Search results for: Human motion recognition
2976 Initialization Method of Reference Vectors for Improvement of Recognition Accuracy in LVQ
Authors: Yuji Mizuno, Hiroshi Mabuchi
Abstract:
Initial values of reference vectors have significant influence on recognition accuracy in LVQ. There are several existing techniques, such as SOM and k-means, for setting initial values of reference vectors, each of which has provided some positive results. However, those results are not sufficient for the improvement of recognition accuracy. This study proposes an ACO-used method for initializing reference vectors with an aim to achieve recognition accuracy higher than those obtained through conventional methods. Moreover, we will demonstrate the effectiveness of the proposed method by applying it to the wine data and English vowel data and comparing its results with those of conventional methods.
Keywords: Clustering, LVQ, ACO, SOM, k-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12622975 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses
Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas
Abstract:
We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.
Keywords: Transient noise pulses, noise reduction, dynamic time warping, speech recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19472974 Posture Recognition using Combined Statistical and Geometrical Feature Vectors based on SVM
Authors: Omer Rashid, Ayoub Al-Hamadi, Axel Panning, Bernd Michaelis
Abstract:
It is hard to percept the interaction process with machines when visual information is not available. In this paper, we have addressed this issue to provide interaction through visual techniques. Posture recognition is done for American Sign Language to recognize static alphabets and numbers. 3D information is exploited to obtain segmentation of hands and face using normal Gaussian distribution and depth information. Features for posture recognition are computed using statistical and geometrical properties which are translation, rotation and scale invariant. Hu-Moment as statistical features and; circularity and rectangularity as geometrical features are incorporated to build the feature vectors. These feature vectors are used to train SVM for classification that recognizes static alphabets and numbers. For the alphabets, curvature analysis is carried out to reduce the misclassifications. The experimental results show that proposed system recognizes posture symbols by achieving recognition rate of 98.65% and 98.6% for ASL alphabets and numbers respectively.Keywords: Feature Extraction, Posture Recognition, Pattern Recognition, Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15232973 Personalizing Human Physical Life Routines Recognition over Cloud-Based Sensor Data Via Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS (Micro-Electro-Mechanical Systems) sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study presents state-of-the-art techniques for recognizing static and dynamic patterns and forecasting those challenging activities from multi-fused sensors. Furthermore, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, raw data were processed with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.
Keywords: Artificial intelligence, machine learning, gait analysis, local binary pattern, statistical features, micro-electro-mechanical systems, maximum relevance and minimum redundancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292972 Finger Vein Recognition using PCA-based Methods
Authors: Sepehr Damavandinejadmonfared, Ali Khalili Mobarakeh, Mohsen Pashna, , Jiangping Gou Sayedmehran Mirsafaie Rizi, Saba Nazari, Shadi Mahmoodi Khaniabadi, Mohamad Ali Bagheri
Abstract:
In this paper a novel algorithm is proposed to merit the accuracy of finger vein recognition. The performances of Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), and Kernel Entropy Component Analysis (KECA) in this algorithm are validated and compared with each other in order to determine which one is the most appropriate one in terms of finger vein recognition.Keywords: Biometrics, finger vein recognition, PrincipalComponent Analysis (PCA), Kernel Principal Component Analysis(KPCA), Kernel Entropy Component Analysis (KPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26852971 Adopting Procedural Animation Technology to Generate Locomotion of Quadruped Characters in Dynamic Environments
Authors: Zongyou He, Bashu Tsai, Chinhung Ko, Tainchi Lu
Abstract:
A procedural-animation-based approach which rapidly synthesize the adaptive locomotion for quadruped characters that they can walk or run in any directions on an uneven terrain within a dynamic environment was proposed. We devise practical motion models of the quadruped animals for adapting to a varied terrain in a real-time manner. While synthesizing locomotion, we choose the corresponding motion models by means of the footstep prediction of the current state in the dynamic environment, adjust the key-frames of the motion models relying on the terrain-s attributes, calculate the collision-free legs- trajectories, and interpolate the key-frames according to the legs- trajectories. Finally, we apply dynamic time warping to each part of motion for seamlessly concatenating all desired transition motions to complete the whole locomotion. We reduce the time cost of producing the locomotion and takes virtual characters to fit in with dynamic environments no matter when the environments are changed by users.Keywords: Dynamic environment, motion synthesis, procedural animation, quadruped locomotion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18942970 Tele-Operated Anthropomorphic Arm and Hand Design
Authors: Namal A. Senanayake, Khoo B. How, Quah W. Wai
Abstract:
