Search results for: linear prediction analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10595

Search results for: linear prediction analysis

8375 Novel Delay-Dependent Stability Criteria for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delays

Authors: Mengzhuo Luo, Shouming Zhong

Abstract:

This paper investigates the problem of exponential stability for a class of uncertain discrete-time stochastic neural network with time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional, combining the stochastic stability theory, the free-weighting matrix method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Compared with some previous results, the new conditions obtain in this paper are less conservative. Finally, two numerical examples are exploited to show the usefulness of the results derived.

Keywords: Delay-dependent stability, Neural networks, Time varying delay, Linear matrix inequality (LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
8374 An Advanced Time-Frequency Domain Method for PD Extraction with Non-Intrusive Measurement

Authors: Guomin Luo, Daming Zhang, Yong Kwee Koh, Kim Teck Ng, Helmi Kurniawan, Weng Hoe Leong

Abstract:

Partial discharge (PD) detection is an important method to evaluate the insulation condition of metal-clad apparatus. Non-intrusive sensors which are easy to install and have no interruptions on operation are preferred in onsite PD detection. However, it often lacks of accuracy due to the interferences in PD signals. In this paper a novel PD extraction method that uses frequency analysis and entropy based time-frequency (TF) analysis is introduced. The repetitive pulses from convertor are first removed via frequency analysis. Then, the relative entropy and relative peak-frequency of each pulse (i.e. time-indexed vector TF spectrum) are calculated and all pulses with similar parameters are grouped. According to the characteristics of non-intrusive sensor and the frequency distribution of PDs, the pulses of PD and interferences are separated. Finally the PD signal and interferences are recovered via inverse TF transform. The de-noised result of noisy PD data demonstrates that the combination of frequency and time-frequency techniques can discriminate PDs from interferences with various frequency distributions.

Keywords: Entropy, Fourier analysis, non-intrusive measurement, time-frequency analysis, partial discharge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
8373 Identifying Relationships between Technology-based Services and ICTs: A Patent Analysis Approach

Authors: Chulhyun Kim, Seungkyum Kim, Moon-soo Kim

Abstract:

A variety of new technology-based services have emerged with the development of Information and Communication Technologies (ICTs). Since technology-based services have technology-driven characteristics, the identification of relationships between technology-based services and ICTs would give meaningful implications. Thus, this paper proposes an approach for identifying the relationships between technology-based services and ICTs by analyzing patent documents. First, business model (BM) patents are classified into relevant service categories. Second, patent citation analysis is conducted to investigate the technological linkage and impacts between technology-based services and ICTs at macro level. Third, as a micro level analysis, patent co-classification analysis is employed to identify the technological linkage and coverage. The proposed approach could guide and help managers and designers of technology-based services to discover the opportunity of the development of new technology-based services in emerging service sectors.

Keywords: Technology-based Services, Information and Communication Technology (ICT), Business Model (BM) Patent, Patent Analysis, Technological Relationship

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
8372 Approximated Solutions of Two-Point Nonlinear Boundary Problem by a Combination of Taylor Series Expansion and Newton Raphson Method

Authors: Chinwendu. B. Eleje, Udechukwu P. Egbuhuzor

Abstract:

One of the difficulties encountered in solving nonlinear Boundary Value Problems (BVP) by many researchers is finding approximated solutions with minimum deviations from the exact solutions without so much rigor and complications. In this paper, we propose an approach to solve a two point BVP which involves a combination of Taylor series expansion method and Newton Raphson method. Furthermore, the fourth and sixth order approximated solutions are obtained and we compare their relative error and rate of convergence to the exact solution. Finally, some numerical simulations are presented to show the behavior of the solution and its derivatives.

Keywords: Newton Raphson method, non-linear boundary value problem, Taylor series approximation, Michaelis-Menten equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345
8371 Comparative Study of Some Adaptive Fuzzy Algorithms for Manipulator Control

Authors: Sudeept Mohan, Surekha Bhanot

Abstract:

The problem of manipulator control is a highly complex problem of controlling a system which is multi-input, multioutput, non-linear and time variant. In this paper some adaptive fuzzy, and a new hybrid fuzzy control algorithm have been comparatively evaluated through simulations, for manipulator control. The adaptive fuzzy controllers consist of self-organizing, self-tuning, and coarse/fine adaptive fuzzy schemes. These controllers are tested for different trajectories and for varying manipulator parameters through simulations. Various performance indices like the RMS error, steady state error and maximum error are used for comparison. It is observed that the self-organizing fuzzy controller gives the best performance. The proposed hybrid fuzzy plus integral error controller also performs remarkably well, given its simple structure.

