Search results for: © Learning Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4466

Search results for: © Learning Network

2246 A Balanced Cost Cluster-Heads Selection Algorithm for Wireless Sensor Networks

Authors: Ouadoudi Zytoune, Youssef Fakhri, Driss Aboutajdine

Abstract:

This paper focuses on reducing the power consumption of wireless sensor networks. Therefore, a communication protocol named LEACH (Low-Energy Adaptive Clustering Hierarchy) is modified. We extend LEACHs stochastic cluster-head selection algorithm by a modifying the probability of each node to become cluster-head based on its required energy to transmit to the sink. We present an efficient energy aware routing algorithm for the wireless sensor networks. Our contribution consists in rotation selection of clusterheads considering the remoteness of the nodes to the sink, and then, the network nodes residual energy. This choice allows a best distribution of the transmission energy in the network. The cluster-heads selection algorithm is completely decentralized. Simulation results show that the energy is significantly reduced compared with the previous clustering based routing algorithm for the sensor networks.

Keywords: Wireless Sensor Networks, Energy efficiency, WirelessCommunications, Clustering-based algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
2245 Development of a Telemedical Network Supporting an Automated Flow Cytometric Analysis for the Clinical Follow-up of Leukaemia

Authors: Claude Takenga, Rolf-Dietrich Berndt, Erling Si, Markus Diem, Guohui Qiao, Melanie Gau, Michael Brandstoetter, Martin Kampel, Michael Dworzak

Abstract:

In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide.

Keywords: Data security, flow cytometry, leukaemia, telematics platform, telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
2244 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
2243 Research on Urban Point of Interest Generalization Method Based on Mapping Presentation

Authors: Chengming Li, Yong Yin, Peipei Guo, Xiaoli Liu

Abstract:

Without taking account of the attribute richness of POI (point of interest) data and spatial distribution limited by roads, a POI generalization method considering both attribute information and spatial distribution has been proposed against the existing point generalization algorithm merely focusing on overall information of point groups. Hierarchical characteristic of urban POI information expression has been firstly analyzed to point out the measurement feature of the corresponding hierarchy. On this basis, an urban POI generalizing strategy has been put forward: POIs urban road network have been divided into three distribution pattern; corresponding generalization methods have been proposed according to the characteristic of POI data in different distribution patterns. Experimental results showed that the method taking into account both attribute information and spatial distribution characteristics of POI can better implement urban POI generalization in the mapping presentation.

Keywords: POI, Road network, spatial information expression, selection method, distribution pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039
2242 Efficient Web-Learning Collision Detection Tool on Five-Axis Machine

Authors: Chia-Jung Chen, Rong-Shine Lin, Rong-Guey Chang

Abstract:

As networking has become popular, Web-learning tends to be a trend while designing a tool. Moreover, five-axis machining has been widely used in industry recently; however, it has potential axial table colliding problems. Thus this paper aims at proposing an efficient web-learning collision detection tool on five-axis machining. However, collision detection consumes heavy resource that few devices can support, thus this research uses a systematic approach based on web knowledge to detect collision. The methodologies include the kinematics analyses for five-axis motions, separating axis method for collision detection, and computer simulation for verification. The machine structure is modeled as STL format in CAD software. The input to the detection system is the g-code part program, which describes the tool motions to produce the part surface. This research produced a simulation program with C programming language and demonstrated a five-axis machining example with collision detection on web site. The system simulates the five-axis CNC motion for tool trajectory and detects for any collisions according to the input g-codes and also supports high-performance web service benefiting from C. The result shows that our method improves 4.5 time of computational efficiency, comparing to the conventional detection method.

