Search results for: systems of linear equations.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6732

Search results for: systems of linear equations.

6522 On the System of Nonlinear Rational Difference Equations

Authors: Qianhong Zhang, Wenzhuan Zhang

Abstract:

This paper is concerned with the global asymptotic behavior of positive solution for a system of two nonlinear rational difference equations. Moreover, some numerical examples are given to illustrate results obtained.

Keywords: Difference equations, stability, unstable, global asymptotic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
6521 An Approach to Control Design for Nonlinear Systems via Two-stage Formal Linearization and Two-type LQ Controls

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

In this paper we consider a nonlinear control design for nonlinear systems by using two-stage formal linearization and twotype LQ controls. The ordinary LQ control is designed on almost linear region around the steady state point. On the other region, another control is derived as follows. This derivation is based on coordinate transformation twice with respect to linearization functions which are defined by polynomials. The linearized systems can be made up by using Taylor expansion considered up to the higher order. To the resulting formal linear system, the LQ control theory is applied to obtain another LQ control. Finally these two-type LQ controls are smoothly united to form a single nonlinear control. Numerical experiments indicate that this control show remarkable performances for a nonlinear system.

Keywords: Formal Linearization, LQ Control, Nonlinear Control, Taylor Expansion, Zero Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
6520 Conditions on Blind Source Separability of Linear FIR-MIMO Systems with Binary Inputs

Authors: Jiashan Tang

Abstract:

In this note, we investigate the blind source separability of linear FIR-MIMO systems. The concept of semi-reversibility of a system is presented. It is shown that for a semi-reversible system, if the input signals belong to a binary alphabet, then the source data can be blindly separated. One sufficient condition for a system to be semi-reversible is obtained. It is also shown that the proposed criteria is weaker than that in the literature which requires that the channel matrix is irreducible/invertible or reversible.

Keywords: Blind source separable, FIR-MIMO system, Binary input, Bezout equality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
6519 Simulation of a Multi-Component Transport Model for the Chemical Reaction of a CVD-Process

Authors: J. Geiser, R. Röhle

Abstract:

In this paper we present discretization and decomposition methods for a multi-component transport model of a chemical vapor deposition (CVD) process. CVD processes are used to manufacture deposition layers or bulk materials. In our transport model we simulate the deposition of thin layers. The microscopic model is based on the heavy particles, which are derived by approximately solving a linearized multicomponent Boltzmann equation. For the drift-process of the particles we propose diffusionreaction equations as well as for the effects of heat conduction. We concentrate on solving the diffusion-reaction equation with analytical and numerical methods. For the chemical processes, modelled with reaction equations, we propose decomposition methods and decouple the multi-component models to simpler systems of differential equations. In the numerical experiments we present the computational results of our proposed models.

Keywords: Chemical reactions, chemical vapor deposition, convection-diffusion-reaction equations, decomposition methods, multi-component transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
6518 H∞ Approach to Functional Projective Synchronization for Chaotic Systems with Disturbances

Authors: S. M. Lee, J. H. Park, H. Y. Jung

Abstract:

This paper presents a method for functional projective H∞ synchronization problem of chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the novel feedback controller is established to not only guarantee stable synchronization of both drive and response systems but also reduce the effect of external disturbance to an H∞ norm constraint.

Keywords: Chaotic systems, functional projective H∞ synchronization, LMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
6517 Double Layer Polarization and Non-Linear Electroosmosis in and around a Charged Permeable Aggregate

Authors: Partha P. Gopmandal, S. Bhattacharyya

Abstract:

