Search results for: Case Based Reasoning technique (CBR).
14898 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.Keywords: Smart structure, Euler-Bernoulli beam theory, Fastoutput sampling feedback control, Finite Element Method, Statespace model, Vibration control, LMI, Model order Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175314897 Expert System for Chose Material used Gears
Authors: E.V. Butilă, F. Gîrbacia
Abstract:
In order to give high expertise the computer aided design of mechanical systems involves specific activities focused on processing two type of information: knowledge and data. Expert rule based knowledge is generally processing qualitative information and involves searching for proper solutions and their combination into synthetic variant. Data processing is based on computational models and it is supposed to be inter-related with reasoning in the knowledge processing. In this paper an Intelligent Integrated System is proposed, for the objective of choosing the adequate material. The software is developed in Prolog – Flex software and takes into account various constraints that appear in the accurate operation of gears.Keywords: Expert System, computer aided design, gear boxdesign, chose material, Prolog, Flex
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169514896 A New Vector Quantization Front-End Process for Discrete HMM Speech Recognition System
Authors: M. Debyeche, J.P Haton, A. Houacine
Abstract:
The paper presents a complete discrete statistical framework, based on a novel vector quantization (VQ) front-end process. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means- DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.
Keywords: Hidden Markov Model, Vector Quantization, Neural Network, Speech Recognition, Arabic Language
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205614895 Electrocardiogram Signal Denoising Using a Hybrid Technique
Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim
Abstract:
This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.Keywords: Hybrid technique, ADTF, DWT, tresholding, ECG signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120014894 De-noising Infrared Image Using OWA Based Filter
Authors: Ruchika, Munish Vashisht, S. Qamar
Abstract:
Detection of small ship is crucial task in many automatic surveillance systems which are employed for security of maritime boundaries of a country. To address this problem, image de-noising is technique to identify the target ship in between many other ships in the sea. Image de-noising technique needs to extract the ship’s image from sea background for the analysis as the ship’s image may submerge in the background and flooding waves. In this paper, a noise filter is presented that is based on fuzzy linguistic ‘most’ quantifier. Ordered weighted averaging (OWA) function is used to remove salt-pepper noise of ship’s image. Results obtained are in line with the results available by other well-known median filters and OWA based approach shows better performance.
Keywords: Linguistic quantifier, impulse noise, OWA filter, median filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93314893 Competency-Based Social Work Practice and Challenges in Child Case Management: Studies in the Districts Social Welfare Services, Malaysia
Authors: S. Brahim, M. S. Mohamad, E. Zakaria, N. Sarnon@Kusenin
Abstract:
This study aimed to explore the practical experience of child welfare caseworkers and professionalism in child case management in Malaysia. This paper discussed the specific social work practice competency and the challenges faced by child caseworkers in the fieldwork. This research was qualitative with grounded theory approach. Four sessions of focused group discussion (FGD) were conducted involving a total of 27 caseworkers (child protector and probation officers) in the Klang Valley. The study found that the four basic principles of knowledge in child case management namely: 1. knowledge in child case management; 2. professional values of caseworkers towards children; 3. skills in managing cases; and 4. culturally competent practice in child case management. In addition, major challenges faced by the child case manager are the capacity and commitment of the family in children’s rehabilitation program, the credibility of caseworkers are being challenged, and the challenges of support system from intra and interagency. This study is important for policy makers to take into account the capacity and the needs of the child’s caseworker in accordance with the national social work competency framework. It is expected that case management services for children will improve systematically in line with national standards.Keywords: Social work practice, child case management, competency-based knowledge, and professionalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290814892 Fabrication of Wearable Antennas through Thermal Deposition
