Search results for: Artificial bee algorithm
1838 A Comparative Study of Rigid and Modified Simplex Methods for Optimal Parameter Settings of ACO for Noisy Non-Linear Surfaces
Authors: Seksan Chunothaisawat, Pongchanun Luangpaiboon
Abstract:
There are two common types of operational research techniques, optimisation and metaheuristic methods. The latter may be defined as a sequential process that intelligently performs the exploration and exploitation adopted by natural intelligence and strong inspiration to form several iterative searches. An aim is to effectively determine near optimal solutions in a solution space. In this work, a type of metaheuristics called Ant Colonies Optimisation, ACO, inspired by a foraging behaviour of ants was adapted to find optimal solutions of eight non-linear continuous mathematical models. Under a consideration of a solution space in a specified region on each model, sub-solutions may contain global or multiple local optimum. Moreover, the algorithm has several common parameters; number of ants, moves, and iterations, which act as the algorithm-s driver. A series of computational experiments for initialising parameters were conducted through methods of Rigid Simplex, RS, and Modified Simplex, MSM. Experimental results were analysed in terms of the best so far solutions, mean and standard deviation. Finally, they stated a recommendation of proper level settings of ACO parameters for all eight functions. These parameter settings can be applied as a guideline for future uses of ACO. This is to promote an ease of use of ACO in real industrial processes. It was found that the results obtained from MSM were pretty similar to those gained from RS. However, if these results with noise standard deviations of 1 and 3 are compared, MSM will reach optimal solutions more efficiently than RS, in terms of speed of convergence.
Keywords: Ant colony optimisation, metaheuristics, modified simplex, non-linear, rigid simplex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16241837 Smart Power Scheduling to Reduce Peak Demand and Cost of Energy in Smart Grid
Authors: Hemant I. Joshi, Vivek J. Pandya
Abstract:
This paper discusses the simulation and experimental work of small Smart Grid containing ten consumers. Smart Grid is characterized by a two-way flow of real-time information and energy. RTP (Real Time Pricing) based tariff is implemented in this work to reduce peak demand, PAR (peak to average ratio) and cost of energy consumed. In the experimental work described here, working of Smart Plug, HEC (Home Energy Controller), HAN (Home Area Network) and communication link between consumers and utility server are explained. Algorithms for Smart Plug, HEC, and utility server are presented and explained in this work. After receiving the Real Time Price for different time slots of the day, HEC interacts automatically by running an algorithm which is based on Linear Programming Problem (LPP) method to find the optimal energy consumption schedule. Algorithm made for utility server can handle more than one off-peak time period during the day. Simulation and experimental work are carried out for different cases. At the end of this work, comparison between simulation results and experimental results are presented to show the effectiveness of the minimization method adopted.
Keywords: Smart Grid, Real Time Pricing, Peak to Average Ratio, Home Area Network, Home Energy Controller, Smart Plug, Utility Server, Linear Programming Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16851836 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones are continually upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described more refined, complex and detailed. In this context, we analyzed a set of experimental data, obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model become extremely challenging. After a series of feature selection and parameters adjustments, a well-performed SVM classifier has been trained.
Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6391835 A Study on the Relation of Corporate Governance and Pricing for Initial Public Offerings
Authors: Chei-Chang Chiou, Sen-Wei Wang, Yu-Min Wang
Abstract:
The purpose of this study is to investigate the relationship between corporate governance and pricing for initial public offerings (IPOs). Empirical result finds that the prediction of pricing of IPOs with corporate governance added can have a rather higher degree of predicting accuracy than that of non governance added during the training and testing samples. Therefore, it can be observed that corporate governance mechanism can affect the pricing of IPOsKeywords: Artificial neural networks, corporate governance, initial public offerings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18071834 Analysis and Research of Two-Level Scheduling Profile for Open Real-Time System
Authors: Yongxian Jin, Jingzhou Huang
Abstract:
In an open real-time system environment, the coexistence of different kinds of real-time and non real-time applications makes the system scheduling mechanism face new requirements and challenges. One two-level scheduling scheme of the open real-time systems is introduced, and points out that hard and soft real-time applications are scheduled non-distinctively as the same type real-time applications, the Quality of Service (QoS) cannot be guaranteed. It has two flaws: The first, it can not differentiate scheduling priorities of hard and soft real-time applications, that is to say, it neglects characteristic differences between hard real-time applications and soft ones, so it does not suit a more complex real-time environment. The second, the worst case execution time of soft real-time applications cannot be predicted exactly, so it is not worth while to cost much spending in order to assure all soft real-time applications not to miss their deadlines, and doing that may cause resource wasting. In order to solve this problem, a novel two-level real-time scheduling mechanism (including scheduling profile and scheduling algorithm) which adds the process of dealing with soft real-time applications is proposed. Finally, we verify real-time scheduling mechanism from two aspects of theory and experiment. The results indicate that our scheduling mechanism can achieve the following objectives. (1) It can reflect the difference of priority when scheduling hard and soft real-time applications. (2) It can ensure schedulability of hard real-time applications, that is, their rate of missing deadline is 0. (3) The overall rate of missing deadline of soft real-time applications can be less than 1. (4) The deadline of a non-real-time application is not set, whereas the scheduling algorithm that server 0 S uses can avoid the “starvation" of jobs and increase QOS. By doing that, our scheduling mechanism is more compatible with different types of applications and it will be applied more widely.
