Search results for: POME based lipase.
8995 Study on Carbonation Process of Several Types of Advanced Lime-Based Plasters
Authors: Z. Pavlík, H. Benešová, P. Matiašovský, M. Pavlíková
Abstract:
In this paper, study on carbonation process of several types of advanced plasters on lime basis is presented. The movement of carbonation head was measured by colorimetric method using phenolphtalein. The rate of carbonation was accessed also by gravimetric method. Samples of studied materials were placed into the climatic chamber for simulation of environment with high concentration of CO2. The particular samples were on all lateral sides and on the bottom side provided by epoxy resin in order to arrange 1-D transport of CO2 into the studied samples. The carbonation rates of particular materials pointed to the time dependence of diffusion process of CO2 for all the studied plasters. From the quantitative point of view, the carbonation of advanced modified plasters was much faster than for the reference lime plaster, what is beneficial for the practical application of the tested newly developed materials.
Keywords: Carbonation, colorimetric method, gravimetric method, lime-based plasters, pozzolana admixtures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25078994 Quantifying the Sustainable Building Criteria Based on Case Studies from Malaysia
Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail, Deo Prasad
Abstract:
In order to encourage the construction of green homes (GH) in Malaysia, a simple and attainable framework for designing and building GHs is needed. This can be achieved by aligning GH principles against Cole-s 'Sustainable Building Criteria' (SBC). This set of considerations was used to categorize the GH features of three case studies from Malaysia. Although the categorization of building features is useful at exploring the presence of sustainability inclinations of each house, the overall impact of building features in each of the five SBCs are unknown. Therefore, this paper explored the possibility of quantifying the impact of building features categorized in SBC1 – “Buildings will have to adapt to the new environment and restore damaged ecology while mitigating resource use" based on existing GH assessment tools and methods and other literature. This process as reported in this paper could lead to a new dimension in green home rating and assessment methods.Keywords: Green homes, Malaysia, Sustainable BuildingCriteria, Sustainable homes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21388993 A K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems
Authors: Parvinder S. Sandhu, Jagdeep Singh, Vikas Gupta, Mandeep Kaur, Sonia Manhas, Ramandeep Sidhu
Abstract:
Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Object-Oriented systems. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the categorization of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results are measured in terms of accuracy of prediction, probability of Detection and Probability of False Alarms.Keywords: K-Means, Software Fault, Classification, ObjectOriented Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23058992 Parallel Computation in Hypersonic Aerodynamic Heating Problem
Authors: Ding Guo-hao, Li Hua, Wang Wen-long
Abstract:
A parallel computational fluid dynamics code has been developed for the study of aerodynamic heating problem in hypersonic flows. The code employs the 3D Navier-Stokes equations as the basic governing equations to simulate the laminar hypersonic flow. The cell centered finite volume method based on structured grid is applied for spatial discretization. The AUSMPW+ scheme is used for the inviscid fluxes, and the MUSCL approach is used for higher order spatial accuracy. The implicit LU-SGS scheme is applied for time integration to accelerate the convergence of computations in steady flows. A parallel programming method based on MPI is employed to shorten the computing time. The validity of the code is demonstrated by comparing the numerical calculation result with the experimental data of a hypersonic flow field around a blunt body.Keywords: Aerodynamic Heating, AUSMPW+, MPI, ParallelComputation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19658991 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method
Authors: Yanan Yang, Zhigang Wang, Xiang Chen
Abstract:
This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18018990 Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology
Authors: Amit Kamra, V. K. Jain, Pragya
Abstract:
Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other stateof- the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques.Keywords: Enhancement, mammography, multi-scale, mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22598989 Hash Based Block Matching for Digital Evidence Image Files from Forensic Software Tools
Abstract:
Internet use, intelligent communication tools, and social media have all become an integral part of our daily life as a result of rapid developments in information technology. However, this widespread use increases crimes committed in the digital environment. Therefore, digital forensics, dealing with various crimes committed in digital environment, has become an important research topic. It is in the research scope of digital forensics to investigate digital evidences such as computer, cell phone, hard disk, DVD, etc. and to report whether it contains any crime related elements. There are many software and hardware tools developed for use in the digital evidence acquisition process. Today, the most widely used digital evidence investigation tools are based on the principle of finding all the data taken place in digital evidence that is matched with specified criteria and presenting it to the investigator (e.g. text files, files starting with letter A, etc.). Then, digital forensics experts carry out data analysis to figure out whether these data are related to a potential crime. Examination of a 1 TB hard disk may take hours or even days, depending on the expertise and experience of the examiner. In addition, it depends on examiner’s experience, and may change overall result involving in different cases overlooked. In this study, a hash-based matching and digital evidence evaluation method is proposed, and it is aimed to automatically classify the evidence containing criminal elements, thereby shortening the time of the digital evidence examination process and preventing human errors.
