Search results for: Data assimilation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7473

Search results for: Data assimilation

5133 Data Embedding Based on Better Use of Bits in Image Pixels

Authors: Rehab H. Alwan, Fadhil J. Kadhim, Ahmad T. Al-Taani

Abstract:

In this study, a novel approach of image embedding is introduced. The proposed method consists of three main steps. First, the edge of the image is detected using Sobel mask filters. Second, the least significant bit LSB of each pixel is used. Finally, a gray level connectivity is applied using a fuzzy approach and the ASCII code is used for information hiding. The prior bit of the LSB represents the edged image after gray level connectivity, and the remaining six bits represent the original image with very little difference in contrast. The proposed method embeds three images in one image and includes, as a special case of data embedding, information hiding, identifying and authenticating text embedded within the digital images. Image embedding method is considered to be one of the good compression methods, in terms of reserving memory space. Moreover, information hiding within digital image can be used for security information transfer. The creation and extraction of three embedded images, and hiding text information is discussed and illustrated, in the following sections.

Keywords: Image embedding, Edge detection, gray level connectivity, information hiding, digital image compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
5132 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: Computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid, SDOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
5131 Using Data Mining Methodology to Build the Predictive Model of Gold Passbook Price

Authors: Chien-Hui Yang, Che-Yang Lin, Ya-Chen Hsu

Abstract:

Gold passbook is an investing tool that is especially suitable for investors to do small investment in the solid gold. The gold passbook has the lower risk than other ways investing in gold, but its price is still affected by gold price. However, there are many factors can cause influences on gold price. Therefore, building a model to predict the price of gold passbook can both reduce the risk of investment and increase the benefits. This study investigates the important factors that influence the gold passbook price, and utilize the Group Method of Data Handling (GMDH) to build the predictive model. This method can not only obtain the significant variables but also perform well in prediction. Finally, the significant variables of gold passbook price, which can be predicted by GMDH, are US dollar exchange rate, international petroleum price, unemployment rate, whole sale price index, rediscount rate, foreign exchange reserves, misery index, prosperity coincident index and industrial index.

Keywords: Gold price, Gold passbook price, Group Method ofData Handling (GMDH), Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
5130 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload

Authors: V. Vicente E. Mujica, Gustavo Gonzalez

Abstract:

The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.

Keywords: Terrestrial-satellite networks, latency, on-orbit satellite payload, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
5129 Powerful Tool to Expand Business Intelligence: Text Mining

Authors: Li Gao, Elizabeth Chang, Song Han

Abstract:

With the extensive inclusion of document, especially text, in the business systems, data mining does not cover the full scope of Business Intelligence. Data mining cannot deliver its impact on extracting useful details from the large collection of unstructured and semi-structured written materials based on natural languages. The most pressing issue is to draw the potential business intelligence from text. In order to gain competitive advantages for the business, it is necessary to develop the new powerful tool, text mining, to expand the scope of business intelligence. In this paper, we will work out the strong points of text mining in extracting business intelligence from huge amount of textual information sources within business systems. We will apply text mining to each stage of Business Intelligence systems to prove that text mining is the powerful tool to expand the scope of BI. After reviewing basic definitions and some related technologies, we will discuss the relationship and the benefits of these to text mining. Some examples and applications of text mining will also be given. The motivation behind is to develop new approach to effective and efficient textual information analysis. Thus we can expand the scope of Business Intelligence using the powerful tool, text mining.