Keywords: Collision detection, Five-axis machining, Separating axis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
2241 Next Generation IP Address Transition Mechanism for Web Application System

Authors: Mohd. Khairil Sailan, Rosilah Hassan, Zuhaizal Zulkifli

Abstract:

Internet Protocol version 4 (IPv4) address is decreasing and a rapid transition method to the next generation IP address (IPv6) should be established. This study aims to evaluate and select the best performance of the IPv6 address network transitionmechanisms, such as IPv4/IPv6 dual stack, transport Relay Translation (TRT) and Reverse Proxy with additional features. It is also aim to prove that faster access can be done while ensuring optimal usage of available resources used during the test and actual implementation. This study used two test methods such asInternet Control Message Protocol (ICMP)ping and ApacheBenchmark (AB) methodsto evaluate the performance.Performance metrics for this study include aspects ofaverageaccessin one second,time takenfor singleaccess,thedata transfer speed and the costof additional requirements.Reverse Proxy with Caching featureis the most efficientmechanism because of it simpler configurationandthe best performerfrom the test conducted.

Keywords: IPv4, IPv6, network transition, apache benchmark andreverse proxy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
2240 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
2239 Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction

Authors: Sadaf Sahar, Usman Qamar, Sadaf Ayaz

Abstract:

In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training.

Keywords: Software quality, fuzzy logic, perceptron, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
2238 Microwave LNA Design Based On Adaptive Network Fuzzy Inference and Evolutionary Optimization

Authors: Samad Nejatian, Vahideh Rezaie, Vahid Asadpour

Abstract:

This paper presents a novel approach for the design of microwave circuits using Adaptive Network Fuzzy Inference Optimizer (ANFIO). The method takes advantage of direct synthesis of subsections of the amplifier using very fast and accurate ANFIO models based on exact simulations using ADS. A mapping from course space to fine space known as space mapping is also used. The proposed synthesis approach takes into account the noise and scattering parameters due to parasitic elements to achieve optimal results. The overall ANFIO system is capable of designing different LNAs at different noise and scattering criteria. This approach offers significantly reduced time in the design of microwave amplifiers within the validity range of the ANFIO system. The method has been proven to work efficiently for a 2.4GHz LNA example. The S21 of 10.1 dB and noise figure (NF) of 2.7 dB achieved for ANFIO while S21 of 9.05 dB and NF of 2.6 dB achieved for ANN.

Keywords: fuzzy system, low noise amplifier, microwaveamplifier, space mapping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
2237 Handling Mobility using Virtual Grid in Static Wireless Sensor Networks

Authors: T.P. Sharma

Abstract:

Querying a data source and routing data towards sink becomes a serious challenge in static wireless sensor networks if sink and/or data source are mobile. Many a times the event to be observed either moves or spreads across wide area making maintenance of continuous path between source and sink a challenge. Also, sink can move while query is being issued or data is on its way towards sink. In this paper, we extend our already proposed Grid Based Data Dissemination (GBDD) scheme which is a virtual grid based topology management scheme restricting impact of movement of sink(s) and event(s) to some specific cells of a grid. This obviates the need for frequent path modifications and hence maintains continuous flow of data while minimizing the network energy consumptions. Simulation experiments show significant improvements in network energy savings and average packet delay for a packet to reach at sink.

Keywords: Mobility in WSNs, virtual grid, GBDD, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
2236 A Lactose-Free Yogurt Using Membrane Systems and Modified Milk Protein Concentrate: Production and Characterization

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh

Abstract:

Using membrane technology and modification of milk protein structural properties, a lactose free yogurt was developed. The functional, textural and structural properties of the sample were evaluated and compared with the commercial ones. Results showed that the modification of protein in high fat set yogurt resulted in 11.55%, 18%, 20.21% and 7.08% higher hardness, consistency, water holding capacity, and shininess values compared with the control one. Furthermore, these indices of modified low fat set yogurt were 21.40%, 25.41%, 28.15% & 10.58% higher than the control one, which could be related to the gel network microstructural properties in yogurt formulated with modified protein. In this way, in comparison with the control one, the index of linkage strength (A), the number of linkages (z), and time scale of linkages (λrel) of the high fat modified yogurt were 22.10%, 50.68%, 21.82% higher than the control one; whereas, the average linear distance between two adjacent crosslinks (ξ), was 16.77% lower than the control one. For low fat modified yogurt, A, z, λrel, and ξ indices were 34.30%, 61.70% and 42.60% higher and 19.20% lower than the control one, respectively. The shelf life of modified yogurt was extended to 10 weeks in the refrigerator, while, the control set yogurt had a 3 weeks shelf life. The acidity of high fat and low fat modified yogurts increased from 76 to 84 and 72 to 80 Dornic degrees during 10 weeks of storage, respectively, whereas for control high fat and low fat yogurts they increased from 82 to 122 and 77 to 112 Dornic degrees, respectively. This behavior could be due to the elimination of microorganism’s source of energy in modified yogurt. Furthermore, the calories of high fat and low fat lactose free yogurts were 25% and 40% lower than their control samples, respectively. Generally, results showed that the lactose free yogurt with modified protein, despite of 1% lower protein content than the control one, showed better functional properties, nutritional properties, network parameters, and shelf stability, which could be promising in the set yogurt industry.