In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built as a versatile robotic arm system. The robot has the ability to manipulate objects such as pick and place operations. It is also able to function by itself, in standalone mode. Firstly, the robotic arm is built in order to interface with a personal computer via a serial servo controller circuit board. The circuit board enables user to completely control the robotic arm and moreover, enables feedbacks from user. The control circuit board uses a powerful integrated microcontroller, a PIC (Programmable Interface Controller). The PIC is firstly programmed using BASIC (Beginner-s All-purpose Symbolic Instruction Code) and it is used as the 'brain' of the robot. In addition a user friendly Graphical User Interface (GUI) is developed as the serial servo interface software using Microsoft-s Visual Basic 6. The second part of the project is to use speech recognition control on the robotic arm. A speech recognition circuit board is constructed with onboard components such as PIC and other integrated circuits. It replaces the computers- Graphical User Interface. The robotic arm is able to receive instructions as spoken commands through a microphone and perform operations with respect to the commands such as picking and placing operations.Keywords: Tele-operated Anthropomorphic Robotic Arm and Hand, Robot Motion System, Serial Servo Controller, Speech Recognition Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17682969 Hybrid Modeling Algorithm for Continuous Tamil Speech Recognition
Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi
Abstract:
In this paper, Fuzzy C-Means clustering with Expectation Maximization-Gaussian Mixture Model based hybrid modeling algorithm is proposed for Continuous Tamil Speech Recognition. The speech sentences from various speakers are used for training and testing phase and objective measures are between the proposed and existing Continuous Speech Recognition algorithms. From the simulated results, it is observed that the proposed algorithm improves the recognition accuracy and F-measure up to 3% as compared to that of the existing algorithms for the speech signal from various speakers. In addition, it reduces the Word Error Rate, Error Rate and Error up to 4% as compared to that of the existing algorithms. In all aspects, the proposed hybrid modeling for Tamil speech recognition provides the significant improvements for speechto- text conversion in various applications.
Keywords: Speech Segmentation, Feature Extraction, Clustering, HMM, EM-GMM, CSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21422968 Enhancing Human-Computer Interaction and Feedback in Touchscreen Icon
Authors: Hsinfu Huang Li-Hao Chen
Abstract:
In order to enhance the usability of the human computer interface (HCI) on the touchscreen, this study explored the optimal tactile depth and effect of visual cues on the user-s tendency to touch the touchscreen icons. The experimental program was designed on the touchscreen in this study. Results indicated that the ratio of the icon size to the tactile depth was 1:0.106. There were significant effects of experienced users and novices on the tactile feedback depth (p < 0.01). In addition, the results proved that the visual cues provided a feedback that helped to guide the user-s touch icons accurately and increased the capture efficiency for a tactile recognition field. This tactile recognition field was 18.6 mm in length. There was consistency between the experienced users and novices under the visual cue effects. Finally, the study developed an applied design with touch feedback for touchscreen icons.
Keywords: HCI, Touchscreen icon, Touch feedback, Optimaltactile depth, Visual cues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22162967 Activity Recognition by Smartphone Accelerometer Data Using Ensemble Learning Methods
Authors: Eu Tteum Ha, Kwang Ryel Ryu
Abstract:
As smartphones are equipped with various sensors, there have been many studies focused on using these sensors to create valuable applications. Human activity recognition is one such application motivated by various welfare applications, such as the support for the elderly, measurement of calorie consumption, lifestyle and exercise patterns analyses, and so on. One of the challenges one faces when using smartphone sensors for activity recognition is that the number of sensors should be minimized to save battery power. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we adopt to deal with this twelve-class problem uses various methods. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point, but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window. The experiments compared the performance of four kinds of basic multi-class classifiers and the performance of four kinds of ensemble learning methods based on three kinds of basic multi-class classifiers. The results show that while the method with the highest accuracy is ECOC based on Random forest.
Keywords: Ensemble learning, activity recognition, smartphone accelerometer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21782966 Dynamic Time Warping in Gait Classificationof Motion Capture Data
Authors: Adam Świtoński, Agnieszka Michalczuk, Henryk Josiński, Andrzej Polański, KonradWojciechowski
Abstract:
The method of gait identification based on the nearest neighbor classification technique with motion similarity assessment by the dynamic time warping is proposed. The model based kinematic motion data, represented by the joints rotations coded by Euler angles and unit quaternions is used. The different pose distance functions in Euler angles and quaternion spaces are considered. To evaluate individual features of the subsequent joints movements during gait cycle, joint selection is carried out. To examine proposed approach database containing 353 gaits of 25 humans collected in motion capture laboratory is used. The obtained results are promising. The classifications, which takes into consideration all joints has accuracy over 91%. Only analysis of movements of hip joints allows to correctly identify gaits with almost 80% precision.
