Search results for: weak signal detection.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2763

Search results for: weak signal detection.

543 Extended Study on Removing Gaussian Noise in Mechanical Engineering Drawing Images using Median Filters

Authors: Low Khong Teck, Hasan S. M. Al-Khaffaf, Abdullah Zawawi Talib, Tan Kian Lam

Abstract:

In this paper, an extended study is performed on the effect of different factors on the quality of vector data based on a previous study. In the noise factor, one kind of noise that appears in document images namely Gaussian noise is studied while the previous study involved only salt-and-pepper noise. High and low levels of noise are studied. For the noise cleaning methods, algorithms that were not covered in the previous study are used namely Median filters and its variants. For the vectorization factor, one of the best available commercial raster to vector software namely VPstudio is used to convert raster images into vector format. The performance of line detection will be judged based on objective performance evaluation method. The output of the performance evaluation is then analyzed statistically to highlight the factors that affect vector quality.

Keywords: Performance Evaluation, Vectorization, Median Filter, Gaussian Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
542 Efficient Feature Fusion for Noise Iris in Unconstrained Environment

Authors: Yao-Hong Tsai

Abstract:

This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.

Keywords: Image fusion, iris recognition, local binary pattern, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
541 M-band Wavelet and Cosine Transform Based Watermark Algorithm Using Randomization and Principal Component Analysis

Authors: Tong Liu, Xuan Xu, Xiaodi Wang

Abstract:

Computational techniques derived from digital image processing are playing a significant role in the security and digital copyrights of multimedia and visual arts. This technology has the effect within the domain of computers. This research presents discrete M-band wavelet transform (MWT) and cosine transform (DCT) based watermarking algorithm by incorporating the principal component analysis (PCA). The proposed algorithm is expected to achieve higher perceptual transparency. Specifically, the developed watermarking scheme can successfully resist common signal processing, such as geometric distortions, and Gaussian noise. In addition, the proposed algorithm can be parameterized, thus resulting in more security. To meet these requirements, the image is transformed by a combination of MWT & DCT. In order to improve the security further, we randomize the watermark image to create three code books. During the watermark embedding, PCA is applied to the coefficients in approximation sub-band. Finally, first few component bands represent an excellent domain for inserting the watermark.

Keywords: discrete M-band wavelet transform , discrete M-band wavelet transform, randomized watermark, principal component analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
540 The Excess Loop Delay Calibration in a Bandpass Continuous-Time Delta Sigma Modulators Based on Q-Enhanced LC Filter

Authors: Sorore Benabid

Abstract:

The Q-enhanced LC filters are the most used architecture in the Bandpass (BP) Continuous-Time (CT) Delta-Sigma (ΣΔ) modulators, due to their: high frequencies operation, high linearity than the active filters and a high quality factor obtained by Q-enhanced technique. This technique consists of the use of a negative resistance that compensate the ohmic losses in the on-chip inductor. However, this technique introduces a zero in the filter transfer function which will affect the modulator performances in term of Dynamic Range (DR), stability and in-band noise (Signal-to-Noise Ratio (SNR)). In this paper, we study the effect of this zero and we demonstrate that a calibration of the excess loop delay (ELD) is required to ensure the best performances of the modulator. System level simulations are done for a 2ndorder BP CT (ΣΔ) modulator at a center frequency of 300MHz. Simulation results indicate that the optimal ELD should be reduced by 13% to achieve the maximum SNR and DR compared to the ideal LC-based ΣΔ modulator.

Keywords: Continuous-time bandpass delta-sigma modulators, excess loop delay, on-chip inductor, Q-enhanced LC filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
539 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump

Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison

Abstract:

Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.

Keywords: Centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
538 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD: Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by SVM, achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: Autism Spectrum Disorder, ASD, Machine Learning, ML, Feature Selection, Support Vector Machine, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
537 Extracellular Protein Secreted by Bacillus subtilis ATCC21332 in the Presence of Streptomycin Sulfate

Authors: Hanina M. N., Hairul Shahril M., Ismatul Nurul Asyikin I., Abdul Jalil A. K., Salina M. R., Maryam M. R., Rosfarizan M.