Keywords: Block matching, digital evidence, hash list.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13588988 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings
Authors: Sergei Aleinik, Mikhail Stolbov
Abstract:
In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.
Keywords: Cross-correlation, delay estimation, signal envelope, signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30648987 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary
Authors: Mark Watson, J.-F. Bousquet, Adam Forget
Abstract:
A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.Keywords: Magnetic Induction, FDTD, Underwater Communication, Sommerfeld.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5688986 The Effects of a Digital Dialogue Game on Higher Education Students’ Argumentation-Based Learning
Authors: Omid Noroozi
Abstract:
Digital dialogue games have opened up opportunities for learning skills by engaging students in complex problem solving that mimic real world situations, without importing unwanted constraints and risks of the real world. Digital dialogue games can be motivating and engaging to students for fun, creative thinking, and learning. This study explored how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate. A pre-test, post-test design was used with students who were assigned to groups of four and asked to debate a controversial topic with the aim of exploring various 'pros and cons' on the 'Genetically Modified Organisms (GMOs)'. Findings reveal that the Digital dialogue game can facilitate argumentation-based learning. The digital Dialogue game was also evaluated positively in terms of students’ satisfaction and learning experiences.Keywords: Argumentation, dialogue, digital game, learning, motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12008985 Sources of Water Supply and Water Quality for Local Consumption: The Case Study of Eco-Tourism Village, Suan Luang Sub- District Municipality, Ampawa District, Samut Songkram Province, Thailand
Authors: Paiboon Jeamponk, Tasanee Ponglaa, Patchapon Srisanguan
Abstract:
The aim of this research paper was based on an examination of sources of water supply and water quality for local consumption, conducted at eco- tourism villages of Suan Luang Sub- District Municipality of Amphawa District, Samut Songkram Province. The study incorporated both questionnaire and field work of water testing as the research tool and method. The sample size of 288 households was based on the population of the district, whereas the selected sample water sources were from 60 households: 30 samples were ground water and another 30 were surface water. Degree of heavy metal contamination in the water including copper, iron, manganese, zinc, cadmium and lead was investigated utilizing the Atomic Absorption- Direct Aspiration method. The findings unveiled that 96.0 percent of household water consumption was based on water supply, while the rest on canal, river and rain water. The household behavior of consumption revealed that 47.2 percent of people routinely consumed water without boiling or filtering prior to consumption. The investigation of water supply quality found that the degree of heavy metal contamination including metal, lead, iron, copper, manganese and cadmium met the standards of the Department of Health.