We have studied the migration of a charged permeable aggregate in electrolyte under the influence of an axial electric field and pressure gradient. The migration of the positively charged aggregate leads to a deformation of the anionic cloud around it. The hydrodynamics of the aggregate is governed by the interaction of electroosmotic flow in and around the particle, hydrodynamic friction and electric force experienced by the aggregate. We have computed the non-linear Nernest-Planck equations coupled with the Dracy- Brinkman extended Navier-Stokes equations and Poisson equation for electric field through a finite volume method. The permeability of the aggregate enable the counterion penetration. The penetration of counterions depends on the volume charge density of the aggregate and ionic concentration of electrolytes at a fixed field strength. The retardation effect due to the double layer polarization increases the drag force compared to an uncharged aggregate. Increase in migration sped from the electrophretic velocity of the aggregate produces further asymmetry in charge cloud and reduces the electric body force exerted on the particle. The permeability of the particle have relatively little influence on the electric body force when Double layer is relatively thin. The impact of the key parameters of electrokinetics on the hydrodynamics of the aggregate is analyzed.

Keywords: Electrophoresis, Advective flow, Polarization effect, Numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
6516 Recovering the Boundary Data in the Two Dimensional Inverse Heat Conduction Problem Using the Ritz-Galerkin Method

Authors: Saeed Sarabadan, Kamal Rashedi

Abstract:

This article presents a numerical method to find the heat flux in an inhomogeneous inverse heat conduction problem with linear boundary conditions and an extra specification at the terminal. The method is based upon applying the satisfier function along with the Ritz-Galerkin technique to reduce the approximate solution of the inverse problem to the solution of a system of algebraic equations. The instability of the problem is resolved by taking advantage of the Landweber’s iterations as an admissible regularization strategy. In computations, we find the stable and low-cost results which demonstrate the efficiency of the technique.

Keywords: Inverse problem, parabolic equations, heat equation, Ritz-Galerkin method, Landweber iterations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
6515 Investigation of a Transition from Steady Convection to Chaos in Porous Media Using Piecewise Variational Iteration Method

Authors: Mohamed M. Mousa, Aidarkhan Kaltayev Shahwar F. Ragab

Abstract:

In this paper, a new dependable algorithm based on an adaptation of the standard variational iteration method (VIM) is used for analyzing the transition from steady convection to chaos for lowto-intermediate Rayleigh numbers convection in porous media. The solution trajectories show the transition from steady convection to chaos that occurs at a slightly subcritical value of Rayleigh number, the critical value being associated with the loss of linear stability of the steady convection solution. The VIM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the considered model and other dynamical systems. We shall call this technique as the piecewise VIM. Numerical comparisons between the piecewise VIM and the classical fourth-order Runge–Kutta (RK4) numerical solutions reveal that the proposed technique is a promising tool for the nonlinear chaotic and nonchaotic systems.

Keywords: Variational iteration method, free convection, Chaos, Lorenz equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
6514 Realization of Design Features for Linear Flow Splitting in NX 6

Authors: Anselm L. Schüle, Thomas Rollmann, Reiner Anderl

Abstract:

Within the collaborative research center 666 a new product development approach and the innovative manufacturing method of linear flow splitting are being developed. So far the design process is supported by 3D-CAD models utilizing User Defined Features in standard CAD-Systems. This paper now presents new functions for generating 3D-models of integral sheet metal products with bifurcations using Siemens PLM NX 6. The emphasis is placed on design and semi-automated insertion of User Defined Features. Therefore User Defined Features for both, linear flow splitting and its derivative linear bend splitting, were developed. In order to facilitate the modeling process, an application was developed that guides through the insertion process. Its usability and dialog layout adapt known standard features. The work presented here has significant implications on the quality, accurateness and efficiency of the product generation process of sheet metal products with higher order bifurcations.

Keywords: Linear Flow Splitting, CRC 666, User Defined Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
6513 Cubic Trigonometric B-Spline Applied to Linear Two-Point Boundary Value Problems of Order Two

Authors: Nur Nadiah Abd Hamid , Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

Linear two-point boundary value problems of order two are solved using cubic trigonometric B-spline interpolation method (CTBIM). Cubic trigonometric B-spline is a piecewise function consisting of trigonometric equations. This method is tested on some problems and the results are compared with cubic B-spline interpolation method (CBIM) from the literature. CTBIM is found to approximate the solution slightly more accurately than CBIM if the problems are trigonometric.

