Search results for: Unmanned Aerial Vehicle (UAV) selection
1468 Experimental Study of Exhaust Muffler System for Direct-Injection Gasoline Engine
Authors: Abdallah F. Abd El-Mohsen, Ahmed A. Abdelsamee, Nouby M. Ghazaly
Abstract:
Engine exhaust noise is considered one of the largest sources of vehicle exterior noise. Further reduction of noise from the vehicle exhaust system will be required, as the vehicle exterior noise regulations become stricter. Therefore, the present study has been carried out to illustrate the role of engine operating parameters and exhaust system construction factors on exhaust noise emitted. The measurements carried out using different exhaust systems, which are mainly used in today’s vehicle. The effect of engine speed on the spectra level of exhaust noise is recorded at engine speeds of 900 rpm, 1800 rpm, 2700, rpm 3600 rpm and 4500 rpm. The results indicate that the increase of engine speed causes a significant increase in the spectrum level of exhaust noise. The increase in the number of the outlet of the expansion chamber also reduces the overall level of exhaust noise.
Keywords: Exhaust system, engine speed, expansion chamber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6211467 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation
Authors: O. Maklouf, Ahmed Abdulla
Abstract:
A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers have looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.
Keywords: GPS, ParIMU, INS, Kalman Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28661466 Simulation Study on the Thin-walled Tube Structure of a Vehicle Simulator Crash Testing Equipment
Authors: Xu Zhang, Qi Jiang, Liwei Li, Weiwei Cui, Jijun Cui, Yang Cao, Hairong Zhao
Abstract:
A kind of crash energy absorption structure adopted by vehicle simulator crash testing equipment based on mechanical energy storage was studied. Dynamic explicit finite element simulation was achieved for thin-walled tube structure under different conditions of section shape, thickness and inducement groove style. Crash energy absorption property of the structure was obtained. After optimization, a reasonable structure was given which can meet current vehicle crash regulation. And the optimized structure can be adopted in vehicle simulator, which can increase the practicability of the testing equipment.Keywords: thin-walled tube structure, crash energy absorption, deceleration, finite element simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17591465 A PSO-based End-Member Selection Method for Spectral Unmixing of Multispectral Satellite Images
Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman
Abstract:
An end-member selection method for spectral unmixing that is based on Particle Swarm Optimization (PSO) is developed in this paper. The algorithm uses the K-means clustering algorithm and a method of dynamic selection of end-members subsets to find the appropriate set of end-members for a given set of multispectral images. The proposed algorithm has been successfully applied to test image sets from various platforms such as LANDSAT 5 MSS and NOAA's AVHRR. The experimental results of the proposed algorithm are encouraging. The influence of different values of the algorithm control parameters on performance is studied. Furthermore, the performance of different versions of PSO is also investigated.
Keywords: End-members selection, multispectral satellite imagery, particle swarm optimization, spectral unmixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20981464 Proposal of a Model Supporting Decision-Making on Information Security Risk Treatment
Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu
Abstract:
Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Therefore, this paper provides a model which supports the selection of measures by applying multi-objective analysis to find an optimal solution. Additionally, a list of measures is also provided to make the selection easier and more effective without any leakage of measures.
Keywords: Information security risk treatment, Selection of risk measures, Risk acceptance and Multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21341463 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djameleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: Rollover, single unit heavy vehicle, neural networks, nonlinear side force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10431462 Scots Pine Needles as Bioindicators in Determining the Aerial Distribution Pattern of Sulphur Emissions around Industrial Plants
Authors: Risto Pöykiö, Jari Hietala, Hannu Nurmesniemi
Abstract:
In this study, the Scots pine (Pinus sylvestris L.) C needles (i.e. the current-year-needles) were used as bioindicators in determining the aerial distribution pattern of sulphur emissions around industrial point sources at Kemi, Northern Finland. The average sulphur concentration in the C needles was 897 mg/kg (d.w.), with a standard deviation of 118 mg/kg (d.w.) and range 740 – 1350 mg/kg (d.w.). According to results in this study, Scots pine needles (Pinus sylvestris L.) appear to be an ideal bioindicators for identifying atmospheric sulphur pollution derived from industrial plants and can complement the information provided by plant mapping studies around industrial plants.Keywords: Emission, Sulphur, Scots Pine, Pinus sylvestris
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451461 Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks
Authors: Kriuk Boris, Kriuk Fedor
Abstract:
This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we present a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications.
