Search results for: system organization control
10807 Chattering-free Sliding Mode Control for an Active Magnetic Bearing System
Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd Yatim
Abstract:
In this paper, a few chattering-free Sliding Mode Controllers (SMC) are proposed to stabilize an Active Magnetic Bearing (AMB) system with gyroscopic effect that is proportional to the rotor speed. The improved switching terms of the controller inherited from the saturation-type function and boundary layer control technique is shown to be able to achieve bounded and asymptotic stability, respectively, while the chattering effect in the input is attenuated. This is proven to be advantageous for AMB system since minimization of chattering results in optimized control effort. The performance of each controller is demonstrated via result of simulation in which the measurement of the total consumed energy and maximum control magnitude of each controller illustrates the effectiveness of the proposed controllers.
Keywords: Active Magnetic Bearing (AMB), Sliding Mode Control (SMC), chattering-free SMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214210806 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain
Authors: Amal M. Alrayes
Abstract:
Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance. Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.Keywords: Data quality, performance, system quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211810805 Enhancement in a Mechatronic Aluminum Beverage Cans Recycling Machine
Authors: H. M. El-Zomor, M. Hany
Abstract:
Recycling of aluminum beverage cans is an important issue due to its economic and environmental effect. One of the significant factors in aluminum cans recycling process is the transportation cost from the landfill space. An automatic compression baler (ACB) machine has been designed and built to densify the aluminum beverage cans. It has been constructed using numerous fabricated components. Two types of control methodology have been introduced in this ACB machine to achieve its goal. The first is a semi-automatic system, and the second is a mechatronic system by using a Programmable Logic Control (PLC). The effect of single and double pre-compression for the beverage cans have been evaluated by using the PLC control. Comparisons have been performed between the two types of control methodologies by operating this ACB machine in different working conditions. The double pre-compression in PLC control proves that there is an enhancement in the ACB performance by 133% greater than the direct compression in the semi-automatic control. In addition, the percentage of the reduction ratio in volume reaches 77%, and the compaction ratio reaches about four times of the initial volume.
Keywords: Aluminum can recycling, Fully automatic machine, Hydraulic system control, Multi-compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258210804 Knowledge Sharing based on Semantic Nets and Mereology to Avoid Risks in Manufacturing
Authors: Ulrich Berger, Yuliya Lebedynska, Veronica Vargas
Abstract:
The right information at the right time influences the enterprise and technical success. Sharing knowledge among members of a big organization may be a complex activity. And as long as the knowledge is not shared, can not be exploited by the organization. There are some mechanisms which can originate knowledge sharing. It is intended, in this paper, to trigger these mechanisms by using semantic nets. Moreover, the intersection and overlapping of terms and sub-terms, as well as their relationships will be described through the mereology science for the whole knowledge sharing system. It is proposed a knowledge system to supply to operators with the right information about a specific process and possible risks, e.g. at the assembly process, at the right time in an automated manufacturing environment, such as at the automotive industry.Keywords: Automated manufacturing, knowledge sharing, mereology, risk management, semantic net.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148310803 The Alignment of Information Systems and Environmental Organizations Model in Perspective Capability
Authors: Wartika, Kridanto Surendro, Husni Sastramiharja, Iping Supriana S.
Abstract:
The condition of the market is currently very dynamic, demanding organizations which is use system information to support the achievement of objectives should be necessarily improve the ability of information systems in accordance with the changes. Improved information systems capabilities need to align with the resource capabilities in internal environment of the organization, and vice versa. Alignment model between information systems and environment organizational in this capability perspective is expected can assist management in making the strategy for enhance the capability of information systems in accordance with resources internally within the organization, efficiency in the process of development, and optimization of contributions information systems in achieving organizational goals.
Keywords: Capability, alignment, information system, environmental organizations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168410802 A New Nonlinear Excitation Controller for Transient Stability Enhancement in Power Systems
Authors: M. Ouassaid, A. Nejmi, M. Cherkaoui, M. Maaroufi
Abstract:
The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control technique. In this paper, a new approach of nonlinear control is proposed for transient and steady state stability analysis of a synchronous generator. The control law of the generator excitation is derived from the basis of Lyapunov stability criterion. The overall stability of the system is shown using Lyapunov technique. The application of the proposed controller to simulated generator excitation control under a large sudden fault and wide range of operating conditions demonstrates that the new control strategy is superior to conventional automatic voltage regulator (AVR), and show very promising results.Keywords: Excitation control, Lyapunov technique, non linearcontrol, synchronous generator, transient stability, voltage regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261410801 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank
Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang
Abstract:
Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.