Keywords: Business intelligence, document warehouse, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
5128 Phosphine Mortality Estimation for Simulation of Controlling Pest of Stored Grain: Lesser Grain Borer (Rhyzopertha dominica)

Authors: Mingren Shi, Michael Renton

Abstract:

There is a world-wide need for the development of sustainable management strategies to control pest infestation and the development of phosphine (PH3) resistance in lesser grain borer (Rhyzopertha dominica). Computer simulation models can provide a relatively fast, safe and inexpensive way to weigh the merits of various management options. However, the usefulness of simulation models relies on the accurate estimation of important model parameters, such as mortality. Concentration and time of exposure are both important in determining mortality in response to a toxic agent. Recent research indicated the existence of two resistance phenotypes in R. dominica in Australia, weak and strong, and revealed that the presence of resistance alleles at two loci confers strong resistance, thus motivating the construction of a two-locus model of resistance. Experimental data sets on purified pest strains, each corresponding to a single genotype of our two-locus model, were also available. Hence it became possible to explicitly include mortalities of the different genotypes in the model. In this paper we described how we used two generalized linear models (GLM), probit and logistic models, to fit the available experimental data sets. We used a direct algebraic approach generalized inverse matrix technique, rather than the traditional maximum likelihood estimation, to estimate the model parameters. The results show that both probit and logistic models fit the data sets well but the former is much better in terms of small least squares (numerical) errors. Meanwhile, the generalized inverse matrix technique achieved similar accuracy results to those from the maximum likelihood estimation, but is less time consuming and computationally demanding.

Keywords: mortality estimation, probit models, logistic model, generalized inverse matrix approach, pest control simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
5127 Historical and Future Rainfall Variations in Bangladesh

Authors: M. M. Hossain, M. Z. Hasan, M. Alauddin, S. Akhter

Abstract:

Climate change has become a major concern across the world as the intensity along with quantity of the rainfall, mean surface temperature and other climatic parameters have been changed not only in Bangladesh but also in the entire globe. Bangladesh has already experienced many natural hazards. Among them changing of rainfall pattern, erratic and heavy rainfalls are very common. But changes of rainfall pattern and its amount is still in question to some extent. This study aimed to unfold how the historical rainfalls varied over time and how would be their future trends. In this context, historical rainfall data (1975-2014) were collected from Bangladesh Metrological Department (BMD) and then a time series model was developed using Box-Jenkins algorithm in IBM SPSS to forecast the future rainfall. From the historical data analysis, this study revealed that the amount of rainfall decreased over the time and shifted to the post monsoons. Forecasted rainfall shows that the pre-monsoon and early monsoon will get drier in future whereas late monsoon and post monsoon will show huge fluctuations in rainfall magnitudes with temporal variations which means Bangladesh will get comparatively drier seasons in future which may be a serious problem for the country as it depends on agriculture.

Keywords: Monsoon, Pre-monsoon, rainfall, pattern, variations, IBM-SPSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
5126 Geostatistical Analysis and Mapping of Groundlevel Ozone in a Medium Sized Urban Area

Authors: F. J. Moral García, P. Valiente González, F. López Rodríguez

Abstract:

Ground-level tropospheric ozone is one of the air pollutants of most concern. It is mainly produced by photochemical processes involving nitrogen oxides and volatile organic compounds in the lower parts of the atmosphere. Ozone levels become particularly high in regions close to high ozone precursor emissions and during summer, when stagnant meteorological conditions with high insolation and high temperatures are common. In this work, some results of a study about urban ozone distribution patterns in the city of Badajoz, which is the largest and most industrialized city in Extremadura region (southwest Spain) are shown. Fourteen sampling campaigns, at least one per month, were carried out to measure ambient air ozone concentrations, during periods that were selected according to favourable conditions to ozone production, using an automatic portable analyzer. Later, to evaluate the ozone distribution at the city, the measured ozone data were analyzed using geostatistical techniques. Thus, first, during the exploratory analysis of data, it was revealed that they were distributed normally, which is a desirable property for the subsequent stages of the geostatistical study. Secondly, during the structural analysis of data, theoretical spherical models provided the best fit for all monthly experimental variograms. The parameters of these variograms (sill, range and nugget) revealed that the maximum distance of spatial dependence is between 302-790 m and the variable, air ozone concentration, is not evenly distributed in reduced distances. Finally, predictive ozone maps were derived for all points of the experimental study area, by use of geostatistical algorithms (kriging). High prediction accuracy was obtained in all cases as cross-validation showed. Useful information for hazard assessment was also provided when probability maps, based on kriging interpolation and kriging standard deviation, were produced.