Authors: Jeff Letcher, Dennis Tierney, Haider Raad
Abstract:
Antennas are devices for transmitting and/or receiving signals which make them a necessary component of any wireless system. In this paper, a thermal deposition technique is utilized as a method to fabricate antenna structures on substrates. Thin-film deposition is achieved by evaporating a source material (metals in our case) in a vacuum which allows vapor particles to travel directly to the target substrate which is encased with a mask that outlines the desired structure. The material then condenses back to solid state. This method is used in comparison to screen printing, chemical etching, and ink jet printing to indicate advantages and disadvantages to the method. The antenna created undergoes various testing of frequency ranges, conductivity, and a series of flexing to indicate the effectiveness of the thermal deposition technique. A single band antenna that is operated at 2.45 GHz intended for wearable and flexible applications was successfully fabricated through this method and tested. It is concluded that thermal deposition presents a feasible technique of producing such antennas.Keywords: Thermal deposition, wearable antennas, Bluetooth technology, flexible electronics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137914891 The Wavelet-Based DFT: A New Interpretation, Extensions and Applications
Authors: Abdulnasir Hossen, Ulrich Heute
Abstract:
In 1990 [1] the subband-DFT (SB-DFT) technique was proposed. This technique used the Hadamard filters in the decomposition step to split the input sequence into low- and highpass sequences. In the next step, either two DFTs are needed on both bands to compute the full-band DFT or one DFT on one of the two bands to compute an approximate DFT. A combination network with correction factors was to be applied after the DFTs. Another approach was proposed in 1997 [2] for using a special discrete wavelet transform (DWT) to compute the discrete Fourier transform (DFT). In the first step of the algorithm, the input sequence is decomposed in a similar manner to the SB-DFT into two sequences using wavelet decomposition with Haar filters. The second step is to perform DFTs on both bands to obtain the full-band DFT or to obtain a fast approximate DFT by implementing pruning at both input and output sides. In this paper, the wavelet-based DFT (W-DFT) with Haar filters is interpreted as SB-DFT with Hadamard filters. The only difference is in a constant factor in the combination network. This result is very important to complete the analysis of the W-DFT, since all the results concerning the accuracy and approximation errors in the SB-DFT are applicable. An application example in spectral analysis is given for both SB-DFT and W-DFT (with different filters). The adaptive capability of the SB-DFT is included in the W-DFT algorithm to select the band of most energy as the band to be computed. Finally, the W-DFT is extended to the two-dimensional case. An application in image transformation is given using two different types of wavelet filters.
Keywords: Image Transform, Spectral Analysis, Sub-Band DFT, Wavelet DFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166914890 Diagnosis of the Abdominal Aorta Aneurysm in Magnetic Resonance Imaging Images
Authors: W. Kultangwattana, K. Somkantha, P. Phuangsuwan
Abstract:
This paper presents a technique for diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging (MRI) images. First, our technique is designed to segment the aorta image in MRI images. This is a required step to determine the volume of aorta image which is the important step for diagnosis of the abdominal aorta aneurysm. Our proposed technique can detect the volume of aorta in MRI images using a new external energy for snakes model. The new external energy for snakes model is calculated from Law-s texture. The new external energy can increase the capture range of snakes model efficiently more than the old external energy of snakes models. Second, our technique is designed to diagnose the abdominal aorta aneurysm by Bayesian classifier which is classification models based on statistical theory. The feature for data classification of abdominal aorta aneurysm was derived from the contour of aorta images which was a result from segmenting of our snakes model, i.e., area, perimeter and compactness. We also compare the proposed technique with the traditional snakes model. In our experiment results, 30 images are trained, 20 images are tested and compared with expert opinion. The experimental results show that our technique is able to provide more accurate results than 95%.