Keywords: Lactose free, low calorie, network properties, protein modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272
2235 Parallel and Distributed Mining of Association Rule on Knowledge Grid

Authors: U. Sakthi, R. Hemalatha, R. S. Bhuvaneswaran

Abstract:

In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear.

Keywords: Association rule, Grid computing, Knowledge grid, Mobility prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
2234 Comparison of Machine Learning Techniques for Single Imputation on Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.

Keywords: Machine Learning, audiograms, data imputations, single imputations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161
2233 Evolution of Quality Function Deployment (QFD) via Fuzzy Concepts and Neural Networks

Authors: M. Haghighi, M. Zowghi, B. Zohouri

Abstract:

Quality Function Deployment (QFD) is an expounded, multi-step planning method for delivering commodity, services, and processes to customers, both external and internal to an organization. It is a way to convert between the diverse customer languages expressing demands (Voice of the Customer), and the organization-s languages expressing results that sate those demands. The policy is to establish one or more matrices that inter-relate producer and consumer reciprocal expectations. Due to its visual presence is called the “House of Quality" (HOQ). In this paper, we assumed HOQ in multi attribute decision making (MADM) pattern and through a proposed MADM method, rank technical specifications. Thereafter compute satisfaction degree of customer requirements and for it, we apply vagueness and uncertainty conditions in decision making by fuzzy set theory. This approach would propound supervised neural network (perceptron) for MADM problem solving.

Keywords: MADM, fuzzy set, QFD, supervised neural network (perceptron).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
2232 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172
2231 Activity Recognition by Smartphone Accelerometer Data Using Ensemble Learning Methods

Authors: Eu Tteum Ha, Kwang Ryel Ryu

Abstract:

As smartphones are equipped with various sensors, there have been many studies focused on using these sensors to create valuable applications. Human activity recognition is one such application motivated by various welfare applications, such as the support for the elderly, measurement of calorie consumption, lifestyle and exercise patterns analyses, and so on. One of the challenges one faces when using smartphone sensors for activity recognition is that the number of sensors should be minimized to save battery power. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we adopt to deal with this twelve-class problem uses various methods. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point, but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window. The experiments compared the performance of four kinds of basic multi-class classifiers and the performance of four kinds of ensemble learning methods based on three kinds of basic multi-class classifiers. The results show that while the method with the highest accuracy is ECOC based on Random forest.

Keywords: Ensemble learning, activity recognition, smartphone accelerometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
2230 Experimental Studies of Position Control of Linkage based Robotic Finger

Authors: N. Z. Azlan, H. Yamaura

Abstract:

The experimental study of position control of a light weight and small size robotic finger during non-contact motion is presented in this paper. The finger possesses fingertip pinching and self adaptive grasping capabilities, and is made of a seven bar linkage mechanism with a slider in the middle phalanx. The control system is tested under the Proportional Integral Derivative (PID) control algorithm and Recursive Least Square (RLS) based Feedback Error Learning (FEL) control scheme to overcome the uncertainties present in the plant. The experiments conducted in Matlab Simulink and xPC Target environments show that the overall control strategy is efficient in controlling the finger movement.