Keywords: Kriging, map, tropospheric ozone, variogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
5125 Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength

Authors: Bernardo C. P. Albuquerque, Darym J. F. Campos

Abstract:

Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management.

Keywords: Statistical slope stability analysis, Skew distributions, Probability of failure, Functions of random variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
5124 A Watermarking System Using the Wavelet Technique for Satellite Images

Authors: I. R. Farah, I. B. Ismail, M. B. Ahmed

Abstract:

The huge development of new technologies and the apparition of open communication system more and more sophisticated create a new challenge to protect digital content from piracy. Digital watermarking is a recent research axis and a new technique suggested as a solution to these problems. This technique consists in inserting identification information (watermark) into digital data (audio, video, image, databases...) in an invisible and indelible manner and in such a way not to degrade original medium-s quality. Moreover, we must be able to correctly extract the watermark despite the deterioration of the watermarked medium (i.e attacks). In this paper we propose a system for watermarking satellite images. We chose to embed the watermark into frequency domain, precisely the discrete wavelet transform (DWT). We applied our algorithm on satellite images of Tunisian center. The experiments show satisfying results. In addition, our algorithm showed an important resistance facing different attacks, notably the compression (JEPG, JPEG2000), the filtering, the histogram-s manipulation and geometric distortions such as rotation, cropping, scaling.

Keywords: Digital data watermarking, Spatial Database, Satellite images, Discrete Wavelets Transform (DWT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
5123 Political Information Exposures, Politicians- Perceptions, Political Attitudes and Political Participations among People in Bangkok Metropolitan Area

Authors: Pratoom Rekklang

Abstract:

The purposes of this study are to study political information exposure, politicians- perceptions, political attitudes and political participations among people in Bangkok Metropolitan Area. The sample consisted of 420 which were selected by using accidental sampling method. Questionnaires were administered to all of the respondents to obtain the data for this research. T-test, one-way ANOVA and Pearson-s correlation coefficient were used to analyze the data. The findings are as follows: The difference in gender, education, income and occupation has significantly effect upon political information exposures. The difference in age, income has significantly effect upon politicians- perceptions. The difference in income has significantly effect upon political attitudes. The difference in gender, income and occupation has significantly effect upon political participations. There were a significantly relations between political information exposures, political attitudes, political participations and between politicians- perceptions, political attitudes and political participations.

Keywords: Political Information Exposures, Politicians' Perceptions, Political Attitudes, Political Participations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
5122 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared

Abstract:

In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: Biometrics, finger vein recognition, Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
5121 Quantifying Mobility of Urban Inhabitant Based on Social Media Data

Authors: Yuyun, Fritz Akhmad Nuzir, Bart Julien Dewancker

Abstract:

Check-in locations on social media provide information about an individual’s location. The millions of units of data generated from these sites provide knowledge for human activity. In this research, we used a geolocation service and users’ texts posted on Twitter social media to analyze human mobility. Our research will answer the questions; what are the movement patterns of a citizen? And, how far do people travel in the city? We explore the people trajectory of 201,118 check-ins and 22,318 users over a period of one month in Makassar city, Indonesia. To accommodate individual mobility, the authors only analyze the users with check-in activity greater than 30 times. We used sampling method with a systematic sampling approach to assign the research sample. The study found that the individual movement shows a high degree of regularity and intensity in certain places. The other finding found that the average distance an urban inhabitant can travel per day is as far as 9.6 km.