Keywords: Hard real-time, two-level scheduling profile, open real-time system, non-distinctive schedule, soft real-time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681833 An Adaptive Memetic Algorithm With Dynamic Population Management for Designing HIV Multidrug Therapies
Authors: Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati
Abstract:
In this paper, a mathematical model of human immunodeficiency virus (HIV) is utilized and an optimization problem is proposed, with the final goal of implementing an optimal 900-day structured treatment interruption (STI) protocol. Two type of commonly used drugs in highly active antiretroviral therapy (HAART), reverse transcriptase inhibitors (RTI) and protease inhibitors (PI), are considered. In order to solving the proposed optimization problem an adaptive memetic algorithm with population management (AMAPM) is proposed. The AMAPM uses a distance measure to control the diversity of population in genotype space and thus preventing the stagnation and premature convergence. Moreover, the AMAPM uses diversity parameter in phenotype space to dynamically set the population size and the number of crossovers during the search process. Three crossover operators diversify the population, simultaneously. The progresses of crossover operators are utilized to set the number of each crossover per generation. In order to escaping the local optima and introducing the new search directions toward the global optima, two local searchers assist the evolutionary process. In contrast to traditional memetic algorithms, the activation of these local searchers is not random and depends on both the diversity parameters in genotype space and phenotype space. The capability of AMAPM in finding optimal solutions compared with three popular metaheurestics is introduced.Keywords: HIV therapy design, memetic algorithms, adaptivealgorithms, nonlinear integer programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16281832 A Perceptually Optimized Wavelet Embedded Zero Tree Image Coder
Authors: A. Bajit, M. Nahid, A. Tamtaoui, E. H. Bouyakhf
Abstract:
In this paper, we propose a Perceptually Optimized Embedded ZeroTree Image Coder (POEZIC) that introduces a perceptual weighting to wavelet transform coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to the coding quality obtained using the SPIHT algorithm only. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEZIC quality assessment. Our POEZIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) luminance masking and Contrast masking, 2) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting, 3) the Wavelet Error Sensitivity WES used to reduce the perceptual quantization errors. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.
Keywords: DWT, linear-phase 9/7 filter, 9/7 Wavelets Error Sensitivity WES, CSF implementation approaches, JND Just Noticeable Difference, Luminance masking, Contrast masking, standard SPIHT, Objective Quality Measure, Probability Score PS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20511831 2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries
Authors: C. Leroy, G. Oger, D. Le Touzé, B. Alessandrini
Abstract:
A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.
Keywords: Finite volume method, cartesian grid, compressible solver, complex geometries, Paramesh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16111830 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack
Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo
Abstract:
The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.
Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5451829 Unsteady Transonic Aerodynamic Analysis for Oscillatory Airfoils using Time Spectral Method
Authors: Mohamad Reza. Mohaghegh, Majid. Malek Jafarian
Abstract:
This research proposes an algorithm for the simulation of time-periodic unsteady problems via the solution unsteady Euler and Navier-Stokes equations. This algorithm which is called Time Spectral method uses a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. It has shown tremendous potential for reducing the computational cost compared to conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy. The accuracy and efficiency of this technique is verified by Euler and Navier-Stokes calculations for pitching airfoils. Because of flow turbulence nature, Baldwin-Lomax turbulence model has been used at viscous flow analysis. The results presented by the Time Spectral method are compared with experimental data. It has shown tremendous potential for reducing the computational cost compared to the conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy, because results verify the small number of time intervals per pitching cycle required to capture the flow physics.Keywords: Time Spectral Method, Time-periodic unsteadyflow, Discrete Fourier transform, Pitching airfoil, Turbulence flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701828 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet
Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel
Abstract:
Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9881827 A Computational Model of Minimal Consciousness Functions
Authors: Nabila Charkaoui
Abstract:
Interest in Human Consciousness has been revived in the late 20th century from different scientific disciplines. Consciousness studies involve both its understanding and its application. In this paper, a computational model of the minimum consciousness functions necessary in my point of view for Artificial Intelligence applications is presented with the aim of improving the way computations will be made in the future. In section I, human consciousness is briefly described according to the scope of this paper. In section II, a minimum set of consciousness functions is defined - based on the literature reviewed - to be modelled, and then a computational model of these functions is presented in section III. In section IV, an analysis of the model is carried out to describe its functioning in detail.