Keywords: Hybrid fuzzy, Self-organizing, Self-tuning, Trajectory tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
8370 Valuing Environmental Impact of Air Pollution in Moscow with Hedonic Prices

Authors: V. Komarova

Abstract:

The main purpose of this research is the calculation of implicit prices of the environmental level of air quality in the city of Moscow on the basis of housing property prices. The database used contains records of approximately 20 thousand apartments and has been provided by a leading real estate agency operating in Russia. The explanatory variables include physical characteristics of the houses, environmental (industry emissions), neighbourhood sociodemographic and geographic data: GPS coordinates of each house. The hedonic regression results for ecological variables show «negative» prices while increasing the level of air contamination from such substances as carbon monoxide, nitrogen dioxide, sulphur dioxide, and particles (CO, NO2, SO2, TSP). The marginal willingness to pay for higher environmental quality is presented for linear and log-log models.

Keywords: Air pollution, environment, hedonic prices, real estate, willingness to pay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
8369 Time Series Forecasting Using Independent Component Analysis

Authors: Theodor D. Popescu

Abstract:

The paper presents a method for multivariate time series forecasting using Independent Component Analysis (ICA), as a preprocessing tool. The idea of this approach is to do the forecasting in the space of independent components (sources), and then to transform back the results to the original time series space. The forecasting can be done separately and with a different method for each component, depending on its time structure. The paper gives also a review of the main algorithms for independent component analysis in the case of instantaneous mixture models, using second and high-order statistics. The method has been applied in simulation to an artificial multivariate time series with five components, generated from three sources and a mixing matrix, randomly generated.

Keywords: Independent Component Analysis, second order statistics, simulation, time series forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
8368 MEGSOR Iterative Scheme for the Solution of 2D Elliptic PDE's

Authors: J. Sulaiman, M. Othman, M. K. Hasan

Abstract:

Recently, the findings on the MEG iterative scheme has demonstrated to accelerate the convergence rate in solving any system of linear equations generated by using approximation equations of boundary value problems. Based on the same scheme, the aim of this paper is to investigate the capability of a family of four-point block iterative methods with a weighted parameter, ω such as the 4 Point-EGSOR, 4 Point-EDGSOR, and 4 Point-MEGSOR in solving two-dimensional elliptic partial differential equations by using the second-order finite difference approximation. In fact, the formulation and implementation of three four-point block iterative methods are also presented. Finally, the experimental results show that the Four Point MEGSOR iterative scheme is superior as compared with the existing four point block schemes.

Keywords: MEG iteration, second-order finite difference, weighted parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
8367 Role of Association Rule Mining in Numerical Data Analysis

Authors: Sudhir Jagtap, Kodge B. G., Shinde G. N., Devshette P. M

Abstract:

Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century, the life sciences and even the arts have adopted elements of scientific computations. The numerical data analysis became key process in research and development of all the fields [6]. In this paper we have made an attempt to analyze the specified numerical patterns with reference to the association rule mining techniques with minimum confidence and minimum support mining criteria. The extracted rules and analyzed results are graphically demonstrated. Association rules are a simple but very useful form of data mining that describe the probabilistic co-occurrence of certain events within a database [7]. They were originally designed to analyze market-basket data, in which the likelihood of items being purchased together within the same transactions are analyzed.

Keywords: Numerical data analysis, Data Mining, Association Rule Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2868
8366 Embedded Systems Energy Consumption Analysis Through Co-modelling and Simulation

Authors: José Antonio Esparza Isasa, Finn Overgaard Hansen, Peter Gorm Larsen

Abstract:

This paper presents a new methodology to study power and energy consumption in mechatronic systems early in the development process. This new approach makes use of two modeling languages to represent and simulate embedded control software and electromechanical subsystems in the discrete event and continuous time domain respectively within a single co-model. This co-model enables an accurate representation of power and energy consumption and facilitates the analysis and development of both software and electro-mechanical subsystems in parallel. This makes the engineers aware of energy-wise implications of different design alternatives and enables early trade-off analysis from the beginning of the analysis and design activities.