Keywords: Sources of water supply, water quality, water supply.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18558984 Main Bearing Stiffness Investigation
Authors: B. Bellakhdhar, A. Dogui, J.L. Ligier
Abstract:
Simplified coupled engine block-crankshaft models based on beam theory provide an efficient substitute to engine simulation in the design process. These models require accurate definition of the main bearing stiffness. In this paper, an investigation of this stiffness is presented. The clearance effect is studied using a smooth bearing model. It is manifested for low shaft displacement. The hydrodynamic assessment model shows that the oil film has no stiffness for low loads and it is infinitely rigid for important loads. The deformation stiffness is determined using a suitable finite elements model based on real CADs. As a result, a main bearing behaviour law is proposed. This behaviour law takes into account the clearance, the hydrodynamic sustention and the deformation stiffness. It ensures properly the transition from the configuration low rigidity to the configuration high rigidity.Keywords: Clearance, deformation stiffness, main bearing behaviour law, oil film stiffness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23718983 Modeling Peer-to-Peer Networks with Interest-Based Clusters
Authors: Bertalan Forstner, Dr. Hassan Charaf
Abstract:
In the world of Peer-to-Peer (P2P) networking different protocols have been developed to make the resource sharing or information retrieval more efficient. The SemPeer protocol is a new layer on Gnutella that transforms the connections of the nodes based on semantic information to make information retrieval more efficient. However, this transformation causes high clustering in the network that decreases the number of nodes reached, therefore the probability of finding a document is also decreased. In this paper we describe a mathematical model for the Gnutella and SemPeer protocols that captures clustering-related issues, followed by a proposition to modify the SemPeer protocol to achieve moderate clustering. This modification is a sort of link management for the individual nodes that allows the SemPeer protocol to be more efficient, because the probability of a successful query in the P2P network is reasonably increased. For the validation of the models, we evaluated a series of simulations that supported our results.Keywords: Peer-to-Peer, model, performance, networkmanagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13068982 Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect
Authors: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi, Behrooz Zare Desari, Seyedmohammad Mousavi
Abstract:
High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.
Keywords: Integration, electrokinetic, on-chip, fluid pumping, microfluidic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8448981 Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines
Authors: Essam Al Daoud
Abstract:
Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-kernel support vector machines. Particle swarm optimisation is used for feature selection by applying a new formula to update the position and the velocity of a particle; the support vector machine is used as a classifier. The proposed model is tested and compared with the other methods using the KDD CUP 1999 dataset. The results indicate that this new method achieves better accuracy rates than previous methods.Keywords: Feature selection, Intrusion detection, Support vector machine, Particle swarm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19908980 Improvement of Gas Turbine Performance Test in Combine Cycle
Authors: M. Khosravy-el-Hossani, Q. Dorosti
Abstract:
One of the important applications of gas turbines is their utilization for heat recovery steam generator in combine-cycle technology. Exhaust flow and energy are two key parameters for determining heat recovery steam generator performance which are mainly determined by the main gas turbine components performance data. For this reason a method was developed for determining the exhaust energy in the new edition of ASME PTC22. The result of this investigation shows that the method of standard has considerable error. Therefore in this paper a new method is presented for modifying of the performance calculation. The modified method is based on exhaust gas constituent analysis and combustion calculations. The case study presented here by two kind of General Electric gas turbine design data for validation of methodologies. The result shows that the modified method is more precise than the ASME PTC22 method. The exhaust flow calculation deviation from design data is 1.5-2 % by ASME PTC22 method so that the deviation regarding with modified method is 0.3-0.5%. Based on precision of analyzer instruments, the method can be suitable alternative for gas turbine standard performance test. In advance two methods are proposed based on known and unknown fuel in modified method procedure. The result of this paper shows that the difference between the two methods is below than %0.02. In according to reasonable esult of the second procedure (unknown fuel composition), the method can be applied to performance evaluation of gas turbine, so that the measuring cost and data gathering should be reduced.Keywords: Gas turbine, Performance test code, Combined cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29898979 Sliding-Mode Control of a Permanent-Magnet Synchronous Motor with Uncertainty Estimation
Authors: Markus Reichhartinger, Martin Horn
Abstract:
In this paper, the application of sliding-mode control to a permanent-magnet synchronous motor (PMSM) is presented. The control design is based on a generic mathematical model of the motor. Some dynamics of the motor and of the power amplification stage remain unmodelled. This model uncertainty is estimated in realtime. The estimation is based on the differentiation of measured signals using the ideas of robust exact differentiator (RED). The control law is implemented on an industrial servo drive. Simulations and experimental results are presented and compared to the same control strategy without uncertainty estimation. It turns out that the proposed concept is superior to the same control strategy without uncertainty estimation especially in the case of non-smooth reference signals.