Abstract:

The extracellular proteins secreted by bacteria may be increased in stressful surroundings, such as in the presence of antibiotics. It appears that many antibiotics, when used at low concentrations, have in common the ability to activate or repress gene transcription, which is distinct from their inhibitory effect. There have been comparatively few studies on the potential of antibiotics as a specific chemical signal that can trigger a variety of biological functions. Therefore, this study was carried out to determine the effect of Streptomycin Sulfate in regulating extracellular proteins secreted by Bacillus subtilis ATCC21332. Results of Microdilution assay showed that the Minimum Inhibition Concentration (MIC) of Streptomycin Sulfate on B. subtilis ATCC21332 was 2.5 mg/ml. The bacteria cells were then exposed to Streptomycin Sulfate at concentration of 0.01 MIC before being further incubated for 48h to 72 h. The extracellular proteins secreted were then isolated and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins profile revealed that three additional bands with approximate sizes of 30 kDa, 22 kDa and 23 kDa were appeared for the treated bacteria with Streptomycin Sulfate. Thus, B. subtilis ATCC21332 in stressful condition with the presence of Streptomycin Sulfate at low concentration could induce the extracellular proteins secretion.

Keywords: Bacillus subtilis ATCC21332, Streptomycin Sulfate, extracellular proteins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167
536 A New Intelligent Strategy to Integrated Control of AFS/DYC Based on Fuzzy Logic

Authors: R. Karbalaei, A. Ghaffari, R. Kazemi, S. H. Tabatabaei

Abstract:

An integrated vehicle dynamics control system is developed in this paper by a combination of active front steering (AFS) and direct yaw-moment control (DYC) based on fuzzy logic control. The control system has a hierarchical structure consisting of two layers. A fuzzy logic controller is used in the upper layer (yaw rate controller) to keep the yaw rate in its desired value. The yaw rate error and its rate of change are applied to the upper controlling layer as inputs, where the direct yaw moment control signal and the steering angle correction of the front wheels are the outputs. In the lower layer (fuzzy integrator), a fuzzy logic controller is designed based on the working region of the lateral tire forces. Depending on the directions of the lateral forces at the front wheels, a switching function is activated to adjust the scaling factor of the fuzzy logic controller. Using a nonlinear seven degrees of freedom vehicle model, the simulation results illustrate considerable improvements which are achieved in vehicle handling through the integrated AFS/DYC control system in comparison with the individual AFS or DYC controllers.

Keywords: Intelligent strategy, integrated control, fuzzy logic, AFS/DYC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
535 Contrast-Enhanced Multispectal Upconversion Fluorescence Analysis for High-Resolution in-vivo Deep Tissue Imaging

Authors: Lijiang Wang, Wei Wang, Yuhong Xu

Abstract:

Lanthanide-doped upconversion nanoparticles which can convert near-infrared lights to visible lights have attracted growing interest because of their great potentials in fluorescence imaging. Upconversion fluorescence imaging technique with excitation in the near-infrared (NIR) region has been used for imaging of biological cells and tissues. However, improving the detection sensitivity and decreasing the absorption and scattering in biological tissues are as yet unresolved problems. In this present study, a novel NIR-reflected multispectral imaging system was developed for upconversion fluorescent imaging in small animals. Based on this system, we have obtained the high contrast images without the autofluorescence when biocompatible UCPs were injected near the body surface or deeply into the tissue. Furthermore, we have extracted respective spectra of the upconversion fluorescence and relatively quantify the fluorescence intensity with the multispectral analysis. To our knowledge, this is the first time to analyze and quantify the upconversion fluorescence in the small animal imaging.

Keywords: Multispectral imaging, near-infrared, upconversion fluorescence imaging, upconversion nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
534 Precombining Adaptive LMMSE Detection for DS-CDMA Systems in Time Varying Channels: Non Blind and Blind Approaches

Authors: M. D. Kokate, T. R. Sontakke, P. W. Wani

Abstract:

This paper deals with an adaptive multiuser detector for direct sequence code division multiple-access (DS-CDMA) systems. A modified receiver, precombinig LMMSE is considered under time varying channel environment. Detector updating is performed with two criterions, mean square estimation (MSE) and MOE optimization technique. The adaptive implementation issues of these two schemes are quite different. MSE criterion updates the filter weights by minimizing error between data vector and adaptive vector. MOE criterion together with canonical representation of the detector results in a constrained optimization problem. Even though the canonical representation is very complicated under time varying channels, it is analyzed with assumption of average power profile of multipath replicas of user of interest. The performance of both schemes is studied for practical SNR conditions. Results show that for poor SNR, MSE precombining LMMSE is better than the blind precombining LMMSE but for greater SNR, MOE scheme outperforms with better result.