Keywords: Consciousness, perception, attention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921826 Group of Square Roots of Unity Modulo n
Authors: Rochdi Omami, Mohamed Omami, Raouf Ouni
Abstract:
Let n ≥ 3 be an integer and G2(n) be the subgroup of square roots of 1 in (Z/nZ)*. In this paper, we give an algorithm that computes a generating set of this subgroup.Keywords: Group, modulo, square roots, unity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19331825 An Advanced Stereo Vision Based Obstacle Detection with a Robust Shadow Removal Technique
Authors: Saeid Fazli, Hajar Mohammadi D., Payman Moallem
Abstract:
This paper presents a robust method to detect obstacles in stereo images using shadow removal technique and color information. Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. The proposed advanced method is divided into three phases, the first phase is detecting obstacles and removing shadows, the second one is matching and the last phase is depth computing. We propose a robust method for detecting obstacles in stereo images using a shadow removal technique based on color information in HIS space, at the first phase. In this paper we use Normalized Cross Correlation (NCC) function matching with a 5 × 5 window and prepare an empty matching table τ and start growing disparity components by drawing a seed s from S which is computed using canny edge detector, and adding it to τ. In this way we achieve higher performance than the previous works [2,17]. A fast stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. The obstacle identified in phase one which appears in the disparity map of phase two enters to the third phase of depth computing. Finally, experimental results are presented to show the effectiveness of the proposed method.
Keywords: obstacle detection, stereo vision, shadowremoval, color, stereo matching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20731824 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology
Authors: Sanjeev Kumar Appicharla
Abstract:
This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety critical incident to raise awareness of biases in systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the Methodology used to model and analyse the safety-critical incident. The SIRI Methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the Management Oversight and Risk Tree technique. The benefits of the SIRI Methodology are threefold: first is that it incorporates “Heuristics and Biases” approach, in the Management Oversight and Risk Tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling technique. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organisational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signalling firms and transport planners, and front-line staff such that lessons learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner’s and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision making and risk management processes and practices in the IEC 15288 Systems Engineering standard, and in the industrial context such as the GB railways and Artificial Intelligence (AI) contexts as well.
Keywords: Accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3811823 Design of Expert System for Search Allergy and Selection of the Skin Tests using CLIPS
Authors: St. Karagiannis, A. I. Dounis, T. Chalastras, P. Tiropanis, D. Papachristos
Abstract:
This work presents the design of an expert system that aims in the procurement of patient medial background and in the search for suitable skin test selections. Skin testing is the tool used most widely to diagnose allergies. The language of expert systems CLIPS is used as a tool of designing. Finally, we present the evaluation of the proposed expert system which was achieved with the import of certain medical cases and the system produced with suitable successful skin tests.
Keywords: Artificial intelligence, expert system - CLIPS, allergy and skin test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28321822 An Approach to the Solving Non-Steiner Minimum Link Path Problem
Authors: V. Tereshchenko, A. Tregubenko
Abstract:
In this study we survey the method for fast finding a minimum link path between two arbitrary points within a simple polygon, which can pass only through the vertices, with preprocessing.
Keywords: Minimum link path, simple polygon, Steiner points, optimal algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15111821 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping
Authors: Kamand Bagherian, Nariman Niknejad
Abstract:
A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.Keywords: Vibration isolation, position control, discrete-time nonlinear controller, active damping, disturbance tracking algorithm, oscillation transmitting support, stability robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6111820 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.