Keywords: Adbominal Aorta Aneurysm, Bayesian Classifier, Snakes Model, Texture Feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159214889 Improving the Performance of Proxy Server by Using Data Mining Technique
Authors: P. Jomsri
Abstract:
Currently, web usage make a huge data from a lot of user attention. In general, proxy server is a system to support web usage from user and can manage system by using hit rates. This research tries to improve hit rates in proxy system by applying data mining technique. The data set are collected from proxy servers in the university and are investigated relationship based on several features. The model is used to predict the future access websites. Association rule technique is applied to get the relation among Date, Time, Main Group web, Sub Group web, and Domain name for created model. The results showed that this technique can predict web content for the next day, moreover the future accesses of websites increased from 38.15% to 85.57 %. This model can predict web page access which tends to increase the efficient of proxy servers as a result. In additional, the performance of internet access will be improved and help to reduce traffic in networks.
Keywords: Association rule, proxy server, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306214888 Face Recognition using a Kernelization of Graph Embedding
Authors: Pang Ying Han, Hiew Fu San, Ooi Shih Yin
Abstract:
Linearization of graph embedding has been emerged as an effective dimensionality reduction technique in pattern recognition. However, it may not be optimal for nonlinearly distributed real world data, such as face, due to its linear nature. So, a kernelization of graph embedding is proposed as a dimensionality reduction technique in face recognition. In order to further boost the recognition capability of the proposed technique, the Fisher-s criterion is opted in the objective function for better data discrimination. The proposed technique is able to characterize the underlying intra-class structure as well as the inter-class separability. Experimental results on FRGC database validate the effectiveness of the proposed technique as a feature descriptor.Keywords: Face recognition, Fisher discriminant, graph embedding, kernelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170114887 Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction
Authors: Sadaf Sahar, Usman Qamar, Sadaf Ayaz
Abstract:
In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training.Keywords: Software quality, fuzzy logic, perceptron, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118014886 Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping
Authors: Adnan A. Y. Mustafa
Abstract:
In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented.
Keywords: Big images, binary images, similarity, matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91914885 Implementation of SU-MIMO and MU-MIMOGTD-System under Imperfect CSI Knowledge
Authors: Parit Kanjanavirojkul, Kiatwarakorn Keeratishananond, Prapun Suksompong
Abstract:
We study the performance of compressed beamforming weights feedback technique in generalized triangular decomposition (GTD) based MIMO system. GTD is a beamforming technique that enjoys QoS flexibility. The technique, however, will perform at its optimum only when the full knowledge of channel state information (CSI) is available at the transmitter. This would be impossible in the real system, where there are channel estimation error and limited feedback. We suggest a way to implement the quantized beamforming weights feedback, which can significantly reduce the feedback data, on GTD-based MIMO system and investigate the performance of the system. Interestingly, we found that compressed beamforming weights feedback does not degrade the BER performance of the system at low input power, while the channel estimation error and quantization do. For comparison, GTD is more sensitive to compression and quantization, while SVD is more sensitive to the channel estimation error. We also explore the performance of GTDbased MU-MIMO system, and find that the BER performance starts to degrade largely at around -20 dB channel estimation error.Keywords: MIMO, MU-MIMO, GTD, Imperfect CSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195014884 Exploring the Professional Competency Contents for International Marketer in Taiwan
Authors: Shu-Ning Liou
Abstract:
The main purpose of this study was to establish Professional Competency Contents for International Marketer in Taiwan. To establish these contents a set of interviews with international marketing managers and three rounds of Delphi Technique surveys were employed. Five international marketing managers were interviewed for discussions on definitions, framework, and items of international marketing competency. A questionnaire for the " Delphi Technique Survey " was developed based on the results acquired from the interviews. The resulting questionnaire was distributed to another group of 30 international marketer of trading companies in Taiwan. After three rounds of Delphi Technique Survey with these participants, the "Contents of Professional Competency for International Marketer " was established. Five dimensions and thirty indicators were identified. It is hoped that the proposed contents could be served as a self-evaluation tool for international marketer as well as the basis for staffing and training programs for international marketer in Taiwan.