Keywords: sliding-mode control, Permanent-magnet synchronous motor, uncertainty estimation, robust exact differentiator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23408978 Linking Business Process Models and System Models Based on Business Process Modelling
Authors: Faisal A. Aburub
Abstract:
Organizations today need to invest in software in order to run their businesses, and to the organizations’ objectives, the software should be in line with the business process. This research presents an approach for linking process models and system models. Particularly, the new approach aims to synthesize sequence diagram based on role activity diagram (RAD) model. The approach includes four steps namely: Create business process model using RAD, identify computerized activities, identify entities in sequence diagram and identify messages in sequence diagram. The new approach has been validated using the process of student registration in University of Petra as a case study. Further research is required to validate the new approach using different domains.
Keywords: Business process modelling, system models, role activity diagrams, sequence diagrams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15268977 Template-Based Object Detection through Partial Shape Matching and Boundary Verification
Authors: Feng Ge, Tiecheng Liu, Song Wang, Joachim Stahl
Abstract:
This paper presents a novel template-based method to detect objects of interest from real images by shape matching. To locate a target object that has a similar shape to a given template boundary, the proposed method integrates three components: contour grouping, partial shape matching, and boundary verification. In the first component, low-level image features, including edges and corners, are grouped into a set of perceptually salient closed contours using an extended ratio-contour algorithm. In the second component, we develop a partial shape matching algorithm to identify the fractions of detected contours that partly match given template boundaries. Specifically, we represent template boundaries and detected contours using landmarks, and apply a greedy algorithm to search the matched landmark subsequences. For each matched fraction between a template and a detected contour, we estimate an affine transform that transforms the whole template into a hypothetic boundary. In the third component, we provide an efficient algorithm based on oriented edge lists to determine the target boundary from the hypothetic boundaries by checking each of them against image edges. We evaluate the proposed method on recognizing and localizing 12 template leaves in a data set of real images with clutter back-grounds, illumination variations, occlusions, and image noises. The experiments demonstrate the high performance of our proposed method1.Keywords: Object detection, shape matching, contour grouping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23058976 A Structural Equation Model of Knowledge Management Based On Organizational Climate in Universities
Authors: F. Nazem, M. Mozaiini, A. Seifi
Abstract:
The purpose of the present study was to provide a structural model of knowledge management in universities based on organizational climate. The population of the research included all employees of Islamic Azad University (IAU). The sample consisted of 1590 employees selected using stratified and cluster random sampling method. The research instruments were two questionnaires which were administered in 78 IAU branches and education centers: Sallis and Jones’s (2002) Knowledge Management Questionnaire (α= 0.97); and Latwin & Stringer’s (1968) Organizational Climate Questionnaire (α= 0.83). The results of path analysis using LISREL software indicated that dimensions of organizational climate had a direct effect on knowledge management with the indices of 0.94. The model also showed that the factor of support in organizational climate had the highest direct effect on the knowledge management.
Keywords: Knowledge management, Organizational climate, Structural model, Universities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22878975 Wavelet-Based Despeckling of Synthetic Aperture Radar Images Using Adaptive and Mean Filters
Authors: Syed Musharaf Ali, Muhammad Younus Javed, Naveed Sarfraz Khattak
Abstract:
In this paper we introduced new wavelet based algorithm for speckle reduction of synthetic aperture radar images, which uses combination of undecimated wavelet transformation, wiener filter (which is an adaptive filter) and mean filter. Further more instead of using existing thresholding techniques such as sure shrinkage, Bayesian shrinkage, universal thresholding, normal thresholding, visu thresholding, soft and hard thresholding, we use brute force thresholding, which iteratively run the whole algorithm for each possible candidate value of threshold and saves each result in array and finally selects the value for threshold that gives best possible results. That is why it is slow as compared to existing thresholding techniques but gives best results under the given algorithm for speckle reduction.
Keywords: Brute force thresholding, directional smoothing, direction dependent mask, undecimated wavelet transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28808974 Statistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the supportvectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.