Keywords: LMMSE, MOE, MUD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
533 Low Complexity Peak-to-Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing System by Simultaneously Applying Partial Transmit Sequence and Clipping Algorithms

Authors: V. Sudha, D. Sriram Kumar

Abstract:

Orthogonal Frequency Division Multiplexing (OFDM) has been used in many advanced wireless communication systems due to its high spectral efficiency and robustness to frequency selective fading channels. However, the major concern with OFDM system is the high peak-to-average power ratio (PAPR) of the transmitted signal. Some of the popular techniques used for PAPR reduction in OFDM system are conventional partial transmit sequences (CPTS) and clipping. In this paper, a parallel combination/hybrid scheme of PAPR reduction using clipping and CPTS algorithms is proposed. The proposed method intelligently applies both the algorithms in order to reduce both PAPR as well as computational complexity. The proposed scheme slightly degrades bit error rate (BER) performance due to clipping operation and it can be reduced by selecting an appropriate value of the clipping ratio (CR). The simulation results show that the proposed algorithm achieves significant PAPR reduction with much reduced computational complexity.

Keywords: CCDF, OFDM, PAPR, PTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
532 Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy

Authors: Yusmeeraz Yusof, Yoshiyuki Yanagimoto, Shigeyasu Uno, Kazuo Nakazato

Abstract:

We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.

Keywords: Biosensor, electrical double-layer, impedance spectroscopy, label free DNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3089
531 Kinetic Spectrophotometric Determination of Ramipril in Commercial Dosage Forms

Authors: Nafisur Rahman, Habibur Rahman, Syed Najmul Hejaz Azmi

Abstract:

This paper presents a simple and sensitive kinetic spectrophotometric method for the determination of ramipril in commercial dosage forms. The method is based on the reaction of the drug with 1-chloro-2,4-dinitrobenzene (CDNB) in dimethylsulfoxide (DMSO) at 100 ± 1ºC. The reaction is followed spectrophotometrically by measuring the rate of change of the absorbance at 420 nm. Fixed-time (ΔA) and equilibrium methods are adopted for constructing the calibration curves. Both the calibration curves were found to be linear over the concentration ranges 20 - 220 μg/ml. The regression analysis of calibration data yielded the linear equations: Δ A = 6.30 × 10-4 + 1.54 × 10-3 C and A = 3.62 × 10-4 + 6.35 × 10-3 C for fixed time (Δ A) and equilibrium methods, respectively. The limits of detection (LOD) for fixed time and equilibrium methods are 1.47 and 1.05 μg/ml, respectively. The method has been successfully applied to the determination of ramipril in commercial dosage forms. Statistical comparison of the results shows that there is no significant difference between the proposed methods and Abdellatef-s spectrophotometric method.

Keywords: Equilibrium method, Fixed-time (ΔA) method, Ramipril, Spectrophotometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
530 An Identification Method of Geological Boundary Using Elastic Waves

Authors: Masamitsu Chikaraishi, Mutsuto Kawahara

Abstract:

This paper focuses on a technique for identifying the geological boundary of the ground strata in front of a tunnel excavation site using the first order adjoint method based on the optimal control theory. The geological boundary is defined as the boundary which is different layers of elastic modulus. At tunnel excavations, it is important to presume the ground situation ahead of the cutting face beforehand. Excavating into weak strata or fault fracture zones may cause extension of the construction work and human suffering. A theory for determining the geological boundary of the ground in a numerical manner is investigated, employing excavating blasts and its vibration waves as the observation references. According to the optimal control theory, the performance function described by the square sum of the residuals between computed and observed velocities is minimized. The boundary layer is determined by minimizing the performance function. The elastic analysis governed by the Navier equation is carried out, assuming the ground as an elastic body with linear viscous damping. To identify the boundary, the gradient of the performance function with respect to the geological boundary can be calculated using the adjoint equation. The weighed gradient method is effectively applied to the minimization algorithm. To solve the governing and adjoint equations, the Galerkin finite element method and the average acceleration method are employed for the spatial and temporal discretizations, respectively. Based on the method presented in this paper, the different boundary of three strata can be identified. For the numerical studies, the Suemune tunnel excavation site is employed. At first, the blasting force is identified in order to perform the accuracy improvement of analysis. We identify the geological boundary after the estimation of blasting force. With this identification procedure, the numerical analysis results which almost correspond with the observation data were provided.