Keywords: Professional competency, International marketer, Delphi technique
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141314883 Simulating Discrete Time Model Reference Adaptive Control System with Great Initial Error
Authors: Bubaker M. F. Bushofa, Abdel Hafez A. Azab
Abstract:
This article is based on the technique which is called Discrete Parameter Tracking (DPT). First introduced by A. A. Azab [8] which is applicable for less order reference model. The order of the reference model is (n-l) and n is the number of the adjustable parameters in the physical plant. The technique utilizes a modified gradient method [9] where the knowledge of the exact order of the nonadaptive system is not required, so, as to eliminate the identification problem. The applicability of the mentioned technique (DPT) was examined through the solution of several problems. This article introduces the solution of a third order system with three adjustable parameters, controlled according to second order reference model. The adjustable parameters have great initial error which represent condition. Computer simulations for the solution and analysis are provided to demonstrate the simplicity and feasibility of the technique.Keywords: Adaptive Control System, Discrete Parameter Tracking, Discrete Time Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106614882 Performance Analysis of a Dynamic Channel Reservation-Like Technique for Low Earth Orbit Mobile Satellite Systems
Authors: W. Kiamouche, S. Lasmari, M. Benslama
Abstract:
In order to derive important parameters concerning mobile subscriber MS with ongoing calls in Low Earth Orbit Mobile Satellite Systems LEO MSSs, a positioning system had to be integrated into MSS in order to localize mobile subscribers MSs and track them during the connection. Such integration is regarded as a complex implementation. We propose in this paper a novel method based on advantages of mobility model of Low Earth Orbit Mobile Satellite System LEO MSS which allows the evaluation of instant of subsequent handover of a MS even if its location is unknown. This method is utilized to propose a Dynamic Channel Reservation DCRlike scheme based on the DCR scheme previously proposed in literature. Results presented show that DCR-like technique gives different QoS performance than DCR. Indeed, an improve in handover blocking probability and an increase in new call blocking probability are observed for the DCR-like technique.Keywords: cellular layout, DCR, LEO mobile satellite system, mobility model, positioning system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156814881 Effect of Spatially Correlated Disorder on Electronic Transport Properties of Aperiodic Superlattices (GaAs/AlxGa1-xAs)
Authors: F. Bendahma, S. Bentata, S. Cherid, A. Zitouni, S. Terkhi, T. Lantri, Y. Sefir, Z. F. Meghoufel
Abstract:
We examine the electronic transport properties in AlxGa1-xAs/GaAs superlattices. Using the transfer-matrix technique and the exact Airy function formalism, we investigate theoretically the effect of structural parameters on the electronic energy spectra of trimer thickness barrier (TTB). Our numerical calculations showed that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the resonant tunneling time (RTT) is of the order of several femtoseconds.
Keywords: Electronic transport properties, structural parameters, superlattice, transfer-matrix technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95214880 Artificial Neural Networks for Classifying Magnetic Measurements in Tokamak Reactors
Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci
Abstract:
This paper is mainly concerned with the application of a novel technique of data interpretation to the characterization and classification of measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artifical Neural Networks have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compares with earlier methods.
Keywords: Tokamak, sensors, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182314879 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm
Authors: Sundara Subramanian Karuppasamy, Che Hua Yang
Abstract:
In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.
Keywords: Laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95014878 A Study of Computational Organizational Narrative Generation for Decision Support
Authors: Yeung C.L., Cheung C.F., Wang W.M., Tsui E.
