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Abstract—This paper presents a comparative study of fundamental
similarity functions for Siamese networks in semantic textual
similarity (STS) tasks. We evaluate various similarity functions
using the STS Benchmark dataset, analyzing their performance
and stability. Additionally, we present a multi-objective approach
for optimal threshold selection. Our findings provide insights
into the effectiveness of different similarity functions and offer
a straightforward method for threshold selection optimization,
contributing to the advancement of Siamese network architectures
in STS applications.
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I. INTRODUCTION

MEASURING semantic textual similarity (STS) is a

fundamental problem in Natural Language Processing

(NLP), with applications ranging from question answering

and information retrieval to text summarization and machine

translation evaluation [1]. The goal of STS is to quantify the

degree of semantic equivalence between two pieces of text,

typically between two sentences. The accurate measurement

of semantic similarity is crucial for tasks that require

understanding the context and language nuances.

Traditional approaches to STS have relied on hand-crafted

features and rules, which can be brittle and hard to generalize

[2], [3], [4], [5]. In recent years, deep learning techniques,

particularly neural network models, have shown remarkable

success in capturing semantic relationships in text data.

Among these models, Siamese networks have emerged as a

powerful architecture for learning semantic similarities in an

end-to-end fashion [6].

Siamese networks consist of two or more identical

subnetworks (referred to as twins) that share parameters and

encode input samples independently. The encoded vector

representations are then compared using a similarity function

to produce a similarity score between the inputs. The network

is trained on pairs of samples with known similarity labels,

learning to produce higher scores for similar pairs and lower

scores for dissimilar pairs.

While Siamese networks have demonstrated promising

results on STS tasks, the choice of similarity function plays a

crucial role in their performance [7], [8]. Different similarity

K. Boris* and K. Fedor are with the Department of Computer and Electrical
Engineering, Hong Kong University of Science and Technology, School of
Engineering Clear Water Bay, Kowloon, Hong Kong SAR, 99907 and with
Sparcus Technologies Limited, 50 Stanley Street, Central, Hong Kong SAR,
999077 (*corresponding author, e-mail: bkriuk@connect.ust.hk).

functions capture different aspects of the relationship between

the encoded representations, and their suitability may vary

depending on the characteristics of the data and the specific

STS task at hand.

In this paper, we present a comprehensive comparative study

of various similarity functions for Siamese networks in the

context of STS tasks. We evaluate and analyze the performance

of fundamental widely used similarity functions. Our study

aims to provide insights into the performance stability of

these similarity functions, their impact on the effectiveness

of Siamese networks for STS tasks, and introduce an effective

and straightforward method for optimal threshold selection.

Our contributions in this paper are threefold: using the

widely recognized STS Benchmark dataset [9], (1) we

provide a comprehensive evaluation and analysis of similarity

functions for Siamese networks on STS, (2) we calculate

optimal thresholds with different metrics, and (3) we introduce

a new straightforward multi-objective approach for optimal

threshold selection for similarity functions and show its

effectiveness.

II. RELATED WORK

Siamese networks have been widely adopted for learning

similarity metrics from data in various domains, including

natural language processing tasks such as semantic textual

similarity (STS) [10]. In the context of STS, several studies

have investigated the use of different similarity functions

within the Siamese architecture.

One of the most commonly used similarity functions is

cosine similarity, which measures the cosine of the angle

between two vector representations. Neculoiu et al. [11]

employed a Siamese network with cosine similarity for STS

tasks, evaluating different text encoding methods such as word

embeddings and contextualized embeddings from pre-trained

language models.

Another popular choice is the Pearson correlation

coefficient, which measures the linear correlation between

two vectors. Wang et al. [12] developed a Siamese

network that used Pearson correlation as the similarity

function, incorporating external knowledge from WordNet

and ConceptNet to improve performance on challenging STS

datasets.