Keywords: Siamese networks, Semantic textual similarity, Similarity functions, STS Benchmark dataset, Threshold selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761460 Plant Varieties Selection System
Authors: Kitti Koonsanit, Chuleerat Jaruskulchai, Poonsak Miphokasap, Apisit Eiumnoh
Abstract:
In the end of the day, meteorological data and environmental data becomes widely used such as plant varieties selection system. Variety plant selection for planted area is of almost importance for all crops, including varieties of sugarcane. Since sugarcane have many varieties. Variety plant non selection for planting may not be adapted to the climate or soil conditions for planted area. Poor growth, bloom drop, poor fruit, and low price are to be from varieties which were not recommended for those planted area. This paper presents plant varieties selection system for planted areas in Thailand from meteorological data and environmental data by the use of decision tree techniques. With this software developed as an environmental data analysis tool, it can analyze resulting easier and faster. Our software is a front end of WEKA that provides fundamental data mining functions such as classify, clustering, and analysis functions. It also supports pre-processing, analysis, and decision tree output with exporting result. After that, our software can export and display data result to Google maps API in order to display result and plot plant icons effectively.
Keywords: Plant varieties selection system, decision tree, expert recommendation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17921459 Malicious Vehicle Detection Using Monitoring Algorithm in Vehicular Adhoc Networks
Authors: S. Padmapriya
Abstract:
Vehicular Adhoc Networks (VANETs), a subset of Mobile Adhoc Networks (MANETs), refers to a set of smart vehicles used for road safety. This vehicle provides communication services among one another or with the Road Side Unit (RSU). Security is one of the most critical issues related to VANET as the information transmitted is distributed in an open access environment. As each vehicle is not a source of all messages, most of the communication depends on the information received from other vehicles. To protect VANET from malicious action, each vehicle must be able to evaluate, decide and react locally on the information received from other vehicles. Therefore, message verification is more challenging in VANET because of the security and privacy concerns of the participating vehicles. To overcome security threats, we propose Monitoring Algorithm that detects malicious nodes based on the pre-selected threshold value. The threshold value is compared with the distrust value which is inherently tagged with each vehicle. The proposed Monitoring Algorithm not only detects malicious vehicles, but also isolates the malicious vehicles from the network. The proposed technique is simulated using Network Simulator2 (NS2) tool. The simulation result illustrated that the proposed Monitoring Algorithm outperforms the existing algorithms in terms of malicious node detection, network delay, packet delivery ratio and throughput, thereby uplifting the overall performance of the network.
Keywords: VANET, security, malicious vehicle detection, threshold value, distrust value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13131458 An Integrated DEMATEL-QFD Model for Medical Supplier Selection
Authors: Mehtap Dursun, Zeynep Şener
Abstract:
Supplier selection is considered as one of the most critical issues encountered by operations and purchasing managers to sharpen the company’s competitive advantage. In this paper, a novel fuzzy multi-criteria group decision making approach integrating quality function deployment (QFD) and decision making trial and evaluation laboratory (DEMATEL) method is proposed for supplier selection. The proposed methodology enables to consider the impacts of inner dependence among supplier assessment criteria. A house of quality (HOQ) which translates purchased product features into supplier assessment criteria is built using the weights obtained by DEMATEL approach to determine the desired levels of supplier assessment criteria. Supplier alternatives are ranked by a distance-based method.