Keywords: Mobility, check-in, distance, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
5120 A Novel Approach to Improve Users Search Goal in Web Usage Mining

Authors: R. Lokeshkumar, P. Sengottuvelan

Abstract:

Web mining is to discover and extract useful Information. Different users may have different search goals when they search by giving queries and submitting it to a search engine. The inference and analysis of user search goals can be very useful for providing an experience result for a user search query. In this project, we propose a novel approach to infer user search goals by analyzing search web logs. First, we propose a novel approach to infer user search goals by analyzing search engine query logs, the feedback sessions are constructed from user click-through logs and it efficiently reflect the information needed for users. Second we propose a preprocessing technique to clean the unnecessary data’s from web log file (feedback session). Third we propose a technique to generate pseudo-documents to representation of feedback sessions for clustering. Finally we implement k-medoids clustering algorithm to discover different user search goals and to provide a more optimal result for a search query based on feedback sessions for the user.

Keywords: Data Preprocessing, Session Identification, Web log mining, Web Personalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
5119 The Impact of Post-Disaster Relocation on Community Solidarity: The Case of Post-Disaster Reconstruction after Typhoon Morakot in Taiwan

Authors: Tsung-Hsi Fu, Wan-I Lin, Jyh-Cherng Shieh

Abstract:

Typhoon Morakot hit Taiwan in 2009 and caused severe damages. The government employs a compulsory relocation strategy for post-disaster reconstruction. This study analyzes the impact of this strategy on community solidarity. It employs a multiple approach for data collection, including semi-structural interview, secondary data, and documentation. The results indicate that the government-s strategy for distributing housing has led to conflicts within the communities. In addition, the relocating process has stimulated tensions between victims of the disaster and those residents whose lands were chosen to be new sites for relocation. The government-s strategy of “collective relocation" also worsened community integration. In addition, the fact that a permanent housing community may accommodate people from different places also posts challenge for the development of new inter-personal relations in the communities. This study concludes by emphasizing the importance of bringing social, economic and cultural aspects into consideration for post-disaster relocation..

Keywords: community solidarity, permanent housing, post-disaster reconstruction, relocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
5118 Statistical and Land Planning Study of Tourist Arrivals in Greece during 2005-2016

Authors: Dimitra Alexiou

Abstract:

During the last 10 years, in spite of the economic crisis, the number of tourists arriving in Greece has increased, particularly during the tourist season from April to October. In this paper, the number of annual tourist arrivals is studied to explore their preferences with regard to the month of travel, the selected destinations, as well the amount of money spent. The collected data are processed with statistical methods, yielding numerical and graphical results. From the computation of statistical parameters and the forecasting with exponential smoothing, useful conclusions are arrived at that can be used by the Greek tourism authorities, as well as by tourist organizations, for planning purposes for the coming years. The results of this paper and the computed forecast can also be used for decision making by private tourist enterprises that are investing in Greece. With regard to the statistical methods, the method of Simple Exponential Smoothing of time series of data is employed. The search for a best forecast for 2017 and 2018 provides the value of the smoothing coefficient. For all statistical computations and graphics Microsoft Excel is used.

Keywords: Tourism, statistical methods, exponential smoothing, land spatial planning, economy, Microsoft Excel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717
5117 Practical Applications and Connectivity Algorithms in Future Wireless Sensor Networks

Authors: Mohamed K. Watfa

Abstract:

Like any sentient organism, a smart environment relies first and foremost on sensory data captured from the real world. The sensory data come from sensor nodes of different modalities deployed on different locations forming a Wireless Sensor Network (WSN). Embedding smart sensors in humans has been a research challenge due to the limitations imposed by these sensors from computational capabilities to limited power. In this paper, we first propose a practical WSN application that will enable blind people to see what their neighboring partners can see. The challenge is that the actual mapping between the input images to brain pattern is too complex and not well understood. We also study the connectivity problem in 3D/2D wireless sensor networks and propose distributed efficient algorithms to accomplish the required connectivity of the system. We provide a new connectivity algorithm CDCA to connect disconnected parts of a network using cooperative diversity. Through simulations, we analyze the connectivity gains and energy savings provided by this novel form of cooperative diversity in WSNs.