Beyond cosine similarity and Pearson correlation,

researchers have explored customized similarity functions

tailored for Siamese networks in STS tasks. Reimers and
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Gurevych [13] introduced the SBERT (Sentence-BERT)

model, which uses a combination of cosine similarity and

Pearson correlation as the similarity function within a Siamese

network trained on natural language inference data.

Later, Xu et al. [14] proposed the Smooth Inverse Frequency

(SIF) similarity function, which incorporates information

about the frequency of words and phrases. Their experiments

showed that the SIF similarity outperformed cosine similarity

and Pearson correlation on certain STS datasets.

Pushing the fundamental similarity function performance

understanding further, Jiao et al. [15] introduced a new

similarity function called the Adaptive Margin Cosine

Similarity (AMCS), which dynamically adjusts the margin

based on the similarity between the input samples. Their

results demonstrated the effectiveness of the AMCS compared

to other similarity functions.

III. ANALYSIS OF FUNDAMENTAL SIMILARITY

FUNCTIONS

We chose identical model architectures to train the Siamese

RNN on the same data and compare the output vectors with

multiple similarity functions. We selected Euclidean distance,

Canberra distance, Dice coefficient, Hamming distance,

Jaccard similarity, Manhattan distance, Minkowski distance,

Cosine similarity and Pearson correlation coefficient for our

study due to their fundamental nature and wide applicability

in measuring similarity between vectors.

The loaded data were split into training and validation

sets, with the validation set comprising 20% of the original

data. The sentences were tokenized and padded to ensure a

consistent length. Notably, the dataset’s similarity scores were

normalized to a range between 0 and 1 to facilitate the model’s

training and evaluation.

The Siamese RNN architecture consisted of two input

layers, a shared Embedding layer, a shared Long Short-Term

Memory (LSTM) layer, and a Lambda layer that computed the

similarity score between the encoded representations of the

two input sentences using the chosen similarity function. The

Siamese RNN model was compiled with a mean squared error

loss function and the Adam optimizer. The model architecture

is illustrated in Fig. 1.

Fig. 1 The Model Architecture

For the validation set, we experimented with threshold

values ranging from 0.1 to 0.9 in increments of 0.1. The

best threshold was selected based on the highest F1 Score,

Matthews Correlation Coefficient (MCC), and Area Under

the Receiver Operating Characteristic (AUC ROC) curve. The

results of this threshold optimization process are summarized

in Tables I-III.

The results demonstrate that the Pearson correlation

coefficient achieves the highest F1 Score of 91.4% at the

threshold of 0.6 on the dataset, indicating its effectiveness in

capturing the semantic similarity between sentence pairs. In

contrast, the Dice coefficient peaks lowest at a threshold of

0.1, with an F1 Score of only 0.268, suggesting its limited

performance for this task.

Interestingly, due to their mathematical nature,

distance-based measures such as Canberra distance, Dice

coefficient, Minkowski distance, and Hamming distance tend

to achieve their best F1 Score results closer to the studied

threshold range borders, either at the lower end (0.1) or

the higher end (0.9). This behavior can be attributed to the

inherent properties of these distance metrics, which may not

align well with the underlying distribution of similarity scores

in the dataset.

The superior performance of the Pearson correlation

coefficient can be attributed to its ability to capture linear

relationships between the encoded representations of the input

sentences. By measuring the degree of correlation between

these representations, it can effectively quantify their semantic

similarity, leading to a more accurate classification of sentence

pairs as similar or dissimilar.

The analysis of the Matthews Correlation Coefficient

(MCC) results provides further insights into the performance

of various similarity measures on the dataset. The MCC,

known for its effectiveness in evaluating binary classifications

even with imbalanced datasets, offers a complementary

perspective to the F1 Score analysis.

The Pearson correlation coefficient demonstrates high-level

once again, achieving the highest MCC value of 0.382 at

a threshold of 0.5. This result reinforces the measure’s

effectiveness in capturing semantic similarities between

sentence pairs, as it shows a stronger correlation between

the predicted and actual classifications compared to other

measures. The Pearson correlation’s ability to detect linear

relationships in the encoded sentence representations proves

beneficial not only in terms of precision and recall (as

indicated by the F1 Score) but also in overall classification

accuracy and balance between true and false positives and

negatives.