Keywords: DEMATEL, Group decision making, QFD, Supplier selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28231457 A Comprehensive Survey on RAT Selection Algorithms for Heterogeneous Networks
Authors: Abdallah AL Sabbagh, Robin Braun, Mehran Abolhasan
Abstract:
Due to the coexistence of different Radio Access Technologies (RATs), Next Generation Wireless Networks (NGWN) are predicted to be heterogeneous in nature. The coexistence of different RATs requires a need for Common Radio Resource Management (CRRM) to support the provision of Quality of Service (QoS) and the efficient utilization of radio resources. RAT selection algorithms are part of the CRRM algorithms. Simply, their role is to verify if an incoming call will be suitable to fit into a heterogeneous wireless network, and to decide which of the available RATs is most suitable to fit the need of the incoming call and admit it. Guaranteeing the requirements of QoS for all accepted calls and at the same time being able to provide the most efficient utilization of the available radio resources is the goal of RAT selection algorithm. The normal call admission control algorithms are designed for homogeneous wireless networks and they do not provide a solution to fit a heterogeneous wireless network which represents the NGWN. Therefore, there is a need to develop RAT selection algorithm for heterogeneous wireless network. In this paper, we propose an approach for RAT selection which includes receiving different criteria, assessing and making decisions, then selecting the most suitable RAT for incoming calls. A comprehensive survey of different RAT selection algorithms for a heterogeneous wireless network is studied.Keywords: Heterogeneous Wireless Network, RAT selection algorithms, Next Generation Wireless Network (NGWN), Beyond 3G Network, Common Radio Resource Management (CRRM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20251456 A Proposed Hybrid Approach for Feature Selection in Text Document Categorization
Authors: M. F. Zaiyadi, B. Baharudin
Abstract:
Text document categorization involves large amount of data or features. The high dimensionality of features is a troublesome and can affect the performance of the classification. Therefore, feature selection is strongly considered as one of the crucial part in text document categorization. Selecting the best features to represent documents can reduce the dimensionality of feature space hence increase the performance. There were many approaches has been implemented by various researchers to overcome this problem. This paper proposed a novel hybrid approach for feature selection in text document categorization based on Ant Colony Optimization (ACO) and Information Gain (IG). We also presented state-of-the-art algorithms by several other researchers.Keywords: Ant colony optimization, feature selection, information gain, text categorization, text representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681455 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays
Authors: M. Anidha, K. Premalatha
Abstract:
Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.
Keywords: Gene selection, mutual information, Fisher score, classification, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11521454 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application
Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas
Abstract:
The development of electric vehicle batteries have resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a Flat Plate Loop Heat Pipe (FPLHP) performance as a heat exchanger in thermal management system of lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces thermal resistance of 0.22 W/°C with 50°C evaporator temperature at heat flux load of 1.61 W/cm2.Keywords: Electric vehicle, flat plate loop heat pipe, lithium-ion battery, thermal management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32391453 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System
Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain
Abstract:
Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.
Keywords: CO2 emission, IoT, EDA, Weighted Sum Model, WSM, regression, smart parking system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7421452 Self-Organizing Maps in Evolutionary Approachmeant for Dimensioning Routes to the Demand
Authors: J.-C. Créput, A. Koukam, A. Hajjam
Abstract:
We present a non standard Euclidean vehicle routing problem adding a level of clustering, and we revisit the use of self-organizing maps as a tool which naturally handles such problems. We present how they can be used as a main operator into an evolutionary algorithm to address two conflicting objectives of route length and distance from customers to bus stops minimization and to deal with capacity constraints. We apply the approach to a real-life case of combined clustering and vehicle routing for the transportation of the 780 employees of an enterprise. Basing upon a geographic information system we discuss the influence of road infrastructures on the solutions generated.Keywords: Evolutionary algorithm, self-organizing map, clustering and vehicle routing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13811451 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection
Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung
Abstract:
This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.
Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29371450 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions
Authors: Cheng-Chi Yu, Chi-Shiun Chiou
Abstract:
This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.Keywords: Plug-in hybrid power system, fuel economy, performance, continuous variable transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12891449 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle
Authors: Kaushalendra K. Khadanga, Lee Hee Hyol
Abstract:
Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.