Keywords: Anthropomorphic finger, position control, feedback error learning, experimental study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
2229 Signature Recognition and Verification using Hybrid Features and Clustered Artificial Neural Network(ANN)s

Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma, Hirendra Das

Abstract:

Signature represents an individual characteristic of a person which can be used for his / her validation. For such application proper modeling is essential. Here we propose an offline signature recognition and verification scheme which is based on extraction of several features including one hybrid set from the input signature and compare them with the already trained forms. Feature points are classified using statistical parameters like mean and variance. The scanned signature is normalized in slant using a very simple algorithm with an intention to make the system robust which is found to be very helpful. The slant correction is further aided by the use of an Artificial Neural Network (ANN). The suggested scheme discriminates between originals and forged signatures from simple and random forgeries. The primary objective is to reduce the two crucial parameters-False Acceptance Rate (FAR) and False Rejection Rate (FRR) with lesser training time with an intension to make the system dynamic using a cluster of ANNs forming a multiple classifier system.

Keywords: offline, algorithm, FAR, FRR, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
2228 Efficient and Extensible Data Processing Framework in Ubiquitious Sensor Networks

Authors: Junghoon Lee, Gyung-Leen Park, Ho-Young Kwak, Cheol Min Kim

Abstract:

This paper presents the design and implements the prototype of an intelligent data processing framework in ubiquitous sensor networks. Much focus is put on how to handle the sensor data stream as well as the interoperability between the low-level sensor data and application clients. Our framework first addresses systematic middleware which mitigates the interaction between the application layer and low-level sensors, for the sake of analyzing a great volume of sensor data by filtering and integrating to create value-added context information. Then, an agent-based architecture is proposed for real-time data distribution to efficiently forward a specific event to the appropriate application registered in the directory service via the open interface. The prototype implementation demonstrates that our framework can host a sophisticated application on the ubiquitous sensor network and it can autonomously evolve to new middleware, taking advantages of promising technologies such as software agents, XML, cloud computing, and the like.

Keywords: sensor network, intelligent farm, middleware, event detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
2227 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
2226 Agent Decision using Granular Computing in Traffic System

Authors: Yasser F. Hassan, Marwa Abdeen, Mustafa Fahmy

Abstract:

In recent years multi-agent systems have emerged as one of the interesting architectures facilitating distributed collaboration and distributed problem solving. Each node (agent) of the network might pursue its own agenda, exploit its environment, develop its own problem solving strategy and establish required communication strategies. Within each node of the network, one could encounter a diversity of problem-solving approaches. Quite commonly the agents can realize their processing at the level of information granules that is the most suitable from their local points of view. Information granules can come at various levels of granularity. Each agent could exploit a certain formalism of information granulation engaging a machinery of fuzzy sets, interval analysis, rough sets, just to name a few dominant technologies of granular computing. Having this in mind, arises a fundamental issue of forming effective interaction linkages between the agents so that they fully broadcast their findings and benefit from interacting with others.

Keywords: Granular computing, rough sets, agents, traffic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
2225 Blind Spot Area Tracking Solution Using 1x12 POF-Based Optical Couplers

Authors: Mohammad Syuhaimi Ab-Rahman, Mohd Hadi Guna Safnal, Mohd Hazwan Harun, Mohd.Saiful Dzulkefly Zan, Kasmiran Jumari

Abstract:

Optical 1x12 fused-taper-twisted polymer optical fiber (POF) couplers has been fabricated by a perform technique. Characterization of the coupler which proposed to be used in passive night vision application to tracking a blind sport area was reported. During the development process of fused-taper-twisted POF couplers was carried out, red LED fully utilized to be injected into the couplers to test the quality of fabricated couplers. Some characterization parameters, such as optical output power, POFs attenuation characteristics and power losses on the network were observed. The maximum output power efficiency of the coupler is about 40%, but it can be improved gradually through experience and practice.

Keywords: polymer optical fiber (POF), customer-made, fused-taper-twisted fiber, optical coupler, small world communication, home network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
2224 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network

Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman

Abstract:

Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.

Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3142
2223 A Laboratory Assistance Module

Authors: Konstantinos E. Evangelidis, Evangelos Kehris, Theodore H. Kaskalis

Abstract:

We propose that Virtual Learning Environments (VLEs) should be designed by taking into account the characteristics, the special needs and the specific operating rules of the academic institutions in which they are employed. In this context, we describe a VLE module that extends the support of the organization and delivery of course material by including administration activities related to the various stages of teaching. These include the co-ordination, collaboration and monitoring of the course material development process and institution-specific course material delivery modes. Our specialized module, which enhances VLE capabilities by Helping Educators and Learners through a Laboratory Assistance System, is willing to assist the Greek tertiary technological sector, which includes Technological Educational Institutes (T.E.I.).

Keywords: Virtual learning environments, Teachingcoordination, Laboratorial education, Technological institutes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
2222 Improving Fault Resilience and Reconstruction of Overlay Multicast Tree Using Leaving Time of Participants

Authors: Bhed Bahadur Bista

Abstract:

Network layer multicast, i.e. IP multicast, even after many years of research, development and standardization, is not deployed in large scale due to both technical (e.g. upgrading of routers) and political (e.g. policy making and negotiation) issues. Researchers looked for alternatives and proposed application/overlay multicast where multicast functions are handled by end hosts, not network layer routers. Member hosts wishing to receive multicast data form a multicast delivery tree. The intermediate hosts in the tree act as routers also, i.e. they forward data to the lower hosts in the tree. Unlike IP multicast, where a router cannot leave the tree until all members below it leave, in overlay multicast any member can leave the tree at any time thus disjoining the tree and disrupting the data dissemination. All the disrupted hosts have to rejoin the tree. This characteristic of the overlay multicast causes multicast tree unstable, data loss and rejoin overhead. In this paper, we propose that each node sets its leaving time from the tree and sends join request to a number of nodes in the tree. The nodes in the tree will reject the request if their leaving time is earlier than the requesting node otherwise they will accept the request. The node can join at one of the accepting nodes. This makes the tree more stable as the nodes will join the tree according to their leaving time, earliest leaving time node being at the leaf of the tree. Some intermediate nodes may not follow their leaving time and leave earlier than their leaving time thus disrupting the tree. For this, we propose a proactive recovery mechanism so that disrupted nodes can rejoin the tree at predetermined nodes immediately. We have shown by simulation that there is less overhead when joining the multicast tree and the recovery time of the disrupted nodes is much less than the previous works. Keywords

Keywords: Network layer multicast, Fault Resilience, IP multicast

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
2221 The Potential Benefits of Multimedia Information Representation in Enhancing Students’ Critical Thinking and History Reasoning

Authors: Ang Ling Weay, Mona Masood

Abstract:

This paper discusses the potential benefits of an interactive multimedia information representation in enhancing students’ critical thinking aligned with history reasoning in learning history amongst Secondary School students in Malaysia. Two modes of multimedia information representation were implemented; chronologic and thematic information representations. A qualitative study of an unstructured interview was conducted among two history teachers, one history education lecturer, two i-think experts, and five students from Form Four secondary school. The interview was to elicit their opinions on the implementation of thinking maps and interactive multimedia information representation in history learning. The key elements of the interactive multimedia (e.g. multiple media, user control, interactivity and use of timelines and concept maps) were then considered to improve the learning process. Findings of the preliminary investigation reveal that the interactive multimedia information representations have the potential benefits to be implemented as an instructional resource in enhancing students’ higher order thinking skills (HOTs). This paper concludes by giving suggestions for future work.

Keywords: Multimedia Information Representation, Critical Thinking, History Reasoning, Chronological and Thematic Information Representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
2220 Changes in Behavior and Learning Ability of Rats Intoxicated with Lead

Authors: Amira, A. Goma, U. E. Mahrous

Abstract:

Measuring the effect of perinatal lead exposure on learning ability of offspring is considered as a sensitive and selective index for providing an early marker for central nervous system damage produced by this toxic metal. A total of 35 Sprague-Dawley adult rats were used to investigate the effect of lead acetate toxicity on behavioral patterns of adult female rats and learning ability of offspring. Rats were allotted into 4 groups, group one received 1g/l lead acetate (n=10), group two received 1.5g/l lead acetate (n=10), group three received 2g/l lead acetate in drinking water (n=10) and control group did not receive lead acetate (n=5) from 8th day of pregnancy till weaning of pups.