The Cosine similarity demonstrates superior performance,

achieving the highest MCC value of 0.455 at a threshold

of 0.5. This result underscores the measure’s effectiveness

in capturing semantic similarities between sentence pairs,

as it shows a stronger correlation between the predicted

and actual classifications compared to other measures. The

cosine similarity’s ability to measure the cosine of the angle

between two vectors in a multi-dimensional space proves

highly beneficial, not only in terms of precision and recall (as

indicated by the F1 Score) but also in overall classification

accuracy and balance between true and false positives and

negatives.
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TABLE I
PERFORMANCE EVALUATION OF F1 SCORE FOR DIFFERENT OPTIMAL THRESHOLDS AND SIMILARITY FUNCTIONS

Euclidean Canberra Dice Hamming Jaccard Manhattan Minkowski Pearson Cosine
Distance Distance Coefficient Distance Similarity Distance Distance correlation coefficient Similarity

0.1 0.169 0.566 0.268 0.137 0.624 0.137 0.566 0.642 0.631
0.2 0.229 0.561 0.131 0.333 0.666 0.199 0.549 0.674 0.667
0.3 0.383 0.546 0.131 0.479 0.739 0.307 0.526 0.729 0.715
0.4 0.471 0.506 0.068 0.549 0.821 0.506 0.437 0.821 0.779
0.5 0.578 0.396 0.068 0.576 0.844 0.551 0.333 0.905 0.847
0.6 0.615 0.269 0.037 0.561 0.777 0.645 0.271 0.914 0.854
0.7 0.629 0.249 0.035 0.596 0.632 0.618 0.151 0.842 0.842
0.8 0.619 0.033 0.035 0.618 0.411 0.611 0.112 0.744 0.744
0.9 0.618 0.000 0.000 0.623 0.137 0.595 0.063 0.457 0.541

TABLE II
PERFORMANCE EVALUATION OF MCC FOR DIFFERENT OPTIMAL THRESHOLDS AND SIMILARITY FUNCTIONS

Euclidean Canberra Dice Hamming Jaccard Manhattan Minkowski Pearson Cosine
Distance Distance Coefficient Distance Similarity Distance Distance correlation coefficient Similarity

0.1 0.032 -0.032 0.016 0.032 0.176 0.031 -0.031 0.225 0.183
0.2 0.052 -0.027 0.018 0.065 0.271 0.029 -0.039 0.283 0.253
0.3 0.053 0.007 0.017 0.091 0.298 0.056 -0.094 0.329 0.342
0.4 0.037 -0.012 0.019 0.059 0.332 0.058 -0.078 0.333 0.356
0.5 0.008 -0.018 0.023 -0.011 0.350 0.031 -0.036 0.382 0.455
0.6 0.035 -0.051 0.028 0.002 0.317 0.048 -0.060 0.373 0.382
0.7 0.029 -0.045 0.000 0.034 0.305 0.043 -0.068 0.374 0.354
0.8 0.026 0.008 0.000 0.064 0.166 0.042 -0.043 0.301 0.313
0.9 0.018 0.000 0.000 0.059 0.077 0.012 -0.018 0.192 0.214

In contrast, the Minkowski distance exhibits the poorest

performance with a peak MCC of -0.018. This negative MCC

value suggests that the Minkowski distance’s predictions are

slightly worse than random chance for this particular task.

The poor performance of Minkowski distance can be attributed

to its sensitivity to the scale of the features and its potential

inability to capture the nuanced semantic relationships present

in the encoded sentence representations.

Similar to the F1 Score analysis, other distance-based

measures like Canberra distance, Dice coefficient, and

Hamming distance likely show varying degrees of suboptimal

performance in the MCC metric. These measures may struggle

to align with the underlying distribution of similarity scores

in the dataset, resulting in lower MCC values compared to the

Pearson correlation coefficient.