Keywords: trigonometric B-spline, two-point boundary valueproblem, spline interpolation, cubic spline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577
6512 Dynamic Performances of Tubular Linear Induction Motor for Pneumatic Capsule Pipeline System

Authors: Wisuwat Plodpradista

Abstract:

Tubular linear induction motor (TLIM) can be used as a capsule pump in a large pneumatic capsule pipeline (PCP) system. Parametric performance evaluation of the designed 1-meter diameter PCP-TLIM system yields encouraging results for practical implementation. The capsule thrust and speed inside the TLIM pump can be calculated from the combination of the PCP fluid mechanics and the TLIM equations. The TLIM equivalent circuits derived from those of the conventional three-phase induction motor are used as a model to predict the static test results of a small-scale PCP-TLIM system. In this paper, additional dynamic tests are performed on the same small-scale PCP-TLIM system with two capsules of different diameters. The behaviors of the capsule inside the pump are observed and analyzed. The dynamic performances from the dynamic tests are compared with the theoretical predictions based on the TLIM equivalent circuit model.

Keywords: Pneumatic capsule pipeline, Tubular linear induction motor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
6511 A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems

Authors: Nahid Ardalani, Ahmadreza Khoogar, H. Roohi

Abstract:

In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.

Keywords: Power control, neural networks, DS/CDMA mobilecommunication systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
6510 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: Inverse Optimal Control, Radial basis function neural network, Controller Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
6509 Basic Tendency Model in Complete Factor Synergetics of Complex Systems

Authors: Li Zong-Cheng

Abstract:

The deviation between the target state variable and the practical state variable should be used to form the state tending factor of complex systems, which can reflect the process for the complex system to tend rationalization. Relating to the system of basic equations of complete factor synergetics consisting of twenty nonlinear stochastic differential equations, the two new models are considered to set, which should be called respectively the rationalizing tendency model and the non- rationalizing tendency model. Therefore we can extend the theory of programming with the objective function & constraint condition suitable only for the realm of man-s activities into the new analysis with the tendency function & constraint condition suitable for all the field of complex system.

Keywords: complex system, complete factor synergetics, basicequation, rationalizing tendency model, non-rationalizing tendencymodel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
6508 A New Splitting H1-Galerkin Mixed Method for Pseudo-hyperbolic Equations

Authors: Yang Liu, Jinfeng Wang, Hong Li, Wei Gao, Siriguleng He

Abstract:

A new numerical scheme based on the H1-Galerkin mixed finite element method for a class of second-order pseudohyperbolic equations is constructed. The proposed procedures can be split into three independent differential sub-schemes and does not need to solve a coupled system of equations. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one space dimension. And the proposed method dose not requires the LBB consistency condition. Finally, some numerical results are provided to illustrate the efficacy of our method.

Keywords: Pseudo-hyperbolic equations, splitting system, H1-Galerkin mixed method, error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
6507 Development of Admire Longitudinal Quasi-Linear Model by using State Transformation Approach

Authors: Jianqiao. Yu, Jianbo. Wang, Xinzhen. He

Abstract:

This paper presents a longitudinal quasi-linear model for the ADMIRE model. The ADMIRE model is a nonlinear model of aircraft flying in the condition of high angle of attack. So it can-t be considered to be a linear system approximately. In this paper, for getting the longitudinal quasi-linear model of the ADMIRE, a state transformation based on differentiable functions of the nonscheduling states and control inputs is performed, with the goal of removing any nonlinear terms not dependent on the scheduling parameter. Since it needn-t linear approximation and can obtain the exact transformations of the nonlinear states, the above-mentioned approach is thought to be appropriate to establish the mathematical model of ADMIRE. To verify this conclusion, simulation experiments are done. And the result shows that this quasi-linear model is accurate enough.