Abstract:
Narratives are invaluable assets of human lives. Due to the distinct features of narratives, they are useful for supporting human reasoning processes. However, many useful narratives become residuals in organizations or human minds nowadays. Researchers have contributed effort to investigate and improve narrative generation processes. This paper attempts to contemplate essential components in narratives and explore a computational approach to acquire and extract knowledge to generate narratives. The methodology and significant benefit for decision support are presented.Keywords: Decision Support, Knowledge Management, Knowledge-based Systems, Narrative Generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130014877 Multi-Objective Optimization for Performance-based Seismic Retrofit using Connection Upgrade
Authors: Dong-Chul Lee, Byung-Kwan Oh, Se-Woon Choi, Hyo-Sun Park
Abstract:
The unanticipated brittle fracture of connection of the steel moment resisting frame (SMRF) occurred in 1994 the Northridge earthquake. Since then, the researches for the vulnerability of connection of the existing SMRF and for rehabilitation of those buildings were conducted. This paper suggests performance-based optimal seismic retrofit technique using connection upgrade. For optimal design, a multi-objective genetic algorithm(NSGA-II) is used. One of the two objective functions is to minimize initial cost and another objective function is to minimize lifetime seismic damages cost. The optimal algorithm proposed in this paper is performed satisfying specified performance objective based on FEMA 356. The nonlinear static analysis is performed for structural seismic performance evaluation. A numerical example of SAC benchmark SMRF is provided using the performance-based optimal seismic retrofit technique proposed in this paperKeywords: connection upgrade, performace-based seismicdesign, seismic retrofit, multi-objective optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203714876 Radiowave Propagation in Picocellular Environment Using 2.5D Ray Tracing Technique
Authors: Fathi Alwafie
Abstract:
This paper presents a ray tracing simulation technique for characterize the radiowave propagation inside building. The implementation of an algorithm capable of enumerating a large number of propagation paths in interactive time for the special case of 2.5D. The effective dielectric constants of the building structure in the simulations are indicated. The study describes an efficient 2.5D model of ray tracing algorithm were compared with 3D model. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A detailed analysis of the dependence of the indoor wave on the wideband characteristics of the channel: root mean square (RMS) delay spread characteristics and Mean excess delay, is also investigated.
Keywords: Picrocellular, Propagation, Ray tracing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161414875 Probability and Instruction Effects in Syllogistic Conditional Reasoning
Authors: Olimpia Matarazzo, Ivana Baldassarre
Abstract:
The main aim of this study was to examine whether people understand indicative conditionals on the basis of syntactic factors or on the basis of subjective conditional probability. The second aim was to investigate whether the conditional probability of q given p depends on the antecedent and consequent sizes or derives from inductive processes leading to establish a link of plausible cooccurrence between events semantically or experientially associated. These competing hypotheses have been tested through a 3 x 2 x 2 x 2 mixed design involving the manipulation of four variables: type of instructions (“Consider the following statement to be true", “Read the following statement" and condition with no conditional statement); antecedent size (high/low); consequent size (high/low); statement probability (high/low). The first variable was between-subjects, the others were within-subjects. The inferences investigated were Modus Ponens and Modus Tollens. Ninety undergraduates of the Second University of Naples, without any prior knowledge of logic or conditional reasoning, participated in this study. Results suggest that people understand conditionals in a syntactic way rather than in a probabilistic way, even though the perception of the conditional probability of q given p is at least partially involved in the conditionals- comprehension. They also showed that, in presence of a conditional syllogism, inferences are not affected by the antecedent or consequent sizes. From a theoretical point of view these findings suggest that it would be inappropriate to abandon the idea that conditionals are naturally understood in a syntactic way for the idea that they are understood in a probabilistic way.Keywords: Conditionals, conditional probability, conditional syllogism, inferential task.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156214874 Dynamic Optimization of Industrial Servomechanisms using Motion Laws Based On Bezier Curves
Authors: Giovanni Incerti
Abstract:
The motion planning procedure described in this paper has been developed in order to eliminate or reduce the residual vibrations of electromechanical positioning systems, without augmenting the motion time (usually imposed by production requirements), nor introducing overtime for vibration damping. The proposed technique is based on a suitable choice of the motion law assigned to the servomotor that drives the mechanism. The reference profile is defined by a Bezier curve, whose shape can be easily changed by modifying some numerical parameters. By means of an optimization technique these parameters can be modified without altering the continuity conditions imposed on the displacement and on its time derivatives at the initial and final time instants.