The disparity between the highest and lowest MCC values

(0.382 vs. -0.018) underscores the significant variation in the

effectiveness of different similarity measures for this semantic

textual similarity task, highlighting the importance of choosing

an appropriate similarity measure that aligns well with the

nature of the data and the specific requirements of the task at

hand.

Moreover, the MCC results provide a more nuanced view of

the measures’ performance, particularly in handling potential

class imbalances in the dataset. The higher MCC value of

the Pearson correlation coefficient indicates its robustness in

correctly classifying both similar and dissimilar sentence pairs,

maintaining a good balance between sensitivity and specificity.

The analysis of the Area Under the Receiver Operating

Characteristic curve (AUC ROC) results provides valuable

insights into the discriminative power of various similarity

measures across different classification thresholds. This metric

is particularly useful as it assesses the performance of the

measures independently of any specific threshold, offering a

comprehensive view of their effectiveness.

The Pearson correlation coefficient once again demonstrates

its superiority, achieving the highest AUC ROC value of 0.698

at a threshold of 0.5. The Cosine similarity achieves a strong

0.694 as well. These results further solidifies the Pearson

correlation’s and the Cosine similarity’s effectiveness in the

task of semantic textual similarity.

In contrast, the Canberra distance exhibits the 2nd lowest

peak again with AUC ROC value of 0.518. This result suggests

that the Canberra distance’s ability to discriminate between

similar and dissimilar sentence pairs is only marginally better

than random chance (which would yield an AUC ROC of 0.5).

The poor performance of the Canberra distance may be due

to its sensitivity to small changes when coordinate values are

close to zero, which might not be suitable for the distribution

of features in the encoded sentence representations.

Both the Cosine similarity and the Pearson correlation

coefficient significantly outperform other measures,

particularly the Minkowski distance, in its ability to

discriminate between similar and dissimilar sentence

pairs across various thresholds. This consistent superior

performance across different evaluation metrics (F1 Score,

MCC, and AUC ROC) strongly supports the choice of

these two similarity functions for STS tasks. Conversely, the

extremely poor performance of the Minkowski distance, with

an AUC ROC near 0.5, strongly cautions against its use in

this context, as it demonstrates no meaningful discriminative

power for semantic similarity judgments. Finalizing the

threshold selection for each similarity function, we get the

results demonstrated in Table IV.

It can be observed that the Pearson correlation coefficient

emerges as the superior measure consistently across all
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TABLE III
PERFORMANCE EVALUATION OF AUC ROC FOR DIFFERENT OPTIMAL THRESHOLDS AND SIMILARITY FUNCTIONS

Euclidean Canberra Dice Hamming Jaccard Manhattan Minkowski Pearson Cosine
Distance Distance Coefficient Distance Similarity Distance Distance correlation coefficient Similarity

0.1 0.505 0.495 0.500 0.507 0.529 0.504 0.495 0.541 0.524
0.2 0.504 0.489 0.500 0.534 0.557 0.509 0.491 0.587 0.554
0.3 0.504 0.505 0.501 0.525 0.585 0.510 0.498 0.624 0.588
0.4 0.498 0.508 0.503 0.513 0.646 0.519 0.491 0.658 0.642
0.5 0.501 0.518 0.522 0.506 0.649 0.520 0.488 0.698 0.694
0.6 0.522 0.502 0.523 0.487 0.625 0.521 0.476 0.693 0.687
0.7 0.501 0.508 0.501 0.513 0.603 0.540 0.447 0.668 0.685
0.8 0.501 0.495 0.500 0.519 0.563 0.520 0.478 0.659 0.653
0.9 0.485 0.499 0.500 0.526 0.530 0.507 0.473 0.614 0.610

TABLE IV
RESULTS OF OPTIMAL THRESHOLD SELECTION

Euclidean Canberra Dice Hamming Jaccard Manhattan Minkowski Pearson Cosine
Distance Distance Coefficient Distance Similarity Distance Distance correlation coefficient Similarity