Keywords: Energy consumption, embedded systems, modeldriven engineering, power awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
8365 Wavelet-Based ECG Signal Analysis and Classification

Authors: Madina Hamiane, May Hashim Ali

Abstract:

This paper presents the processing and analysis of ECG signals. The study is based on wavelet transform and uses exclusively the MATLAB environment. This study includes removing Baseline wander and further de-noising through wavelet transform and metrics such as signal-to noise ratio (SNR), Peak signal-to-noise ratio (PSNR) and the mean squared error (MSE) are used to assess the efficiency of the de-noising techniques. Feature extraction is subsequently performed whereby signal features such as heart rate, rise and fall levels are extracted and the QRS complex was detected which helped in classifying the ECG signal. The classification is the last step in the analysis of the ECG signals and it is shown that these are successfully classified as Normal rhythm or Abnormal rhythm.  The final result proved the adequacy of using wavelet transform for the analysis of ECG signals.

Keywords: ECG Signal, QRS detection, thresholding, wavelet decomposition, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
8364 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
8363 A Failure Analysis Tool for HDD Analysis

Authors: C. Kumjeera, T. Unchim, B. Marungsri, A. Oonsivilai

Abstract:

The study of piezoelectric material in the past was in T-Domain form; however, no one has studied piezoelectric material in the S-Domain form. This paper will present the piezoelectric material in the transfer function or S-Domain model. S-Domain is a well known mathematical model, used for analyzing the stability of the material and determining the stability limits. By using S-Domain in testing stability of piezoelectric material, it will provide a new tool for the scientific world to study this material in various forms.

Keywords: Hard disk drive, failure analysis, tool, time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
8362 Estimation of Fecundity and Gonadosomatic Index of Terapon jarbua from Pondicherry Coast, India

Authors: R. Nandikeswari, M. Sambasivam, V. Anandan

Abstract:

In the present study fecundity of Terapon jarbua was estimated for 41 matured females from the Bay of Bengal, Pondicherry. The fecundity (F) was found to range from 13,475 to 115,920 in fishes between 173-278mm Total length (TL) and 65- 298 gm weight respectively. The co-efficient of correlation for F/TL (log F = - 4.821 + 4.146 log TL), F/SL (log F = -3.936 + 3.867 log SL), F/WF (log F = 1.229 + 0.730 log TW) and F/GW (log F = 0.724 + 1.113 log GW) were obtained as 0.474, 0.537, 0.641 and 0.908 respectively. The regression line for the TL, SL, WF and GW of the fishes were found to be linear when they were plotted against their fecundity on logarithmic scales. Highly significant (P<0.01) relationship was obtained for all the variables. Hence Total Length, Standard Length, Weight of Fish and Gonad Weight were found to be the best indicators of the fecundity of Terapon jarbua. Gonadosomatic indices of Terapon jarbua showed that the spawning took place in February to July. The overall sex ratio of male to female is 1.28:1 with chi-square value 5.719, significant at 5% level.

Keywords: Fecundity, Gonadosomatic index, Reproductive biology, spawning, Terapon jarbua.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4120
8361 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay

Authors: Caigen Zhou, Haibo Jiang

Abstract:

The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.

Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
8360 The Analysis on Leadership Skills in UK Automobile Manufacturing Enterprises

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

The UK has strong economic growth, which attracts other countries to invest there through globalization. This research process will be based on quantitative and qualitative descriptive analysis using interviews. The secondary analysis will involve a case study approach to understand the important aspects of leadership skills. The research outcomes will be identifying the strength and weakness of the leadership skills of UK automobile manufacturing enterprises and suggest the best practices adopted by the respective countries for better results.

Keywords: engineering management, leadership, industrial project management, project managers, automobile manufacturing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
8359 A New Reliability Allocation Method Based On Fuzzy Numbers

Authors: Peng Li, Chuanri Li, Tao Li

Abstract:

Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method, and gives concrete processes on determining the factor and sub-factor sets, weight sets, judgment set, and multi-stage fuzzy evaluation. To determine the weight of factor and sub-factor sets, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.

Keywords: Reliability allocation, fuzzy arithmetic, allocation weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3342
8358 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults

Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead

Abstract:

Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.

Keywords: Classification, falls, health risk factors, machine learning, older adults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065
8357 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem

Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand

Abstract:

In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.

Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
8356 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook

Authors: Chien-Jen Liu, Shu Ching Yang

Abstract:

Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.