Keywords: Parameter identification, finite element method, average acceleration method, first order adjoint equation method, weighted gradient method, geological boundary, navier equation, optimal control theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
529 Optimal Convolutive Filters for Real-Time Detection and Arrival Time Estimation of Transient Signals

Authors: Michal Natora, Felix Franke, Klaus Obermayer

Abstract:

Linear convolutive filters are fast in calculation and in application, and thus, often used for real-time processing of continuous data streams. In the case of transient signals, a filter has not only to detect the presence of a specific waveform, but to estimate its arrival time as well. In this study, a measure is presented which indicates the performance of detectors in achieving both of these tasks simultaneously. Furthermore, a new sub-class of linear filters within the class of filters which minimize the quadratic response is proposed. The proposed filters are more flexible than the existing ones, like the adaptive matched filter or the minimum power distortionless response beamformer, and prove to be superior with respect to that measure in certain settings. Simulations of a real-time scenario confirm the advantage of these filters as well as the usefulness of the performance measure.

Keywords: Adaptive matched filter, minimum variance distortionless response, beam forming, Capon beam former, linear filters, performance measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
528 Conducting Flow Measurement Laboratory Test Work

Authors: M. B. Kime

Abstract:

Mass flow measurement is the basis of most technoeconomic formulations in the chemical industry. This calls for reliable and accurate detection of mass flow. Flow measurement laboratory experiments were conducted using various instruments. These consisted of orifice plates, various sized rotameters, wet gas meter and soap bubble meter. This work was aimed at evaluating appropriate operating conditions and accuracy of the aforementioned devices. The experimental data collected were compared to theoretical predictions from Bernoulli’s equation and calibration curves supplied by the instrument’s manufacturers. The results obtained showed that rotameters were more reliable for measuring high and low flow rates; while soap-bubble meters and wet-gas meters were found to be suitable for measuring low flow rates. The laboratory procedures and findings of the actual work can assist engineering students and professionals in conducting their flow measurement laboratory test work.

Keywords: Flow measurement, orifice plates, rotameters, wet gas meter, soap bubble meter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4944
527 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: Data quality, feature selection, probability distribution, string classification, string length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
526 Semi-automatic Background Detection in Microscopic Images

Authors: Alessandro Bevilacqua, Alessandro Gherardi, Ludovico Carozza, Filippo Piccinini

Abstract:

The last years have seen an increasing use of image analysis techniques in the field of biomedical imaging, in particular in microscopic imaging. The basic step for most of the image analysis techniques relies on a background image free of objects of interest, whether they are cells or histological samples, to perform further analysis, such as segmentation or mosaicing. Commonly, this image consists of an empty field acquired in advance. However, many times achieving an empty field could not be feasible. Or else, this could be different from the background region of the sample really being studied, because of the interaction with the organic matter. At last, it could be expensive, for instance in case of live cell analyses. We propose a non parametric and general purpose approach where the background is built automatically stemming from a sequence of images containing even objects of interest. The amount of area, in each image, free of objects just affects the overall speed to obtain the background. Experiments with different kinds of microscopic images prove the effectiveness of our approach.

Keywords: Microscopy, flat field correction, background estimation, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
525 Microscopic Analysis of Welded Dental Alloys

Authors: S. Porojan, L. Sandu, F. Topalâ

Abstract:

Microplasma welding is a less expensive alternative to laser welding in dental technology. The aim of the study was to highlight discontinuities present in the microplasma welded joints of dental base metal alloys by visual analysis. Five base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using these plates, preliminary tests were conducted by microplasma welding in butt joint configuration, without filler material, bilaterally and with filler material, proper for each base metal. Macroscopic visual inspection was performed to assess carefully the irregularities in the welds. Electron microscopy allowed detection of discontinuities that are not visible to the eye and revealing details regarding location, trajectory, morphology and size of discontinuities. Supplementing visual control with microscopic analysis allows to detect small discontinuities, which escapes the macroscopic control and to make a detailed study of the weld.