F1 Score 0.7 0.1 0.1 0.9 0.5 0.6 0.1 0.6 0.6
MCC 0.3 0.8 0.6 0.3 0.5 0.4 0.9 0.5 0.5

AUC ROC 0.6 0.5 0.6 0.2 0.5 0.7 0.3 0.5 0.5

three metrics, demonstrating robust performance in capturing

semantic similarities between sentence pairs. It achieves the

highest F1 Score of 91.4% at a threshold of 0.6, the highest

MCC of 0.382 at a threshold of 0.5, and the highest AUC ROC

of 0.698. This consistent excellence can be attributed to its

ability to effectively capture linear relationships in the encoded

sentence representations, aligning well with the underlying

structure of semantic similarities in the dataset.

The Cosine similarity demonstrates a solid performance

across all metrics, handling dataset imbalance problems better

than other similarity functions with the highest MCC score

value of 0.455. This consistent excellence can be attributed

to its ability to effectively measure the cosine of the angle

between two vectors in a multi-dimensional space, aligning

well with the underlying structure of semantic similarities in

the dataset.

The most stable performance is achieved by the Jaccard

similarity across all metrics. This stability of the Jaccard

similarity is particularly noteworthy in the context of practical

applications. While it may not achieve the highest scores,

its consistent performance across different evaluation criteria

suggests a robust and dependable measure for semantic

similarity tasks. The uniform optimal threshold of 0.5

simplifies implementation and reduces the need for threshold

tuning, which can be advantageous in real-world scenarios

where simplicity and reliability are valued. The Jaccard

similarity’s stable performance can be attributed to its

fundamental property of measuring the overlap between sets.

In the context of semantic textual similarity, this translates to

effectively capturing the shared semantic components between

sentence pairs, regardless of the specific evaluation metric used

[16], [17]. This consistency across metrics suggests that the

Jaccard similarity aligns well with the underlying distribution

of similarity in the dataset, making it a versatile choice for

various evaluation scenarios.

In contrast, distance-based measures such as the Minkowski

distance, Canberra distance, and Dice coefficient consistently

underperform across all metrics. The Minkowski distance, in

particular, shows the poorest performance, with its AUC ROC

(0.498) indicating no better discriminative power than random

chance. These results suggest that distance-based measures

may not be well-suited for this specific semantic similarity

task, possibly due to their sensitivity to feature scales and

inability to capture nuanced semantic relationships.

The significant performance gap between the Pearson

correlation coefficient and other measures underscores the

critical importance of selecting an appropriate similarity

measure for semantic textual similarity tasks. The choice

of measure can dramatically impact the model’s overall

performance, reliability, and ability to generalize [18], [19].

Furthermore, the analysis reveals interesting patterns in the

behavior of different measures. Distance-based measures tend

to achieve their best results at extreme thresholds, suggesting

a misalignment with the underlying distribution of similarity

scores in the dataset. This observation highlights the need

for careful consideration of the mathematical properties of

similarity measures in relation to the specific characteristics

of the task and dataset at hand.

In conclusion, the fundamental similarity functions’ analysis

provides strong support for the use of the Pearson

correlation coefficient and the Cosine similarity in scenarios

where maximizing performance metrics is the primary

goal. However, it also highlights the Jaccard similarity

as an excellent choice when stability and consistency

across different evaluation criteria are prioritized. The stable

performance of the Jaccard similarity, coupled with its

consistent optimal threshold, makes it a reliable and practical

option for many real-world applications of semantic textual

similarity.

Conversely, the poor performance of distance-based

measures, especially the Minkowski distance, cautions against

their use in the STS context. The inherent limitations

of distance-based functions in handling semantic tasks

are further highlighted by the findings. Regardless of the

threshold selection approach, these metrics struggle to achieve

the same level of performance as their similarity-based
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counterparts. This underscores the need for more sophisticated

techniques that can better account for the complex and

context-dependent nature of textual similarity, moving beyond

simple distance-based comparisons.