Keywords: Active suspension, bending vibration, railway vehicle, vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7191448 Application of Genetic Algorithms to Feature Subset Selection in a Farsi OCR
Authors: M. Soryani, N. Rafat
Abstract:
Dealing with hundreds of features in character recognition systems is not unusual. This large number of features leads to the increase of computational workload of recognition process. There have been many methods which try to remove unnecessary or redundant features and reduce feature dimensionality. Besides because of the characteristics of Farsi scripts, it-s not possible to apply other languages algorithms to Farsi directly. In this paper some methods for feature subset selection using genetic algorithms are applied on a Farsi optical character recognition (OCR) system. Experimental results show that application of genetic algorithms (GA) to feature subset selection in a Farsi OCR results in lower computational complexity and enhanced recognition rate.Keywords: Feature Subset Selection, Genetic Algorithms, Optical Character Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19771447 Data Recording for Remote Monitoring of Autonomous Vehicles
Authors: Rong-Terng Juang
Abstract:
Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.
Keywords: Autonomous vehicle, data recording, remote monitoring, controller area network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13511446 Fuel Economy and Stability Enhancement of the Hybrid Vehicles by Using Electrical Machines on Non-Driven Wheels
Authors: P. Naderi, S.M.T. Bathaee, R. Hoseinnezhad, R. Chini
Abstract:
Using electrical machine in conventional vehicles, also called hybrid vehicles, has become a promising control scheme that enables some manners for fuel economy and driver assist for better stability. In this paper, vehicle stability control, fuel economy and Driving/Regeneration braking for a 4WD hybrid vehicle is investigated by using an electrical machine on each non-driven wheels. In front wheels driven vehicles, fuel economy and regenerative braking can be obtained by summing torques applied on rear wheels. On the other hand, unequal torques applied to rear wheels provides enhanced safety and path correction in steering. In this paper, a model with fourteen degrees of freedom is considered for vehicle body, tires and, suspension systems. Thereafter, powertrain subsystems are modeled. Considering an electrical machine on each rear wheel, a fuzzy controller is designed for each driving, braking, and stability conditions. Another fuzzy controller recognizes the vehicle requirements between the driving/regeneration and stability modes. Intelligent vehicle control to multi objective operation and forward simulation are the paper advantages. For reaching to these aims, power management control and yaw moment control will be done by three fuzzy controllers. Also, the above mentioned goals are weighted by another fuzzy sub-controller base on vehicle dynamic. Finally, Simulations performed in MATLAB/SIMULINK environment show that the proposed structure can enhance the vehicle performance in different modes effectively.
Keywords: Hybrid, pitch, roll, regeneration, yaw.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18731445 Improvement of Ride Comfort of Turning Electric Vehicle Using Optimal Speed Control
Authors: Yingyi Zhou, Tohru Kawabe
Abstract:
With the spread of EVs (electric Vehicles), the ride comfort has been gaining a lot of attention. The influence of the lateral acceleration is important for the improvement of ride comfort of EVs as well as the longitudinal acceleration, especially upon turning of the vehicle. Therefore, this paper proposes a practical optimal speed control method to greatly improve the ride comfort in the vehicle turning situation. For consturcting this method, effective criteria that can appropriately evaluate deterioration of ride comfort is derived. The method can reduce the influence of both the longitudinal and the lateral speed changes for providing a confortable ride. From several simulation results, we can see the fact that the method can prevent aggravation of the ride comfort by suppressing the influence of longitudinal speed change in the turning situation. Hence, the effectiveness of the method is recognized.Keywords: Electric vehicle, speed control, ride comfort, optimal control theory, driving support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9151444 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7311443 Antiinflammatory and Antinociceptive of Hydro Alcoholic Tanacetum balsamita L. Extract
Authors: S. Nasri, G. H. Amin, A. Azimi
Abstract:
The use of herbs to treat disease is accompanied with the history of human life. This research is aimed to study the anti-inflammatory and antinociceptive effects of hydroalcoholic extract of aerial parts of "Tanacetum balsamita balsamita". In the experimental studies 144 male mice are used. In the inflammatory test, animals were divided into six groups: Control, positive control (receiving Dexamethason at dose of 15mg/kg), and four experimental groups receiving Tanacetum balsamita balsamita hydroalcoholic extract at doses of 25, 50, 100 and 200mg/kg. Xylene was used to induce inflammation. Formalin was used to study the nociceptive effects. Animals were divided into six groups: control group, positive control group (receiving morphine) and four experimental groups receiving Tanacetum balsamita balsamita (Tb.) hydroalcoholic extract at doses of 25, 50, 100 and 200mg/kg. I.p. injection of drugs or normal saline was performed 30 minutes before test. The data were analyzed by using one way Variance analysis and Tukey post test. Aerial parts of Tanacetum balsamita balsamita hydroalcoholic extract decreased significantly inflammatory at dose of 200mg/kg (P<0/001) and caused a significant decrease and alleviated the nociception in both first and second phases at doses of 200mg/kg (p<0/001) and 100mg/kg (P<0/05). Tanacetum balsamita balsamita extract has the anti-inflammatory and anti-nociceptive effects which seems to be related with flavonoids especially Quercetin.