Keywords: Stormwater runoff, stormwater storage tank, real-time control, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96210800 Control of Grid Connected PMSG-Based Wind Turbine System with Back-To-Back Converter Topology Using Resonant Controller
Authors: Fekkak Bouazza, Menaa Mohamed, Loukriz Abdelhamid, Krim Mohamed L.
Abstract:
This paper presents modeling and control strategy for the grid connected wind turbine system based on Permanent Magnet Synchronous Generator (PMSG). The considered system is based on back-to-back converter topology. The Grid Side Converter (GSC) achieves the DC bus voltage control and unity power factor. The Machine Side Converter (MSC) assures the PMSG speed control. The PMSG is used as a variable speed generator and connected directly to the turbine without gearbox. The pitch angle control is not either considered in this study. Further, Optimal Tip Speed Ratio (OTSR) based MPPT control strategy is used to ensure the most energy efficiency whatever the wind speed variations. A filter (L) is put between the GSC and the grid to reduce current ripple and to improve the injected power quality. The proposed grid connected wind system is built under MATLAB/Simulink environment. The simulation results show the feasibility of the proposed topology and performance of its control strategies.
Keywords: Wind, grid, PMSG, MPPT, OTSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89710799 A New Intelligent Strategy to Integrated Control of AFS/DYC Based on Fuzzy Logic
Authors: R. Karbalaei, A. Ghaffari, R. Kazemi, S. H. Tabatabaei
Abstract:
An integrated vehicle dynamics control system is developed in this paper by a combination of active front steering (AFS) and direct yaw-moment control (DYC) based on fuzzy logic control. The control system has a hierarchical structure consisting of two layers. A fuzzy logic controller is used in the upper layer (yaw rate controller) to keep the yaw rate in its desired value. The yaw rate error and its rate of change are applied to the upper controlling layer as inputs, where the direct yaw moment control signal and the steering angle correction of the front wheels are the outputs. In the lower layer (fuzzy integrator), a fuzzy logic controller is designed based on the working region of the lateral tire forces. Depending on the directions of the lateral forces at the front wheels, a switching function is activated to adjust the scaling factor of the fuzzy logic controller. Using a nonlinear seven degrees of freedom vehicle model, the simulation results illustrate considerable improvements which are achieved in vehicle handling through the integrated AFS/DYC control system in comparison with the individual AFS or DYC controllers.
Keywords: Intelligent strategy, integrated control, fuzzy logic, AFS/DYC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231410798 Examining the Modular End of Line Control Unit Design Criteria for Vehicle Sliding Door System Track Profile
Authors: O. Kurtulus, C. Yavuz
Abstract:
The end of the line controls of the finished products in the automotive industry is important. The control that has been conducted with the manual methods for the sliding doors tracks is not sufficient and faulty products cannot be identified. As a result, the customer has the faulty products. In the scope of this study, the design criteria of the PLC integrated modular end of line control unit has been examined, designed and manufactured to make the control of the 10 different track profile to 2 different vehicles with an objective to minimize the salvage costs by obtaining more sensitive, certain and accurate measurement results. In the study that started with literature and patent review, the design inputs have been specified, the technical concept has been developed, computer supported mechanic design, control system and automation design, design review and design improvement have been made. Laser analog sensors at high sensitivity, probes and modular blocks have been used in the unit. The measurement has been conducted in the system and it is observed that measurement results are more sensitive than the previous methods that we use.Keywords: Control unit design, end of line, modular design, sliding door system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157810797 Enhancement of MIMO H2S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array
Authors: Muhammad M. A. S. Mahmoud
Abstract:
Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H2S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. New design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.Keywords: Gas separator, gas sweetening, intelligent controller, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150310796 Optimal Digital Pitch Aircraft Control
Authors: N. Popovich, P. Yan
Abstract:
In this paper a controller for the pitch angle of an aircraft regarding to the elevator deflection angle is designed. The way how the elevator angle affects pitching motion of the aircraft is pointed out, as well as, how a pitch controller can be applied for the aircraft to reach certain pitch angle. In this digital optimal system, the elevator deflection angle and pitching angle of the plane are considered to be input and output respectively. A single input single output (SISO) system is presented. A digital pitch aircraft control is demonstrated. A simulation for the whole system has been performed. The optimal control weighting vectors, Q and R have been determined.Keywords: Aircraft, control, digital, optimal, Q and Rmatrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176110795 Two Stage Control Method Using a Disturbance Observer and a Kalman Filter
Authors: Hiromitsu Ogawa, Manato Ono, Naohiro Ban, Yoshihisa Ishida
Abstract:
This paper describes the two stage control using a disturbance observer and a Kalman filter. The system feedback uses the estimated state when it controls the speed. After the change-over point, its feedback uses the controlled plant output when it controls the position. To change the system continually, a change-over point has to be determined pertinently, and the controlled plant input has to be adjusted by the addition of the appropriate value. The proposed method has noise-reduction effect. It changes the system continually, even if the controlled plant identification has the error. Although the conventional method needs a speed sensor, the proposed method does not need it. The proposed method has a superior robustness compared with the conventional two stage control.