IV. MULTI-OBJECTIVE APPROACH FOR OPTIMAL

THRESHOLD SELECTION

After the fundamental similarity functions’ analysis

completion, we present a multi-objective approach for optimal

threshold selection in similarity functions that demonstrates

enhanced effectiveness through its ability to find a robust

compromise among multiple performance metrics. Our method

combines the strengths of three widely recognized evaluation

metrics: F1 Score, Matthews Correlation Coefficient (MCC),

and Area Under the Receiver Operating Characteristic curve

(AUC ROC) that we used above for similarity function

performance analysis.

The core strength of our approach lies in its capacity to

synthesize information from multiple metrics, each capturing

different aspects of model performance:

1) F1 Score: Balances precision and recall, crucial for

tasks where both false positives and false negatives are

significant [13], [20].

2) MCC: Provides a balanced measure of both classification

and misclassification rates, particularly valuable in

imbalanced datasets [11], [17], [21].

3) AUC ROC: Offers a threshold-independent measure of

discriminative ability across all possible classification

thresholds [8], [9], [22].

By combining the peak threshold values for the range (0.1

to 0.9) of these metrics, our method achieves a compromise

that addresses the limitations of relying on any single metric.

The compromise is reached by applying a weighted average

formula, as detailed in (1):

Multi-Objective Optimal Threshold (T) =

F1 Score (T) + MCC (T) + AUC ROC (T)

3
(1)

The multi-objective nature of our approach contributes to

increased robustness in several ways:

1) Mitigation of Metric-Specific Biases: Each evaluation

metric has its own biases and limitations. By combining

multiple metrics, our method reduces the impact of these

individual biases, leading to a more balanced and robust

threshold selection.

2) Adaptability to Data Characteristics: The inclusion of

diverse metrics allows the method to adapt to various

data distributions and similarity function behaviors. This

adaptability is crucial when dealing with complex STS

datasets, where semantic similarity can manifest in

different forms.

3) Resilience to Outliers: The weighted aggregation

approach inherently reduces the influence of potential

outlier thresholds, as it prioritizes consensus among

metrics. This feature enhances the method’s resilience

to anomalies or noise in the data [23].

4) Comprehensive Performance Evaluation: By considering

multiple aspects of performance simultaneously, the

method provides a more comprehensive evaluation of

threshold effectiveness. This holistic approach is more

likely to identify thresholds that perform well across

various performance criteria, rather than excelling in one

area at the expense of others.

5) Generalization Potential: The compromise-driven nature

of the approach potentially leads to threshold selections

that generalize better across different subsets of data

or related tasks. This is particularly valuable in the

context of semantic textual similarity, where the nature

of similarity can vary across different text types or

domains [10], [24].

Another notable advancement is that our method explores

thresholds from 0.1 to 0.9 with a 0.1 step, allowing for

a granular search of the optimal threshold space. The

fine-grained approach enables the precise identification of

performance optima for each metric, the detailed exploration

of the trade-offs between different performance aspects,

together with the potential discovery of nuanced threshold

values that might be overlooked by coarser approaches [25],

[26].

Based on the previous analysis, we study three most stable

similarity functions that can learn complex relationships on

STS tasks: Jaccard similarity, Pearson correlation coefficient,

and Cosine similarity. Calculating the optimal threshold values

with our approach as well as the metrics, we get results

demonstrated in Table V and Figs. 2-5.

TABLE V
MULTI-OBJECTIVE SELECTION OF OPTIMAL THRESHOLDS

Jaccard Pearson corre- Cosine
similarity lation coefficient Similarity

Threshold 0.500 0.533 0.533
F1 Score 0.844 0.885 0.877

MCC 0.350 0.393 0.419
AUC ROC 0.649 0.701 0.704

The Jaccard similarity demonstrates remarkable consistency

across all metrics which was noted in studies before [27],

[28]. The optimal threshold of 0.5 remains unchanged for F1

Score, MCC, and AUC ROC. This consistency reaffirms the

Jaccard similarity’s stability and reliability in semantic textual

similarity tasks, as we previously noted. The multi-objective

approach does not alter its performance, suggesting that the

Jaccard similarity’s optimal threshold is robust across different

evaluation criteria.