Keywords: Wireless Sensor Networks, Pervasive Computing, Eye Vision Application, 3D Connectivity, Clusters, Energy Efficient, Cooperative diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
5116 The Management Accountant’s Roles for Creation of Corporate Shared Value

Authors: Prateep Wajeetongratana

Abstract:

This study investigates the management accountant’s roles that link with the creation of corporate shared value to enable more effective decision-making and improve the information needs of stakeholders. Mixed method is employed to collect using triangulation for credibility. A quantitative approach is employed to conduct a survey of 200 Thai companies providing annual reports in the Stock Exchange of Thailand. The results of the study reveal that environmental and social data incorporated in a corporate social responsibility (CSR) disclosure are based on the indicators of the Global Reporting Initiatives (GRI) at a statistically significant level of 0.01. Environmental and social indicators in CSR are associated with environmental and social data disclosed in the annual report to support stakeholders’ and the public’s interests that are addressed and show that a significant relationship between environmental and social in CSR disclosures and the information in annual reports is statistically significant at the 0.01 level.

Keywords: Corporate social responsibility, creating shared value, management accountant’s roles, stock exchange of Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
5115 A Meta-Model for Tubercle Design of Wing Planforms Inspired by Humpback Whale Flippers

Authors: A. Taheri

Abstract:

Inspired by topology of humpback whale flippers, a meta-model is designed for wing planform design. The net is trained based on experimental data using cascade-forward artificial neural network (ANN) to investigate effects of the amplitude and wavelength of sinusoidal leading edge configurations on the wing performance. Afterwards, the trained ANN is coupled with a genetic algorithm method towards an optimum design strategy. Finally, flow physics of the problem for an optimized rectangular planform and also a real flipper geometry planform is simulated using Lam-Bremhorst low Reynolds number turbulence model with damping wall-functions resolving to the wall. Lift and drag coefficients and also details of flow are presented along with comparisons to available experimental data. Results show that the proposed strategy can be adopted with success as a fast-estimation tool for performance prediction of wing planforms with wavy leading edge at preliminary design phase.  

Keywords: Humpback whale flipper, cascade-forward ANN, GA, CFD, Bionics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3675
5114 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
5113 Ensembling Adaptively Constructed Polynomial Regression Models

Authors: Gints Jekabsons

Abstract:

The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.

Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
5112 Learners’ Perceptions of Tertiary Level Teachers’ Code Switching: A Vietnamese Perspective

Authors: Hoa Pham

Abstract:

The literature on language teaching and second language acquisition has been largely driven by monolingual ideology with a common assumption that a second language (L2) is best taught and learned in the L2 only. The current study challenges this assumption by reporting learners' positive perceptions of tertiary level teachers' code switching practices in Vietnam. The findings of this study contribute to our understanding of code switching practices in language classrooms from a learners' perspective. Data were collected from student participants who were working towards a Bachelor degree in English within the English for Business Communication stream through the use of focus group interviews. The literature has documented that this method of interviewing has a number of distinct advantages over individual student interviews. For instance, group interactions generated by focus groups create a more natural environment than that of an individual interview because they include a range of communicative processes in which each individual may influence or be influenced by others - as they are in their real life. The process of interaction provides the opportunity to obtain the meanings and answers to a problem that are "socially constructed rather than individually created" leading to the capture of real-life data. The distinct feature of group interaction offered by this technique makes it a powerful means of obtaining deeper and richer data than those from individual interviews. The data generated through this study were analysed using a constant comparative approach. Overall, the students expressed positive views of this practice indicating that it is a useful teaching strategy. Teacher code switching was seen as a learning resource and a source supporting language output. This practice was perceived to promote student comprehension and to aid the learning of content and target language knowledge. This practice was also believed to scaffold the students' language production in different contexts. However, the students indicated their preference for teacher code switching to be constrained, as extensive use was believed to negatively impact on their L2 learning and trigger cognitive reliance on the L1 for L2 learning. The students also perceived that when the L1 was used to a great extent, their ability to develop as autonomous learners was negatively impacted. This study found that teacher code switching was supported in certain contexts by learners, thus suggesting that there is a need for the widespread assumption about the monolingual teaching approach to be re-considered.