Keywords: quasi-linear model, simulation, state transformation approach, the ADMIRE model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
6506 Complex Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
6505 Numerical Study of Iterative Methods for the Solution of the Dirichlet-Neumann Map for Linear Elliptic PDEs on Regular Polygon Domains

Authors: A. G. Sifalakis, E. P. Papadopoulou, Y. G. Saridakis

Abstract:

A generalized Dirichlet to Neumann map is one of the main aspects characterizing a recently introduced method for analyzing linear elliptic PDEs, through which it became possible to couple known and unknown components of the solution on the boundary of the domain without solving on its interior. For its numerical solution, a well conditioned quadratically convergent sine-Collocation method was developed, which yielded a linear system of equations with the diagonal blocks of its associated coefficient matrix being point diagonal. This structural property, among others, initiated interest for the employment of iterative methods for its solution. In this work we present a conclusive numerical study for the behavior of classical (Jacobi and Gauss-Seidel) and Krylov subspace (GMRES and Bi-CGSTAB) iterative methods when they are applied for the solution of the Dirichlet to Neumann map associated with the Laplace-s equation on regular polygons with the same boundary conditions on all edges.

Keywords: Elliptic PDEs, Dirichlet to Neumann Map, Global Relation, Collocation, Iterative Methods, Jacobi, Gauss-Seidel, GMRES, Bi-CGSTAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
6504 Numerical Investigation of Two-dimensional Boundary Layer Flow Over a Moving Surface

Authors: Mahmoud Zarrini, R.N. Pralhad

Abstract:

In this chapter, we have studied Variation of velocity in incompressible fluid over a moving surface. The boundary layer equations are on a fixed or continuously moving flat plate in the same or opposite direction to the free stream with suction and injection. The boundary layer equations are transferred from partial differential equations to ordinary differential equations. Numerical solutions are obtained by using Runge-Kutta and Shooting methods. We have found numerical solution to velocity and skin friction coefficient.

Keywords: Boundary layer, continuously moving surface, shooting method, skin friction coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
6503 Asymptotic Stability of Input-saturated System with Linear-growth-bound Disturbances via Variable Structure Control: An LMI Approach

Authors: Yun Jong Choi, Nam Woong, PooGyeon Park

Abstract:

Variable Structure Control (VSC) is one of the most useful tools handling the practical system with uncertainties and disturbances. Up to now, unfortunately, not enough studies on the input-saturated system with linear-growth-bound disturbances via VSC have been presented. Therefore, this paper proposes an asymp¬totic stability condition for the system via VSC. The designed VSC controller consists of two control parts. The linear control part plays a role in stabilizing the system, and simultaneously, the nonlinear control part in rejecting the linear-growth-bound disturbances perfectly. All conditions derived in this paper are expressed with Linear Matrices Inequalities (LMIs), which can be easily solved with an LMI toolbox in MATLAB.

Keywords: Input saturation, linear-growth bounded disturbances, linear matrix inequality (LMI), variable structure control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
6502 Constructing Approximate and Exact Solutions for Boussinesq Equations using Homotopy Perturbation Padé Technique

Authors: Mohamed M. Mousa, Aidarkhan Kaltayev

Abstract:

Based on the homotopy perturbation method (HPM) and Padé approximants (PA), approximate and exact solutions are obtained for cubic Boussinesq and modified Boussinesq equations. The obtained solutions contain solitary waves, rational solutions. HPM is used for analytic treatment to those equations and PA for increasing the convergence region of the HPM analytical solution. The results reveal that the HPM with the enhancement of PA is a very effective, convenient and quite accurate to such types of partial differential equations.