The Pearson correlation coefficient shows a nuanced

response to the multi-objective threshold. While the F1 Score

experiences a slight decrease from its peak value, it still

maintains a strong performance of 0.865. Notably, both the

MCC and AUC ROC scores show improvement under the

new threshold. This trade-off suggests that the multi-objective

approach has successfully balanced the different aspects

of performance, slightly sacrificing F1 Score to gain

improvements in other metrics. The overall enhancement

in MCC and AUC ROC indicates a more balanced and
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Fig. 2 Heatmap of Threshold Selection for Jaccard similarity

Fig. 3 Heatmap of Threshold Selection for Pearson correlation coefficient

generalizable performance across different evaluation criteria

[29], [30].
The Cosine similarity demonstrates the most significant

benefits from the multi-objective threshold approach. It shows

substantial improvements across all three metrics - F1 Score,

MCC, and AUC ROC. This uniform enhancement suggests

that the previous single-metric optimization may have been

suboptimal for cosine similarity. The multi-objective approach

has effectively identified a threshold that better captures the

strengths of Cosine similarity across multiple performance

aspects, potentially uncovering its true capabilities in semantic

textual similarity tasks.
These results highlight the effectiveness of the

multi-objective threshold selection approach, particularly

for measures like the Pearson correlation coefficient and

Cosine similarity. The method’s ability to find a balance

between different performance metrics is evident, leading

to more robust and more generalizable threshold selections.

For the Jaccard similarity, the approach confirms its inherent

stability across different evaluation criteria.

V. CONCLUSION

Our study presents a comprehensive analysis of various

similarity measures for semantic textual similarity tasks,

utilizing the STS Benchmark dataset. Our investigation

encompassed a range of traditional similarity functions and

presented a multi-objective approach for optimal threshold

selection. The research findings offer significant insights

into the effectiveness and robustness of different similarity
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Fig. 4 Heatmap of Threshold Selection for Cosine similarity

Fig. 5 Training loss curves

measures, with important implications for both theoretical

understanding and practical applications in natural language

processing.

Key findings from our analysis reveal that the Cosine

similarity and the Pearson correlation coefficient consistently

outperform other measures across multiple evaluation metrics.

This exceptional performance can be attributed to their ability

to effectively capture the angular similarity between vector

representations of sentences, which aligns well with the

semantic structure of the data.

Notably, the Jaccard similarity exhibits remarkable stability,

consistently selecting 0.5 as the optimal threshold across all

evaluation metrics. While not achieving the highest scores,

its uniform performance suggests it as a reliable choice for

applications where consistency and simplicity are prioritized.

In contrast, distance-based measures such as the Minkowski

distance, Canberra distance, and Dice coefficient consistently

underperform, indicating their limited suitability for this

specific semantic similarity task. This underperformance

highlights the importance of choosing appropriate similarity

measures that align with the nature of the semantic

relationships in the data.

Our straightforward multi-objective approach for threshold

selection proves to be particularly effective. By synthesizing

information from F1 Score, MCC, and AUC ROC, this method

achieves a robust compromise among multiple performance

aspects. The approach’s ability to balance different metrics

leads to more generalizable threshold selections, addressing

the limitations of single-metric optimizations.

The granular threshold exploration from 0.1 to 0.9 with a 0.1

step allows for precise identification of performance optima,

revealing nuanced threshold values that might be overlooked

by coarser approaches. This fine-grained analysis provides

deeper insights into the behavior of different similarity

measures across various thresholds.

Future research directions could explore the application

of these findings to other datasets and domains, investigate

the integration of these similarity measures with more

advanced machine learning techniques, and further refine the

multi-objective approach to include additional performance

metrics or adaptive weighting schemes.

These findings contribute significantly to the ongoing

development of more accurate and reliable semantic textual

similarity systems, with potential applications ranging from

information retrieval and text classification to more advanced

natural language understanding tasks.
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