Keywords: Disturbance observer, kalman filter, optimal control, two stage control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196110794 Maximum Wind Power Extraction Strategy and Decoupled Control of DFIG Operating in Variable Speed Wind Generation Systems
Authors: Abdellatif Kasbi, Abderrafii Rahali
Abstract:
This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.
Keywords: DFIG, WGS, DDC, IDC, vector control, MPPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70810793 Anti-Synchronization of two Different Chaotic Systems via Active Control
Authors: Amir Abbas Emadzadeh, Mohammad Haeri
Abstract:
This paper presents anti-synchronization of chaos between two different chaotic systems using active control method. The proposed technique is applied to achieve chaos antisynchronization for the Lü and Rössler dynamical systems. Numerical simulations are implemented to verify the results.Keywords: Active control, Anti-Synchronization, Chaos, Lü system, Rössler system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191310792 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller
Authors: A. Boualouch, A. Essadki, T. Nasser, A. Boukhriss, A. Frigui
Abstract:
This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and slidingmode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.Keywords: Backstipping, DFIG, power control, sliding-mode, WESC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241210791 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation
Authors: W. Du, X. Wang, Jun Cao, H. F. Wang
Abstract:
Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.
Keywords: Frequency regulation, virtual inertia control, installation locations, observability, wind farms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215010790 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems
Authors: K. Kusakana
Abstract:
A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.
Keywords: Renewable energies, hybrid systems, optimization, operation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210710789 Web Information System for e-Learning
Authors: Anna Angelini, Enrica Gentile, Paola Plantamura, Vito Leonardo Plantamura
Abstract:
A suitable e-learning system management needs to carry out a web-information system in order to allow integrated fruition of data and metadata concerning the activities typical of elearning environment. The definition of a “web information system" for e-learning takes advantage of the potentialities of Web technologies both as for the access to metadata present on the several platforms, and as for the implementation of courseware which make up the relative didactic environment. What information systems have in common is the technological environment on which they are generally implemented and the use of metadata in order to structure information at all cognitive and organization levels. In this work we are going to define a methodology for the implementation of a specific web information system for an e-learning environment.Keywords: e-learning, information systems, coursemanagement, web-based system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159210788 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input
Authors: Toshinori Nawata, Hitoshi Takata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented Automatic Choosing Control, NonlinearControl, Genetic Algorithm, Hamiltonian, Lyapunovfunction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144110787 Sprayer Boom Active Suspension Using Intelligent Active Force Control
Authors: M. Tahmasebi, R.A. Rahman, M. Mailah, M. Gohari
Abstract:
The control of sprayer boom undesired vibrations pose a great challenge to investigators due to various disturbances and conditions. Sprayer boom movements lead to reduce of spread efficiency and crop yield. This paper describes the design of a novel control method for an active suspension system applying proportional-integral-derivative (PID) controller with an active force control (AFC) scheme integration of an iterative learning algorithm employed to a sprayer boom. The iterative learning as an intelligent method is principally used as a method to calculate the best value of the estimated inertia of the sprayer boom needed for the AFC loop. Results show that the proposed AFC-based scheme performs much better than the standard PID control technique. Also, this shows that the system is more robust and accurate.
Keywords: Active force control, sprayer boom, active suspension, iterative learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229910786 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform
Authors: Xie Kefeng, Zhang He
Abstract:
For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.Keywords: 2-HUS/U platform, Dynamics, Lagrange, Parallel platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97210785 Email Based Global Automation with Raspberry Pi and Control Circuit Module: Development of Smart Home Application
Authors: Lochan Basyal
Abstract:
Global Automation is an emerging technology of today’s era and is based on Internet of Things (IoT). Global automation deals with the controlling of electrical appliances throughout the world. The fabrication of this system has been carried out with interfacing an electrical control system module to Raspberry Pi. An electrical control system module includes a relay driver mechanism through which appliances are controlled automatically in respective condition. In this research project, one email ID has been assigned to Raspberry Pi, and the users from different location having different email ID can mail to Raspberry Pi on assigned email address “[email protected]” with subject heading “Device Control” with predefined command on compose email line. Also, a notification regarding current working condition of this system has been updated on respective user email ID. This approach is an innovative way of implementing smart automation system through which a user can control their electrical appliances like light, fan, television, refrigerator, etc. in their home with the use of email facility. The development of this project helps to enhance the concept of smart home application as well as industrial automation.Keywords: Control circuit, email, global automation, internet of things, Raspberry Pi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83910784 Design a Fractional Order Controller for Power Control of Doubly Fed Induction Generator Based Wind Generation System
Authors: Abdellatif Kasbi, Abderrafii Rahali
Abstract:
During the recent years, much interest has been devoted to fractional order control that has appeared as a very eligible control approach for the systems experiencing parametric uncertainty and outer disturbances. The main purpose of this paper is to design and evaluate the performance of a fractional order proportional integral (FOPI) controller applied to control prototype variable speed wind generation system (WGS) that uses a doubly fed induction generator (DFIG). In this paper, the DFIG-machine is controlled according to the stator field-oriented control (FOC) strategy, which makes it possible to regulate separately the reactive and active powers exchanged between the WGS and the grid. The considered system is modeled and simulated using MATLAB-Simulink, and the performance of FOPI controller applied to the back-to-back power converter control of DFIG based grid connected variable speed wind turbine are evaluated and compared to the ones obtained with a conventional PI controller.