Keywords: Homotopy perturbation method, Padé approximants, cubic Boussinesq equation, modified Boussinesq equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4577
6501 Evaluation of Linear and Geometrically Nonlinear Static and Dynamic Analysis of Thin Shells by Flat Shell Finite Elements

Authors: Djamel Boutagouga, Kamel Djeghaba

Abstract:

The choice of finite element to use in order to predict nonlinear static or dynamic response of complex structures becomes an important factor. Then, the main goal of this research work is to focus a study on the effect of the in-plane rotational degrees of freedom in linear and geometrically non linear static and dynamic analysis of thin shell structures by flat shell finite elements. In this purpose: First, simple triangular and quadrilateral flat shell finite elements are implemented in an incremental formulation based on the updated lagrangian corotational description for geometrically nonlinear analysis. The triangular element is a combination of DKT and CST elements, while the quadrilateral is a combination of DKQ and the bilinear quadrilateral membrane element. In both elements, the sixth degree of freedom is handled via introducing fictitious stiffness. Secondly, in the same code, the sixth degrees of freedom in these elements is handled differently where the in-plane rotational d.o.f is considered as an effective d.o.f in the in-plane filed interpolation. Our goal is to compare resulting shell elements. Third, the analysis is enlarged to dynamic linear analysis by direct integration using Newmark-s implicit method. Finally, the linear dynamic analysis is extended to geometrically nonlinear dynamic analysis where Newmark-s method is used to integrate equations of motion and the Newton-Raphson method is employed for iterating within each time step increment until equilibrium is achieved. The obtained results demonstrate the effectiveness and robustness of the interpolation of the in-plane rotational d.o.f. and present deficiencies of using fictitious stiffness in dynamic linear and nonlinear analysis.

Keywords: Flat shell, dynamic analysis, nonlinear, Newmark, drilling rotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
6500 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (III)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using Leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferential equation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169
6499 A New Stability Analysis and Stabilization of Discrete-Time Switched Linear Systems Using Vector Norms Approach

Authors: Marwen Kermani, Anis Sakly, Faouzi M'sahli

Abstract:

In this paper, we aim to investigate a new stability analysis for discrete-time switched linear systems based on the comparison, the overvaluing principle, the application of Borne-Gentina criterion and the Kotelyanski conditions. This stability conditions issued from vector norms correspond to a vector Lyapunov function. In fact, the switched system to be controlled will be represented in the Companion form. A comparison system relative to a regular vector norm is used in order to get the simple arrow form of the state matrix that yields to a suitable use of Borne-Gentina criterion for the establishment of sufficient conditions for global asymptotic stability. This proposed approach could be a constructive solution to the state and static output feedback stabilization problems.

Keywords: Discrete-time switched linear systems, Global asymptotic stability, Vector norms, Borne-Gentina criterion, Arrow form state matrix, Arbitrary switching, State feedback controller, Static output feedback controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
6498 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: Boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
6497 A Method for Identifying Physical Parameters with Linear Fractional Transformation

Authors: Ryosuke Ito, Goro Obinata, Chikara Nagai, Youngwoo Kim

Abstract:

This paper proposes a new parameter identification method based on Linear Fractional Transformation (LFT). It is assumed that the target linear system includes unknown parameters. The parameter deviations are separated from a nominal system via LFT, and identified by organizing I/O signals around the separated deviations of the real system. The purpose of this paper is to apply LFT to simultaneously identify the parameter deviations in systems with fewer outputs than unknown parameters. As a fundamental example, this method is implemented to one degree of freedom vibratory system. Via LFT, all physical parameters were simultaneously identified in this system. Then, numerical simulations were conducted for this system to verify the results. This study shows that all the physical parameters of a system with fewer outputs than unknown parameters can be effectively identified simultaneously using LFT.

Keywords: Identification, Linear Fractional Transformation, Right inverse system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
6496 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind

Authors: jianhua Hou, Changqing Yang, and Beibo Qin

Abstract:

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function  approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
6495 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (I)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195
6494 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (II)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
6493 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins

Authors: Mohammad R. Jalali, Mohammad M. Jalali

Abstract:

The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.

Keywords: Even harmonic components of sloshing waves, Green–Naghdi equations, nonlinearity, solitary waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863