Keywords: Biometrics, dynamic time warping, gait identification, motion capture, time series classification, quaternion distance functions, attribute ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26132965 Motion Parameter Estimation via Dopplerlet-Transform-Based Matched Field Processing
Authors: Hongyan Dai
Abstract:
This work presents a matched field processing (MFP) algorithm based on Dopplerlet transform for estimating the motion parameters of a sound source moving along a straight line and with a constant speed by using a piecewise strategy, which can significantly reduce the computational burden. Monte Carlo simulation results and an experimental result are presented to verify the effectiveness of the algorithm advocated.Keywords: matched field processing; Dopplerlet transform; motion parameter estimation; piecewise strategy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12292964 Sentence Modality Recognition in French based on Prosody
Authors: Pavel Král, Jana Klečková, Christophe Cerisara
Abstract:
This paper deals with automatic sentence modality recognition in French. In this work, only prosodic features are considered. The sentences are recognized according to the three following modalities: declarative, interrogative and exclamatory sentences. This information will be used to animate a talking head for deaf and hearing-impaired children. We first statistically study a real radio corpus in order to assess the feasibility of the automatic modeling of sentence types. Then, we test two sets of prosodic features as well as two different classifiers and their combination. We further focus our attention on questions recognition, as this modality is certainly the most important one for the target application.Keywords: Automatic sentences modality recognition (ASMR), fundamental frequency (F0), energy, modal corpus, prosody.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16822963 Real-Time Hand Tracking and Gesture Recognition System Using Neural Networks
Authors: Tin Hninn Hninn Maung
Abstract:
This paper introduces a hand gesture recognition system to recognize real time gesture in unstrained environments. Efforts should be made to adapt computers to our natural means of communication: Speech and body language. A simple and fast algorithm using orientation histograms will be developed. It will recognize a subset of MAL static hand gestures. A pattern recognition system will be using a transforrn that converts an image into a feature vector, which will be compared with the feature vectors of a training set of gestures. The final system will be Perceptron implementation in MATLAB. This paper includes experiments of 33 hand postures and discusses the results. Experiments shows that the system can achieve a 90% recognition average rate and is suitable for real time applications.
Keywords: Hand gesture recognition, Orientation Histogram, Myanmar Alphabet Language, Perceptronnetwork, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47042962 The Performance Improvement of Automatic Modulation Recognition Using Simple Feature Manipulation, Analysis of the HOS, and Voted Decision
Authors: Heroe Wijanto, Sugihartono, Suhartono Tjondronegoro, Kuspriyanto
Abstract:
The use of High Order Statistics (HOS) analysis is expected to provide so many candidates of features that can be selected for pattern recognition. More candidates of the feature can be extracted using simple manipulation through a specific mathematical function prior to the HOS analysis. Feature extraction method using HOS analysis combined with Difference to the Nth-Power manipulation has been examined in application for Automatic Modulation Recognition (AMR) to perform scheme recognition of three digital modulation signal, i.e. QPSK-16QAM-64QAM in the AWGN transmission channel. The simulation results is reported when the analysis of HOS up to order-12 and the manipulation of Difference to the Nth-Power up to N = 4. The obtained accuracy rate of AMR using the method of Simple Decision obtained 90% in SNR > 10 dB in its classifier, while using the method of Voted Decision is 96% in SNR > 2 dB.Keywords: modulation, automatic modulation recognition, feature analysis, feature manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21242961 Effects of Nanolayer Structure and Brownian Motion of Particles in Thermal Conductivity Enhancement of Nanofluids
Authors: M. Izadi, S. Hossainpour, D. Jalali-Vahid
Abstract:
Nanofluids are novel fluids that are going to have an important role in future industrial thermal device designs. Studies are being predominantly conducted on the mechanism of these heat transfers. The key to this attraction is in the increase in thermal conductivity brought about by the Nanofluids compared with the base fluid. Different models have been proposed for calculation of effective thermal conduction that has been gradually modified. In this investigation effect of nanolayer structure and Brownian motion of particles are studied and a new modified thermal conductivity model is proposed. Temperature, concentration, nanolayer thickness and particle size are taken as variables and their effect are studied simultaneously on the thermal conductivity of the fluids, showing the concentration of the nanoparticles to affect the nanolayer thickness which also affects the Brownian motion.Keywords: Relative thermal conductivity, Brownian motion, Nanolayer structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16312960 Word Recognition and Learning based on Associative Memories and Hidden Markov Models
Authors: Zöhre Kara Kayikci, Günther Palm
Abstract:
A word recognition architecture based on a network of neural associative memories and hidden Markov models has been developed. The input stream, composed of subword-units like wordinternal triphones consisting of diphones and triphones, is provided to the network of neural associative memories by hidden Markov models. The word recognition network derives words from this input stream. The architecture has the ability to handle ambiguities on subword-unit level and is also able to add new words to the vocabulary during performance. The architecture is implemented to perform the word recognition task in a language processing system for understanding simple command sentences like “bot show apple".Keywords: Hebbian learning, hidden Markov models, neuralassociative memories, word recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15282959 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR) of 0.04% and the highest False Rejection Rate (FRR) of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.