Keywords: Design, fractional order PI controller, wind generation system, doubly fed induction generator, wind turbine, field-oriented control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73810783 The Process of Crisis: Model of Its Development in the Organization
Authors: M. Mikušová
Abstract:
The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.
Keywords: Crisis, management, model, organization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113410782 Evaluating Complexity – Ethical Challenges in Computational Design Processes
Authors: J.Partanen
Abstract:
Complexity, as a theoretical background has made it easier to understand and explain the features and dynamic behavior of various complex systems. As the common theoretical background has confirmed, borrowing the terminology for design from the natural sciences has helped to control and understand urban complexity. Phenomena like self-organization, evolution and adaptation are appropriate to describe the formerly inaccessible characteristics of the complex environment in unpredictable bottomup systems. Increased computing capacity has been a key element in capturing the chaotic nature of these systems. A paradigm shift in urban planning and architectural design has forced us to give up the illusion of total control in urban environment, and consequently to seek for novel methods for steering the development. New methods using dynamic modeling have offered a real option for more thorough understanding of complexity and urban processes. At best new approaches may renew the design processes so that we get a better grip on the complex world via more flexible processes, support urban environmental diversity and respond to our needs beyond basic welfare by liberating ourselves from the standardized minimalism. A complex system and its features are as such beyond human ethics. Self-organization or evolution is either good or bad. Their mechanisms are by nature devoid of reason. They are common in urban dynamics in both natural processes and gas. They are features of a complex system, and they cannot be prevented. Yet their dynamics can be studied and supported. The paradigm of complexity and new design approaches has been criticized for a lack of humanity and morality, but the ethical implications of scientific or computational design processes have not been much discussed. It is important to distinguish the (unexciting) ethics of the theory and tools from the ethics of computer aided processes based on ethical decisions. Urban planning and architecture cannot be based on the survival of the fittest; however, the natural dynamics of the system cannot be impeded on grounds of being “non-human". In this paper the ethical challenges of using the dynamic models are contemplated in light of a few examples of new architecture and dynamic urban models and literature. It is suggested that ethical challenges in computational design processes could be reframed under the concepts of responsibility and transparency.Keywords: urban planning, architecture, dynamic modeling, ethics, complexity theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189010781 Agent/Group/Role Organizational Model to Simulate an Industrial Control System
Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua
Abstract:
The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.
Keywords: Complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118910780 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.
Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 267610779 Asymptotic Stabilization of an Active Magnetic Bearing System using LMI-based Sliding Mode Control
Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd. Yatim
Abstract:
In this paper, stabilization of an Active Magnetic Bearing (AMB) system with varying rotor speed using Sliding Mode Control (SMC) technique is considered. The gyroscopic effect inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Also, transformation of the AMB dynamic model into a new class of uncertain system shows that this gyroscopic effect lies in the mismatched part of the system matrix. Moreover, the current gain parameter is allowed to be varied in a known bound as an uncertainty in the input matrix. SMC design method is proposed in which the sufficient condition that guarantees the global exponential stability of the reduced-order system is represented in Linear Matrix Inequality (LMI). Then, a new chattering-free control law is established such that the system states are driven to reach the switching surface and stay on it thereafter. The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.
Keywords: Active Magnetic Bearing (AMB), Sliding ModeControl (SMC), Linear Matrix Inequality (LMI), mismatcheduncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152210778 Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control
Authors: Kréhi Serge Agbli, Samuel Portebos, Michaël Salomon
Abstract:
Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent’s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid's frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed.Keywords: Battery Energy Storage System, electrical network frequency stability, frequency control unit, PowerFactory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804