%0 Journal Article
	%A J.Partanen
	%D 2010
	%J International Journal of Industrial and Manufacturing Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 42, 2010
	%T Evaluating Complexity – Ethical Challenges in Computational Design Processes
	%U https://publications.waset.org/pdf/4992
	%V 42
	%X Complexity, as a theoretical background has made it
easier to understand and explain the features and dynamic behavior
of various complex systems. As the common theoretical background
has confirmed, borrowing the terminology for design from the
natural sciences has helped to control and understand urban
complexity. Phenomena like self-organization, evolution and
adaptation are appropriate to describe the formerly inaccessible
characteristics of the complex environment in unpredictable bottomup
systems. Increased computing capacity has been a key element in
capturing the chaotic nature of these systems.
A paradigm shift in urban planning and architectural design has
forced us to give up the illusion of total control in urban
environment, and consequently to seek for novel methods for
steering the development. New methods using dynamic modeling
have offered a real option for more thorough understanding of
complexity and urban processes. At best new approaches may renew
the design processes so that we get a better grip on the complex
world via more flexible processes, support urban environmental
diversity and respond to our needs beyond basic welfare by liberating
ourselves from the standardized minimalism.
A complex system and its features are as such beyond human
ethics. Self-organization or evolution is either good or bad. Their
mechanisms are by nature devoid of reason. They are common in
urban dynamics in both natural processes and gas. They are features
of a complex system, and they cannot be prevented. Yet their
dynamics can be studied and supported.
The paradigm of complexity and new design approaches has been
criticized for a lack of humanity and morality, but the ethical
implications of scientific or computational design processes have not
been much discussed. It is important to distinguish the (unexciting)
ethics of the theory and tools from the ethics of computer aided
processes based on ethical decisions. Urban planning and architecture
cannot be based on the survival of the fittest; however, the natural
dynamics of the system cannot be impeded on grounds of being
“non-human".
In this paper the ethical challenges of using the dynamic models
are contemplated in light of a few examples of new architecture and
dynamic urban models and literature. It is suggested that ethical
challenges in computational design processes could be reframed
under the concepts of responsibility and transparency.
	%P 969 - 978