The obtained results revealed a dose dependent increase in the feeding time, drinking frequency, licking frequency, scratching frequency, licking litters, nest building and retrieving frequencies, while standing time increased significantly in rats treated with 1.5g/l lead acetate than other treated groups and control, on contrary lying time decreased gradually in a dose dependent manner. Moreover, movement activities were higher in rats treated with 1g/l lead acetate than other treated groups and control. Furthermore, time spent in closed arms was significantly lower in rats given 2g/l lead acetate than other treated groups, while, they spent significantly much time spent in open arms than other treated groups which could be attributed to occurrence of adaptation. Furthermore, number of entries in open arms was dose dependent. However, the ratio between open/closed arms revealed a significant decrease in rats treated with 2g/l lead acetate than control group.

Keywords: Lead toxicity, rats, learning ability, behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
2219 Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis

Authors: Mashitah Mohd Hussain, Salleh Serwan, Zuhaina Hj Zakaria

Abstract:

This paper presents a method to estimate load profile in a multiple power flow solutions for every minutes in 24 hours per day. A method to calculate multiple solutions of non linear profile is introduced. The Power System Simulation/Engineering (PSS®E) and python has been used to solve the load power flow. The result of this power flow solutions has been used to estimate the load profiles for each load at buses using Independent Component Analysis (ICA) without any knowledge of parameter and network topology of the systems. The proposed algorithm is tested with IEEE 69 test bus system represents for distribution part and the method of ICA has been programmed in MATLAB R2012b version. Simulation results and errors of estimations are discussed in this paper.

Keywords: Electrical Distribution System, Power Flow Solution, Distribution Network, Independent Component Analysis, Newton Raphson, Power System Simulation for Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2916
2218 The Application of Learning Systems to Support Decision for Stakeholder and Infrastructures Managers Based On Crowdsourcing

Authors: Alfonso Bastías, Álvaro González

Abstract:

The actual grow of the infrastructure in develop country require sophisticate ways manage the operation and control the quality served. This research wants to concentrate in the operation of this infrastructure beyond the construction. The infrastructure-s operation involves an uncertain environment, where unexpected variables are present every day and everywhere. Decision makers need to make right decisions with right information/data analyzed most in real time. To adequately support their decisions and decrease any negative impact and collateral effect, they need to use computational tools called decision support systems (DSS), but now the main source of information came from common users thought an extensive crowdsourcing

Keywords: Crowdsourcing, Learning Systems, Decision Support Systems, Infrastructure, Construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
2217 Dialogue Meetings as an Arena for Collaboration and Reflection among Researchers and Practitioners

Authors: Kerstin Grunden, Ann Svensson, Berit Forsman, Christina Karlsson, Ayman Obeid

Abstract:

The research question of the article is to explore whether the dialogue meetings method could be relevant for reflective learning among researchers and practitioners when welfare technology should be implemented in municipalities, or not. A testbed was planned to be implemented in a retirement home in a Swedish municipality, and the practitioners worked with a pre-study of that testbed. In the article, the dialogue between the researchers and the practitioners in the dialogue meetings is described and analyzed. The potential of dialogue meetings as an arena for learning and reflection among researchers and practitioners is discussed. The research methodology approach is participatory action research with mixed methods (dialogue meetings, focus groups, participant observations). The main findings from the dialogue meetings were that the researchers learned more about the use of traditional research methods, and the practitioners learned more about how they could improve their use of the methods to facilitate change processes in their organization. These findings have the potential both for the researchers and the practitioners to result in more relevant use of research methods in change processes in organizations. It is concluded that dialogue meetings could be relevant for reflective learning among researchers and practitioners when welfare technology should be implemented in a health care organization.

Keywords: Dialogue meetings, implementation, reflection, test bed, welfare technology, participatory action research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 464