a pilot topic, analysis of actual student competence with traditional education system, identification of local translators, design of the e-learning platform, design of the multimedia resources and storage strategy for “Cloud Computing”, translation of the topic to both dialects, Indigenous teachers training, pilot test, course release, project follow up, analysis of student requirements for the new technological platform, definition of a new and improved proposal with greater reach in topics and regions. Importance of phase one of the project is multiple, it includes the proposal of a working technological scheme, focusing in the cultural impact in Mexico so that indigenous tribes can improve their knowledge about new forms of crop improvement, home storage technologies, proven home remedies for common diseases, ways of preparing foods containing major nutrients, disclose strengths and weaknesses of each region, communicating through cloud computing platforms offering regional products and opening communication spaces for inter-indigenous cultural exchange.

Keywords: Mexicans indigenous tribes, education, knowledge transfer, cloud computing, Otomí, Náhuatl, language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
308 Clinical Decision Support for Disease Classification based on the Tests Association

Authors: Sung Ho Ha, Seong Hyeon Joo, Eun Kyung Kwon

Abstract:

Until recently, researchers have developed various tools and methodologies for effective clinical decision-making. Among those decisions, chest pain diseases have been one of important diagnostic issues especially in an emergency department. To improve the ability of physicians in diagnosis, many researchers have developed diagnosis intelligence by using machine learning and data mining. However, most of the conventional methodologies have been generally based on a single classifier for disease classification and prediction, which shows moderate performance. This study utilizes an ensemble strategy to combine multiple different classifiers to help physicians diagnose chest pain diseases more accurately than ever. Specifically the ensemble strategy is applied by using the integration of decision trees, neural networks, and support vector machines. The ensemble models are applied to real-world emergency data. This study shows that the performance of the ensemble models is superior to each of single classifiers.

Keywords: Diagnosis intelligence, ensemble approach, data mining, emergency department

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634