Keywords: base metal alloys, fixed prosthodontics, microplasmawelding, visual inspection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
524 Validation of an EEG Classification Procedure Aimed at Physiological Interpretation

Authors: M. Guillard, M. Philippe, F. Laurent, J. Martinerie, J. P. Lachaux, G. Florence

Abstract:

One approach to assess neural networks underlying the cognitive processes is to study Electroencephalography (EEG). It is relevant to detect various mental states and characterize the physiological changes that help to discriminate two situations. That is why an EEG (amplitude, synchrony) classification procedure is described, validated. The two situations are "eyes closed" and "eyes opened" in order to study the "alpha blocking response" phenomenon in the occipital area. The good classification rate between the two situations is 92.1 % (SD = 3.5%) The spatial distribution of a part of amplitude features that helps to discriminate the two situations are located in the occipital regions that permit to validate the localization method. Moreover amplitude features in frontal areas, "short distant" synchrony in frontal areas and "long distant" synchrony between frontal and occipital area also help to discriminate between the two situations. This procedure will be used for mental fatigue detection.

Keywords: Classification, EEG Synchrony, alpha, resting situation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
523 Bandwidth Efficient Diversity Scheme Using STTC Concatenated With STBC: MIMO Systems

Authors: Sameru Sharma, Sanjay Sharma, Derick Engles

Abstract:

Multiple-input multiple-output (MIMO) systems are widely in use to improve quality, reliability of wireless transmission and increase the spectral efficiency. However in MIMO systems, multiple copies of data are received after experiencing various channel effects. The limitations on account of complexity due to number of antennas in case of conventional decoding techniques have been looked into. Accordingly we propose a modified sphere decoder (MSD-1) algorithm with lower complexity and give rise to system with high spectral efficiency. With the aim to increase signal diversity we apply rotated quadrature amplitude modulation (QAM) constellation in multi dimensional space. Finally, we propose a new architecture involving space time trellis code (STTC) concatenated with space time block code (STBC) using MSD-1 at the receiver for improving system performance. The system gains have been verified with channel state information (CSI) errors.

Keywords: Channel State Information , Diversity, Multi-Antenna, Rotated Constellation, Space Time Codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
522 Efficient and Extensible Data Processing Framework in Ubiquitious Sensor Networks

Authors: Junghoon Lee, Gyung-Leen Park, Ho-Young Kwak, Cheol Min Kim

Abstract:

This paper presents the design and implements the prototype of an intelligent data processing framework in ubiquitous sensor networks. Much focus is put on how to handle the sensor data stream as well as the interoperability between the low-level sensor data and application clients. Our framework first addresses systematic middleware which mitigates the interaction between the application layer and low-level sensors, for the sake of analyzing a great volume of sensor data by filtering and integrating to create value-added context information. Then, an agent-based architecture is proposed for real-time data distribution to efficiently forward a specific event to the appropriate application registered in the directory service via the open interface. The prototype implementation demonstrates that our framework can host a sophisticated application on the ubiquitous sensor network and it can autonomously evolve to new middleware, taking advantages of promising technologies such as software agents, XML, cloud computing, and the like.

Keywords: sensor network, intelligent farm, middleware, event detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
521 Dynamic Power Reduction in Sequential Circuits Using Look Ahead Clock Gating Technique

Authors: R. Manjith, C. Muthukumari

Abstract:

In this paper, a novel Linear Feedback Shift Register (LFSR) with Look Ahead Clock Gating (LACG) technique is presented to reduce the power consumption in modern processors and System-on-Chip. Clock gating is a predominant technique used to reduce unwanted switching of clock signals. Several clock gating techniques to reduce the dynamic power have been developed, of which LACG is predominant. LACG computes the clock enabling signals of each flip-flop (FF) one cycle ahead of time, based on the present cycle data of the flip-flops on which it depends. It overcomes the timing problems in the existing clock gating methods like datadriven clock gating and Auto-Gated flip-flops (AGFF) by allotting a full clock cycle for the determination of the clock enabling signals. Further to reduce the power consumption in LACG technique, FFs can be grouped so that they share a common clock enabling signal. Simulation results show that the novel grouped LFSR with LACG achieves 15.03% power savings than conventional LFSR with LACG and 44.87% than data-driven clock gating.