Keywords: Biometrics, dense networks, identification rate, train/test split ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5492958 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.
Keywords: Canny pruning, hand recognition, machine learning, skin tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13112957 Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet
Authors: N. Bachok, N. L. Aleng, N. M. Arifin, A. Ishak, N. Senu
Abstract:
The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.
Keywords: Boundary layer, Nanofluid, Shrinking sheet, Brownian motion, Thermophoresis, Similarity solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28092956 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition
Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu
Abstract:
In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.Keywords: Biometry, image processing, pattern recognition, speech analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19492955 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation
Authors: Oğuzhan Urhan
Abstract:
In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.
Keywords: Fast motion estimation, low-complexity motion estimation, video coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8582954 An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seongwon Cho
Abstract:
Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an improved illumination normalization method for face recognition. Illumination normalization algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing-based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing the effect of illumination variations. Due to the result of these improvements, face images preprocessed by the proposed illumination normalization method becomes to have more distinctive feature vectors (Gabor feature vectors) for face recognition. Through experiments of face recognition based on Gabor feature vector similarity, the effectiveness of the proposed illumination normalization method is verified.Keywords: Illumination Normalization, Face Recognition, Anisotropic smoothing, Gabor feature vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15532953 Combining Skin Color and Optical Flow for Computer Vision Systems
Authors: Muhammad Raza Ali, Tim Morris
Abstract:
Skin color is an important visual cue for computer vision systems involving human users. In this paper we combine skin color and optical flow for detection and tracking of skin regions. We apply these techniques to gesture recognition with encouraging results. We propose a novel skin similarity measure. For grouping detected skin regions we propose a novel skin region grouping mechanism. The proposed techniques work with any number of skin regions making them suitable for a multiuser scenario.Keywords: Bayesian tracking, chromaticity space, optical flowgesture recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19312952 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investigation
Authors: M. Elassaly
Abstract:
Damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story RC building.Keywords: Damage, frequency content, ground motion, PGA, RC building, seismic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21002951 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14432950 Robust Face Recognition using AAM and Gabor Features
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seoungseon Jeon, Jaemin Kim, Seongwon Cho
Abstract:
In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization method employed in EBGM is based on Gabor jet similarity and is sensitive to initial values. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we devise a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based facial feature localization method with initial points set by the rough facial feature points obtained from AAM, and propose a face recognition algorithm using the devised localization method for facial feature localization and Gabor feature vectors. It is observed through experiments that such a cascaded localization method based on both AAM and Gabor jet similarity is more robust than the localization method based on only Gabor jet similarity. Also, it is shown that the proposed face recognition algorithm using this devised localization method and Gabor feature vectors performs better than the conventional face recognition algorithm using Gabor jet similarity-based localization method and Gabor feature vectors like EBGM.Keywords: Face Recognition, AAM, Gabor features, EBGM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22102949 Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity
Authors: B. Vadiraj, S. N. Omkar, B. Kapil Bharadwaj, Yash Vardhan Gupta
Abstract:
During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.Keywords: Extra vehicular activity, biomechanics, inverse kinematics, human body modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28482948 Multimodal Database of Emotional Speech, Video and Gestures
Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari
Abstract:
People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.Keywords: Body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11282947 Feature Vector Fusion for Image Based Human Age Estimation
Authors: D. Karthikeyan, G. Balakrishnan
Abstract:
Human faces, as important visual signals, express a significant amount of nonverbal info for usage in human-to-human communication. Age, specifically, is more significant among these properties. Human age estimation using facial image analysis as an automated method which has numerous potential real‐world applications. In this paper, an automated age estimation framework is presented. Support Vector Regression (SVR) strategy is utilized to investigate age prediction. This paper depicts a feature extraction taking into account Gray Level Co-occurrence Matrix (GLCM), which can be utilized for robust face recognition framework. It applies GLCM operation to remove the face's features images and Active Appearance Models (AAMs) to assess the human age based on image. A fused feature technique and SVR with GA optimization are proposed to lessen the error in age estimation.
Keywords: Support vector regression, feature extraction, gray level co-occurrence matrix, active appearance models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316