Keywords: Discrete Wavelet Transform, Electroencephalogram, Pattern Recognition, Principal Component Analysis, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31138973 Evaluation of Iranian Standard for Assessment of Liquefaction Potential of Cohesionless Soils Based on Standard Penetration Test
Authors: Reza Ziaie Moayad, Azam Kouhpeyma
Abstract:
In-situ testing is preferred to evaluate the liquefaction potential in cohesionless soils due to high disturbance during sampling. Although new in-situ methods with high accuracy have been developed, standard penetration test, the simplest and the oldest in-situ test, is still used due to the profusion of the recorded data. This paper reviews the Iranian standard of evaluating liquefaction potential in soils (codes 525) and compares the liquefaction assessment methods based on standard penetration test (SPT) results on cohesionless soil in this standard with the international standards. To this, methods for assessing liquefaction potential are compared with what is presented in standard 525. It is found that although the procedure used in Iranian standard of evaluating the potential of liquefaction has not been updated according to the new findings, it is a conservative procedure.
Keywords: cohesionless soil, liquefaction, SPT, Iranian liquefaction standard
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4888972 Community‐Based Participatory Research in Elderly Health Care of Paisanee Ramintra 65 Community, Bangkok, Thailand
Authors: A. Kulprasutidilok
Abstract:
In order to address the social factors of elderly health care, researcher and community members have turned to more inclusive and participatory approaches to research and interventions. One such approach, community-based participatory research (CBPR) in public health, has received increased attention as the academic and public health communities struggle to address the persistent problems of disparities in the use of health care and health outcomes for several over the past decade. As Thailand becomes an ageing society, health services and proper care systems specifically for the elderly group need to be prepared and well established. The purpose of this assignment was to study the health problems and was to explore the process of community participation in elderly health care. Participants in this study were member of elderly group of Paisanee Ramintra 65 community in Bangkok, Thailand. The results indicated two important components of community participation process in elderly health care: 1) a process to develop community participation in elderly health care, and 2) outcomes resulting from such process. The development of community participation consisted of four processes. As for the outcomes of the community participation development process, they consisted of elderly in the community got jointly and formulated a group, which strengthened the project because of collaborative supervision among themselves. Moreover, inactive health care services have changed to being energetic and focus on health promotion rather than medical achievement and elderly association of community can perform health care activities for chronically illness through the achievement of this development; consequently, they increasingly gained access to physical, cognitive, and social activity.Keywords: Community-based participatory research, elderly health care, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15758971 Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers
Authors: Min-Ah Woo, Min-Cheol Lim, Hyun-Joo Chang, Sung-Wook Choi
Abstract:
We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against E. coli O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H2O2. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing.
Keywords: Aptamer, colorimetric sensor, E. coli O157:H7, magnetic nanoparticle, polyvinylidene difluoride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13458970 A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence
Authors: Li Qiang, Yang Ze-Ming, Liu Bao-Xu, Jiang Zheng-Wei
Abstract:
With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.
Keywords: Reasoning, Bayesian networks, cyber-attack attribution, kill chain, threat intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26738969 A Growing Natural Gas Approach for Evaluating Quality of Software Modules
Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur
Abstract:
The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.
Keywords: Growing Neural Gas, data clustering, fault prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18658968 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process
Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.
Abstract:
It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16498967 Multi-Criteria Based Robust Markowitz Model under Box Uncertainty
Authors: Pulak Swain, A. K. Ojha
Abstract:
Portfolio optimization is based on dealing with the problems of efficient asset allocation. Risk and Expected return are two conflicting criteria in such problems, where the investor prefers the return to be high and the risk to be low. Using multi-objective approach we can solve those type of problems. However the information which we have for the input parameters are generally ambiguous and the input values can fluctuate around some nominal values. We can not ignore the uncertainty in input values, as they can affect the asset allocation drastically. So we use Robust Optimization approach to the problems where the input parameters comes under box uncertainty. In this paper, we solve the multi criteria robust problem with the help of E- constraint method.Keywords: Portfolio optimization, multi-objective optimization, E-constraint method, box uncertainty, robust optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6228966 A New Automatic System of Cell Colony Counting
Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva
Abstract:
The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.Keywords: Automatic cell counting, neural network, region growing, Sanger net.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461