Keywords: Technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3203
8355 A Sociocybernetics Data Analysis Using Causality in Tourism Networks

Authors: M. Lloret-Climent, J. Nescolarde-Selva

Abstract:

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

Keywords: Attractor, invariant set, orbits, tourist variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
8354 Idiopathic Constipation can be Subdivided in Clinical Subtypes: Data Mining by Cluster Analysis on a Population based Study

Authors: Mauro Giacomini, Stefania Bertone, Carlo Mansi, Pietro Dulbecco, Vincenzo Savarino

Abstract:

The prevalence of non organic constipation differs from country to country and the reliability of the estimate rates is uncertain. Moreover, the clinical relevance of subdividing the heterogeneous functional constipation disorders into pre-defined subgroups is largely unknown.. Aim: to estimate the prevalence of constipation in a population-based sample and determine whether clinical subgroups can be identified. An age and gender stratified sample population from 5 Italian cities was evaluated using a previously validated questionnaire. Data mining by cluster analysis was used to determine constipation subgroups. Results: 1,500 complete interviews were obtained from 2,083 contacted households (72%). Self-reported constipation correlated poorly with symptombased constipation found in 496 subjects (33.1%). Cluster analysis identified four constipation subgroups which correlated to subgroups identified according to pre-defined symptom criteria. Significant differences in socio-demographics and lifestyle were observed among subgroups.

Keywords: Cluster analysis, constipation, data mining, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
8353 Derivative Spectrophotometry Applied to the Determination of Triprolidine Hydrochloride and Pseudoephedrine Hydrochloride in Tablets and Dissolution Testing

Authors: L. Sriphong, A. Chaidedgumjorn, K. Chaisuroj

Abstract:

A spectrophotometric method was developed for simultaneous quantification of pseudoephedrine hydrochloride (PSE) triprolidine hydrochloride (TRI) using second derivative method (zero-crossing technique). The second derivative amplitudes of PSE and TRI were measured at 271 and 321 nm, respectively. The calibration curves were linear in the range of 200 to 1,000 g/ml for PSE and 10 to 50 g/ml for TRI. The method was validated for specificity, accuracy, precision, limit of detection and limit of quantitation. The proposed method was applied to the assaying and dissolution of PSE and TRI in commercial tablets without any chemical separation. The results were compared with those obtained by the official USP31 method and statistical tests showed that there is no significant between the methods at 95% confidence level. The proposed method is simple, rapid and suitable for the routine quality control application. KeywordsTriprolidine, Pseudoephedrine, Derivative spectrophotometry, Dissolution testing.

Keywords: Triprolidine, Pseudoephedrine, Derivative spectrophotometry, Dissolution testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
8352 MDA of Hexagonal Honeycomb Plates used for Space Applications

Authors: A. Boudjemai , M.H. Bouanane, Mankour, R. Amri, H. Salem, B. Chouchaoui

Abstract:

The purpose of this paper is to perform a multidisciplinary design and analysis (MDA) of honeycomb panels used in the satellites structural design. All the analysis is based on clamped-free boundary conditions. In the present work, detailed finite element models for honeycomb panels are developed and analysed. Experimental tests were carried out on a honeycomb specimen of which the goal is to compare the previous modal analysis made by the finite element method as well as the existing equivalent approaches. The obtained results show a good agreement between the finite element analysis, equivalent and tests results; the difference in the first two frequencies is less than 4% and less than 10% for the third frequency. The results of the equivalent model presented in this analysis are obtained with a good accuracy. Moreover, investigations carried out in this research relate to the honeycomb plate modal analysis under several aspects including the structural geometrical variation by studying the various influences of the dimension parameters on the modal frequency, the variation of core and skin material of the honeycomb. The various results obtained in this paper are promising and show that the geometry parameters and the type of material have an effect on the value of the honeycomb plate modal frequency.

Keywords: Satellite, honeycomb, finite element method, modal frequency, dynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4117
8351 Automated Particle Picking based on Correlation Peak Shape Analysis and Iterative Classification

Authors: Hrabe Thomas, Beck Florian, Nickell Stephan

Abstract:

Cryo-electron microscopy (CEM) in combination with single particle analysis (SPA) is a widely used technique for elucidating structural details of macromolecular assemblies at closeto- atomic resolutions. However, development of automated software for SPA processing is still vital since thousands to millions of individual particle images need to be processed. Here, we present our workflow for automated particle picking. Our approach integrates peak shape analysis to the classical correlation and an iterative approach to separate macromolecules and background by classification. This particle selection workflow furthermore provides a robust means for SPA with little user interaction. Processing simulated and experimental data assesses performance of the presented tools.