Keywords: Inflammation, nociception, Hydroalcoholic extract, aerial parts of Tanacetum balsamita balsamita L.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20941442 Paremaeter Determination of a Vehicle 5-DOF Model to Simulate Occupant Deceleration in a Frontal Crash
Authors: Javad Marzbanrad, Mostafa Pahlavani
Abstract:
This study has investigated a vehicle Lumped Parameter Model (LPM) in frontal crash. There are several ways for determining spring and damper characteristics and type of problem shall be considered as system identification. This study use Genetic Algorithm (GA) procedure, being an effective procedure in case of optimization issues, for optimizing errors, between target data (experimental data) and calculated results (being obtained by analytical solving). In this study analyzed model in 5-DOF then compared our results with 5-DOF serial model. Finally, the response of model due to external excitement is investigated.Keywords: Vehicle, Lumped-Parameter Model, GeneticAlgorithm, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16821441 Feature Weighting and Selection - A Novel Genetic Evolutionary Approach
Authors: Serkawt Khola
Abstract:
A feature weighting and selection method is proposed which uses the structure of a weightless neuron and exploits the principles that govern the operation of Genetic Algorithms and Evolution. Features are coded onto chromosomes in a novel way which allows weighting information regarding the features to be directly inferred from the gene values. The proposed method is significant in that it addresses several problems concerned with algorithms for feature selection and weighting as well as providing significant advantages such as speed, simplicity and suitability for real-time systems.Keywords: Feature weighting, genetic algorithm, pattern recognition, weightless neuron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18541440 Historical Landscape Affects Present Tree Density in Paddy Field
Authors: Ha T. Pham, Shuichi Miyagawa
Abstract:
Ongoing landscape transformation is one of the major causes behind disappearance of traditional landscapes, and lead to species and resource loss. Tree in paddy fields in the northeast of Thailand is one of those traditional landscapes. Using three different historical time layers, we acknowledged the severe deforestation and rapid urbanization happened in the region. Despite the general thinking of decline in tree density as consequences, the heterogeneous trend of changes in total tree density in three studied landscapes denied the hypothesis that number of trees in paddy field depend on the length of land use practice. On the other hand, due to selection of planting new trees on levees, existence of trees in paddy field now relies on their values for human use. Besides, changes in land use and landscape structure had a significant impact on decision of which tree density level is considered as suitable for the landscape.
Keywords: Aerial photographs, land use change, traditional landscape, tree in paddy fields.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18641439 3D-Vehicle Associated Research Fields for Smart City via Semantic Search Approach
Authors: Haluk Eren, Mucahit Karaduman
Abstract:
This paper presents 15-year trends for scientific studies in a scientific database considering 3D and vehicle words. Two words are selected to find their associated publications in IEEE scholar database. Both of keywords are entered individually for the years 2002, 2012, and 2016 on the database to identify the preferred subjects of researchers in same years. We have classified closer research fields after searching and listing. Three years (2002, 2012, and 2016) have been investigated to figure out progress in specified time intervals. The first one is assumed as the initial progress in between 2002-2012, and the second one is in 2012-2016 that is fast development duration. We have found very interesting and beneficial results to understand the scholars’ research field preferences for a decade. This information will be highly desirable in smart city-based research purposes consisting of 3D and vehicle-related issues.
Keywords: Vehicle, 3D, smart city, scholarly search, semantic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882