Keywords: Airborne laser scanning, digital terrain models, filtering, forested areas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7181819 Artifacts in Spiral X-ray CT Scanners: Problems and Solutions
Authors: Mehran Yazdi, Luc Beaulieu
Abstract:
Artifact is one of the most important factors in degrading the CT image quality and plays an important role in diagnostic accuracy. In this paper, some artifacts typically appear in Spiral CT are introduced. The different factors such as patient, equipment and interpolation algorithm which cause the artifacts are discussed and new developments and image processing algorithms to prevent or reduce them are presented.Keywords: CT artifacts, Spiral CT, Artifact removal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45071818 Some Separations in Covering Approximation Spaces
Authors: Xun Ge, Jinjin Li, Ying Ge
Abstract:
Adopting Zakowski-s upper approximation operator C and lower approximation operator C, this paper investigates granularity-wise separations in covering approximation spaces. Some characterizations of granularity-wise separations are obtained by means of Pawlak rough sets and some relations among granularitywise separations are established, which makes it possible to research covering approximation spaces by logical methods and mathematical methods in computer science. Results of this paper give further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.Keywords: Rough set, covering approximation space, granularitywise separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16851817 Comparative Study Using Weka for Red Blood Cells Classification
Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.
Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29971816 A Combined Neural Network Approach to Soccer Player Prediction
Authors: Wenbin Zhang, Hantian Wu, Jian Tang
Abstract:
An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.
Keywords: General Regression Neural Network, Probabilistic Neural Networks, Neural function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37651815 An Artificial Neural Network Model Based Study of Seismic Wave
Authors: Hemant Kumar, Nilendu Das
Abstract:
A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity.
Keywords: ANN, Bayesian class, earthquakes, IMD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7021814 Maize Tolerance to Natural and Artificial Infestation with Diabrotica virgifera virgifera Eggs
Authors: Snežana T. Tanasković, Sonja M. Gvozdenac, Branka D. Popović, Vesna M. Đurović, Matthias Erb
Abstract:
Western corn rootworm – WCR (Diabrotica virgifera sp.virgifera, Coleoptera, Chrysomelidae) is economically the most important pest of maize worldwide. WCR natural population is already very abundant on Serbian fields, and keeps increasing each year. Tolerance is recognized by larger root size and bigger root regrowth. Severe larval injuries cause lack of compensatory regrowth and lead to reduction of plant growth and yield. The aim of this research was to evaluate tolerance of commercial Serbian maize hybrid NS 640, under natural WCR infestation and under conditions of artificial infestation, and to obtain the information about its tolerance to WCR larval feeding in two consecutive years. Field experiments were conducted in 2015 and 2016, in Bečej (Vojvodina province, Serbia). In experimental field, 96 plants were selected, marked and arranged in 48 pairs. Each pair represented two plants. The first plant was artificially infested with 4 mL WCR egg suspension in agar (550 eggs plant-1) in the root zone (D plant). The second plant represented control plant (C plant) with injection of 4 mL distilled water in root zone. The experimental field was inspected weekly. A hybrid tolerance was assessed based on root injury level and root mass. Root injury was rated using the Node-Injury Scale 1-6, during the last field inspection (September – October). Comparing the root injuries on D and C plants in 2015, more severe damages were recorded on D plants (12 plants - rate 5 and 17 plants - rate 6) compared to C plants (2 plants - rate 5 and 8 plants - rate 6). Also, the highest number of plants with healthy roots (rate 1), was registered in the control (25 plants), while only 4 D plants were rated as injury level 1. In 2016, root injuries caused by WCR larvae on D and C plants did not differ significantly. The reason is the difference in climatic conditions between the years. The 2015 was extremely dry and more suitable for WCR larval development and movement in the soil, compared to 2016. Thus, more severe damages appeared on artificially infested plants (D plants). Root mass was in strong correlation with the level of root injury, but did not differ significantly between D and C plants, in both years.Keywords: D. v. virgifera, maize, root injury, tolerance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8771813 Decomposition Method for Neural Multiclass Classification Problem
Authors: H. El Ayech, A. Trabelsi
Abstract:
In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15721812 An Improved Total Variation Regularization Method for Denoising Magnetocardiography
Authors: Yanping Liao, Congcong He, Ruigang Zhao
Abstract:
The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.Keywords: Constraint parameters, derivative matrix, magnetocardiography, regular term, total variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7021811 Forecasting of Grape Juice Flavor by Using Support Vector Regression
Authors: Ren-Jieh Kuo, Chun-Shou Huang
Abstract:
The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractive. Thus, this study intends to introducing the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN, and LR to forecast the flavor of grapes juice in real data shows that SVR is more suitable and effective at predicting performance.
Keywords: Flavor forecasting, artificial neural networks, support vector regression, grape juice flavor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22161810 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).
Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5421809 Analysis of Histogram Asymmetry for Waste Recognition
Authors: Janusz Bobulski, Kamila Pasternak
Abstract:
Despite many years of effort and research, the problem of waste management is still current. There is a lack of fast and effective algorithms for classifying individual waste fractions. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.
Keywords: Computer vision, environmental protection, image processing, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 313