Keywords: Cryo-electron Microscopy, Single Particle Analysis, Image Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
8350 An Integrated Logistics Model of Spare Parts Maintenance Planning within the Aviation Industry

Authors: Roy Fritzsche, Rainer Lasch

Abstract:

Avoidable unscheduled maintenance events and unnecessary spare parts deliveries are mostly caused by an incorrect choice of the underlying maintenance strategy. For a faster and more efficient supply of spare parts for aircrafts of an airline we examine options for improving the underlying logistics network integrated in an existing aviation industry network. This paper presents a dynamic prediction model as decision support for maintenance method selection considering requirements of an entire flight network. The objective is to guarantee a high supply of spare parts by an optimal interaction of various network levels and thus to reduce unscheduled maintenance events and minimize total costs. By using a prognostics-based preventive maintenance strategy unscheduled component failures are avoided for an increase in availability and reliability of the entire system. The model is intended for use in an aviation company that utilizes a structured planning process based on collected failures data of components.

Keywords: Aviation industry, Prognosis, Reliability, Preventive maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4549
8349 An Investigation of Shipping Comb Failures due to usage in Manufacturing Processes using RCFA and FMEA

Authors: Atjanakul W, Chutima S., Kamnerdthong T.

Abstract:

Shipping comb is mounted on Head Stack Assembly (HSA) to prevent collision of the heads, maintain the gap between suspensions and protect HSA tips from unintentional contact damaged in the manufacturing process. Failure analysis of shipping comb in hard disk drive production processes is proposed .Field observations were performed to determine the fatal areas on shipping comb and their failure fraction. Root cause failure analysis (RCFA) is applied to specify the failure causes subjected to various loading conditions. For reliability improvement, failure mode and effects analysis (FMEA) procedure to evaluate the risk priority is performed. Consequently, the more suitable information design criterions were obtained.

Keywords: Shipping comb, Hard disk drive, Root cause failureanalysis, Failure mode and effects analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
8348 Modified Functional Link Artificial Neural Network

Authors: Ashok Kumar Goel, Suresh Chandra Saxena, Surekha Bhanot

Abstract:

In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated Water Bath System and a Continually Stirred Tank Heater (CSTH). Their convergence speed and generalization ability have been compared. The networks have been tested for their interpolation and extrapolation capability using noise-free and noisy data. The results show that M-FLANN which is computationally cheap, performs better and has greater generalization ability than other networks considered in the work.

Keywords: DLFANN, FLANN, M-FLANN, MLP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
8347 Using Data Mining Methodology to Build the Predictive Model of Gold Passbook Price

Authors: Chien-Hui Yang, Che-Yang Lin, Ya-Chen Hsu

Abstract:

Gold passbook is an investing tool that is especially suitable for investors to do small investment in the solid gold. The gold passbook has the lower risk than other ways investing in gold, but its price is still affected by gold price. However, there are many factors can cause influences on gold price. Therefore, building a model to predict the price of gold passbook can both reduce the risk of investment and increase the benefits. This study investigates the important factors that influence the gold passbook price, and utilize the Group Method of Data Handling (GMDH) to build the predictive model. This method can not only obtain the significant variables but also perform well in prediction. Finally, the significant variables of gold passbook price, which can be predicted by GMDH, are US dollar exchange rate, international petroleum price, unemployment rate, whole sale price index, rediscount rate, foreign exchange reserves, misery index, prosperity coincident index and industrial index.

Keywords: Gold price, Gold passbook price, Group Method ofData Handling (GMDH), Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296
8346 Harmonic Analysis of 240 V AC Power Supply using TMS320C6713 DSK

Authors: Dody Ismoyo, Mohammad Awan, Norashikin Yahya

Abstract:

The presence of harmonic in power system is a major concerned to power engineers for many years. With the increasing usage of nonlinear loads in power systems, the harmonic pollution becomes more serious. One of the widely used computation algorithm for harmonic analysis is fast Fourier transform (FFT). In this paper, a harmonic analyzer using FFT was implemented on TMS320C6713 DSK. The supply voltage of 240 V 59 Hz is stepped down to 5V using a voltage divider in order to match the power rating of the DSK input. The output from the DSK was displayed on oscilloscope and Code Composer Studio™ software. This work has demonstrated the possibility of analyzing the 240V power supply harmonic content using the DSK board.

Keywords: Harmonic Analysis, DSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3361