Keywords: Servomechanism, residual vibrations, motion optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141314873 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.
Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146514872 Using PFA in Feature Analysis and Selection for H.264 Adaptation
Authors: Nora A. Naguib, Ahmed E. Hussein, Hesham A. Keshk, Mohamed I. El-Adawy
Abstract:
Classification of video sequences based on their contents is a vital process for adaptation techniques. It helps decide which adaptation technique best fits the resource reduction requested by the client. In this paper we used the principal feature analysis algorithm to select a reduced subset of video features. The main idea is to select only one feature from each class based on the similarities between the features within that class. Our results showed that using this feature reduction technique the source video features can be completely omitted from future classification of video sequences.
Keywords: Adaptation, feature selection, H.264, Principal Feature Analysis (PFA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160714871 Frequency and Amplitude Measurement of a Vibrating Object in Water Using Ultrasonic Speckle Technique
Authors: Hongmao Zhu, Jun Chu, Lei Shen, Zhihua Luo
Abstract:
The principle of frequency and amplitude measurement of a vibrating object in water using ultrasonic speckle technique is presented in this paper. Compared with other traditional techniques, the ultrasonic speckle technique can be applied to vibration measurement of a nonmetal object with rough surface in water in a noncontact way. The relationship between speckle movement and object movement was analyzed. Based on this study, an ultrasonic speckle measurement system was set up. With this system the frequency and amplitude of an underwater vibrating cantilever beam was detected. The result shows that the experimental data is in good agreement with the calibrating data.
Keywords: Frequency, Amplitude, Vibration measurement, Ultrasonic speckle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150714870 Semi-Automatic Artifact Rejection Procedure Based on Kurtosis, Renyi's Entropy and Independent Component Scalp Maps
Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci
Abstract:
Artifact rejection plays a key role in many signal processing applications. The artifacts are disturbance that can occur during the signal acquisition and that can alter the analysis of the signals themselves. Our aim is to automatically remove the artifacts, in particular from the Electroencephalographic (EEG) recordings. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we try to enhance this technique proposing a new method based on the Renyi-s entropy. The performance of our method was tested and compared to the performance of the method in literature and the former proved to outperform the latter.
Keywords: Artifact, EEG, Renyi's entropy, kurtosis, independent component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185614869 Cellular Automata Based Robust Watermarking Architecture towards the VLSI Realization
Authors: V. H. Mankar, T. S. Das, S. K. Sarkar
Abstract:
In this paper, we have proposed a novel blind watermarking architecture towards its hardware implementation in VLSI. In order to facilitate this hardware realization, cellular automata (CA) concept is introduced. The CA has been already accepted as an attractive structure for VLSI implementation because of its modularity, parallelism, high performance and reliability. The hardware realizable multiresolution spread spectrum watermarking techniques are very few in numbers in spite of their best ever resiliency against signal impairments. This is because of the computational cost and complexity associated with their different filter banks and lifting techniques. The concept of cellular automata theory in order to form a new transform domain technique i.e. Cellular Automata Transform (CAT) have been incorporated. Since CA provides spreading sequences having very low cross-correlation properties, the CA based pseudorandom sequence generator is considered in the present work. Considering the watermarking technique as a digital communication process, an error control coding (ECC) must be incorporated in the data hiding schemes. Besides the hardware implementation of entire CA based data hiding technique, the individual blocks of the algorithm using CA provide the best result than that of some other methods irrespective of the hardware and software technique. The Cellular Automata Transform, CA based PN sequence generator, and CA ECC are the requisite blocks that are developed not only to meet the reliable hardware requirements but also for the basic spread spectrum watermarking features. The proposed algorithm shows statistical invisibility and resiliency against various common signal-processing operations. This algorithmic design utilizes the existing allocated bandwidth in the data transmission channel in a more efficient manner.
Keywords: Cellular automata, watermarking, error control coding, PN sequence, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067