Keywords: AGFF, data-driven, LACG, LFSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
520 Sidelobe Reduction in Cognitive Radio Systems Using Hybrid Technique

Authors: Atif Elahi, Ijaz Mansoor Qureshi, Mehreen Atif, Noor Gul

Abstract:

Orthogonal frequency division multiplexing (OFDM) is one of the best candidates for dynamic spectrum access due to its flexibility of spectrum shaping. However, the high sidelobes of the OFDM signal that result in high out-of-band radiation, introduce significant interference to the users operating in its vicinity. This problem becomes more critical in cognitive radio (CR) system that enables the secondary users (SUs) users to access the spectrum holes not used by the primary users (PUs) at that time. In this paper, we present a generalized OFDM framework that has a capability of describing any sidelobe suppression techniques, despite of whether one or a number of techniques are used. Based on that framework, we propose cancellation carrier (CC) technique in conjunction with the generalized sidelobe canceller (GSC) to reduce the out-of-band radiation in the region where the licensed users are operating. Simulation results show that the proposed technique can reduce the out-of-band radiation better when compared with the existing techniques found in the literature.

Keywords: Cognitive radio, cancellation carriers, generalized sidelobe canceller, out-of-band radiation, orthogonal frequency division multiplexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
519 A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods

Authors: Ioannis N. Koukoulis, Clio G. Vossou, Christopher G. Provatidis

Abstract:

The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.

Keywords: Elastostatic, inverse problem, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
518 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network

Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman

Abstract:

Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.

Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3142
517 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours

Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic

Abstract:

Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.

Keywords: player number, soccer video, HSV color space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
516 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution

Authors: N. David, H. O. Gao

Abstract:

Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.

Keywords: Air pollution, commercial microwave links, rainfall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
515 Inter-Phase Magnetic Coupling Effects on Sensorless SR Motor Control

Authors: N. H. Mvungi

Abstract:

Control of commutation of switched reluctance (SR) motor has been an area of interest for researchers for sometime now with mixed successes in addressing the inherent challenges. New technologies, processing schemes and methods have been adopted to make sensorless SR drive a reality. There are a number of conceptual, offline, analytical and online solutions in literature that have varying complexities and achieved equally varying degree of robustness and accuracies depending on the method used to address the challenges and the SR drive application. Magnetic coupling is one such challenge when using active probing techniques to determine rotor position of a SR motor from stator winding. This paper studies the effect of back-of-core saturation on the detected rotor position and presents results on measurement made on a 4- phase SR motor. The results shows that even for a four phase motor which is excited one phase at a time and using the electrically opposite phase for active position probing, the back-of-core saturation effects should not be ignored.

Keywords: Sensorless, SR motor, saturation effects, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
514 Improved Automated Classification of Alcoholics and Non-alcoholics

Authors: Ramaswamy Palaniappan

Abstract:

In this paper, several improvements are proposed to previous work of automated classification of alcoholics and nonalcoholics. In the previous paper, multiplayer-perceptron neural network classifying energy of gamma band Visual Evoked Potential (VEP) signals gave the best classification performance using 800 VEP signals from 10 alcoholics and 10 non-alcoholics. Here, the dataset is extended to include 3560 VEP signals from 102 subjects: 62 alcoholics and 40 non-alcoholics. Three modifications are introduced to improve the classification performance: i) increasing the gamma band spectral range by increasing the pass-band width of the used filter ii) the use of Multiple Signal Classification algorithm to obtain the power of the dominant frequency in gamma band VEP signals as features and iii) the use of the simple but effective knearest neighbour classifier. To validate that these two modifications do give improved performance, a 10-fold cross validation classification (CVC) scheme is used. Repeat experiments of the previously used methodology for the extended dataset are performed here and improvement from 94.49% to 98.71% in maximum averaged CVC accuracy is obtained using the modifications. This latest results show that VEP based classification of alcoholics is worth exploring further for system development.

Keywords: Alcoholic, Multilayer-perceptron, Nearest neighbour, Gamma band, MUSIC, Visual evoked potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378