Keywords: Code switching, L1 use, L2 teaching, Learners’ perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511
5111 Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey

Authors: Melis Inalpulat, Levent Genc

Abstract:

Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased 29% between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32°C in 1984 and 27-33°C in 2014. Minimum temperature of agricultural lands was increased 3°C and reached to 23°C. In contrast, maximum temperature of A class decreased to 41°C from 44°C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2°C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.

Keywords: Census data, landsat, land surface temperature (LST), land use land cover (LULC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
5110 Shaft Friction of Bored Pile Socketed in Weathered Limestone in Qatar

Authors: Thanawat Chuleekiat

Abstract:

Socketing of bored piles in rock is always seen as a matter of debate on construction sites between consultants and contractors. The socketing depth normally depends on the type of rock, depth at which the rock is available below the pile cap and load carrying capacity of the pile. In this paper, the review of field load test data of drilled shaft socketed in weathered limestone conducted using conventional static pile load test and dynamic pile load test was made to evaluate a unit shaft friction for the bored piles socketed in weathered limestone (weak rock). The borehole drilling data were also reviewed in conjunction with the pile test result. In addition, the back-calculated unit shaft friction was reviewed against various empirical methods for bored piles socketed in weak rock. The paper concludes with an estimated ultimate unit shaft friction from the case study in Qatar for preliminary design.

Keywords: Piled foundation, weathered limestone, shaft friction, rock socket, pile load test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108
5109 Gas Generator Pyrotechnics Using Gun Propellant Technology Methods

Authors: B. A. Parate

Abstract:

This research article describes the gas generator pyro-cartridge using gun propellant technology methods for fighter aircraft application. The emphasis of this work is to design and develop a gas generating device with pyro-cartridge using double base (DB) propellant to generate a high temperature and pressure gas. This device is utilised for dropping empty fuel tank in an emergency from military aircraft. A data acquisition system (DAS) is used to record time to maximum pressure, maximum pressure and time to half maximum pressure generated in a vented vessel (VV) for gas generator. Pyro-cartridge as a part of the gas generator creates a maximum pressure and time in the closed vessel (CV). This article also covers the qualification testing of gas generator. The performance parameters of pyro-cartridge devices such as ignition delay and maximum pressure are experimentally presented through the CV tests.

Keywords: Closed vessel, data acquisition, double base propellant, gas generator, ignition system, ignition delay, propellant, pyro-cartridge, pyrotechnics, vented vessel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
5108 Urban Ecological Interaction: Air, Water, Light and New Transit at the Human Scale of Barcelona’s Superilles

Authors: Philip Speranza

Abstract:

As everyday transit options are shifting from autocentric to pedestrian and bicycle oriented modes for healthy living, downtown streets are becoming more attractive places to live. However, tools and methods to measure the natural environment at the small scale of streets do not exist. Fortunately, a combination of mobile data collection technology and parametric urban design software now allows an interface to relate urban ecological conditions. This paper describes creation of an interactive tool to measure urban phenomena of air, water, and heat/light at the scale of new three-by-three block pedestrianized areas in Barcelona called Superilles. Each Superilla limits transit to the exterior of the blocks and to create more walkable and bikeable interior streets for healthy living. The research will describe the integration of data collection, analysis, and design output via a live interface using parametric software Rhino Grasshopper and the Human User Interface (UI) plugin.

Keywords: Transit, urban design, GIS, parametric design, Superilles, Barcelona, urban ecology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
5107 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
5106 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: Load forecasting, artificial neural network, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
5105 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data

Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone

Abstract:

This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease dataset, the study successfully identified key factors, and the results were consistent with previous studies.

Keywords: Lyme disease, Poisson generalized linear model, Ridge regression, Lasso Regression, elastic net regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139
5104 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247