Search results for: premium rate
648 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves
Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi
Abstract:
Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.
Keywords: CFD modeling, ultrasound, mixing, mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754647 Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus
Authors: Manal H. Saleh
Abstract:
A numerical study has been carried out to investigate the heat transfer by natural convection of nanofluid taking Cu as nanoparticles and the water as based fluid in a three dimensional annulus enclosure filled with porous media (silica sand) between two horizontal concentric cylinders with 12 annular fins of 2.4mm thickness attached to the inner cylinder under steady state conditions. The governing equations which used are continuity, momentum and energy equations under an assumptions used Darcy law and Boussinesq-s approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7. The parameters affected on the system are modified Rayleigh number (10 ≤Ra*≤ 1000), fin length Hf (3, 7 and 11mm), radius ratio Rr (0.293, 0.365 and 0.435) and the volume fraction(0 ≤ ¤ò ≤ 0 .35). It was found that the average Nusselt number depends on (Ra*, Hf, Rr and φ). The results show that, increasing of fin length decreases the heat transfer rate and for low values of Ra*, decreasing Rr cause to decrease Nu while for Ra* greater than 100, decreasing Rr cause to increase Nu and adding Cu nanoparticles with 0.35 volume fraction cause 27.9% enhancement in heat transfer. A correlation for Nu in terms of Ra*, Hf and φ, has been developed for inner hot cylinder.Keywords: Annular fins, laminar free convection, nanofluid, porous media, three dimensions horizontal annulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488646 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW
Authors: Farhad Kolahan, Mehdi Heidari
Abstract:
Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186645 Cross-Border Shopping Motivation, Behaviours and Ethnocentrism of Malaysian in Hatyai, Thailand
Authors: Wanwisa Kuncharin, Badaruddin Mohamed
Abstract:
There have been few studies of cross-border shopping. However, many have focused on macroeconomic effects rather than on discovering the motivation and behaviour of cross-border shoppers who purchase abroad. Hatyai, Thailand is located about 30 km from the Malaysian border. The statistics reports that each year more than 400,000 Malaysian visitors visited Hatyai. The aims of this study are fourfold: (1) to investigate factors motivating cross-border shoppers to shop in Hatyai, Thailand; (2) to examine the relationship between ethnicity and shopper ethnocentrism; (3) to discover the impact of shopper ethnocentrism on foreign product judgment; and (4) to explore the impact of shopper ethnocentrism on the willingness to buy foreign products. The results reveal that the three most popular consumption items were food and beverages, clothing, and grocery products. Factor analysis shows that the three key reasons for choosing Hatyai as the cross-border shopping destination included product and store, close distance, and low exchange rate. Moreover, there were significant differences in ethnocentrism by three ethnic groups. Shopper ethnocentrism had a significant negative correlation with foreign product judgment, while shopper ethnocentrism was not significantly correlated with willingness to buy foreign products.
Keywords: Cross-border shopping behaviours, Malaysian shoppers, Ethnocentrism, Hatyai, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3867644 A Novel Approach to Iris Localization for Iris Biometric Processing
Authors: Somnath Dey, Debasis Samanta
Abstract:
Iris-based biometric system is gaining its importance in several applications. However, processing of iris biometric is a challenging and time consuming task. Detection of iris part in an eye image poses a number of challenges such as, inferior image quality, occlusion of eyelids and eyelashes etc. Due to these problems it is not possible to achieve 100% accuracy rate in any iris-based biometric authentication systems. Further, iris detection is a computationally intensive task in the overall iris biometric processing. In this paper, we address these two problems and propose a technique to localize iris part efficiently and accurately. We propose scaling and color level transform followed by thresholding, finding pupil boundary points for pupil boundary detection and dilation, thresholding, vertical edge detection and removal of unnecessary edges present in the eye images for iris boundary detection. Scaling reduces the search space significantly and intensity level transform is helpful for image thresholding. Experimental results show that our approach is comparable with the existing approaches. Following our approach it is possible to detect iris part with 95-99% accuracy as substantiated by our experiments on CASIA Ver-3.0, ICE 2005, UBIRIS, Bath and MMU iris image databases.
Keywords: Iris recognition, iris localization, biometrics, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3189643 Optimization of Surface Roughness in Turning Process Utilizing Live Tooling via Taguchi Methodology
Authors: Weinian Wang, Joseph C. Chen
Abstract:
The objective of this research is to optimize the process of cutting cylindrical workpieces utilizing live tooling on a HAAS ST-20 lathe. Surface roughness (Ra) has been investigated as the indicator of quality characteristics for machining process. Aluminum alloy was used to conduct experiments due to its wide range usages in engineering structures and components where light weight or corrosion resistance is required. In this study, Taguchi methodology is utilized to determine the effects that each of the parameters has on surface roughness (Ra). A total of 18 experiments of each process were designed according to Taguchi’s L9 orthogonal array (OA) with four control factors at three levels of each and signal-to-noise ratios (S/N) were computed with Smaller the better equation for minimizing the system. The optimal parameters identified for the surface roughness of the turning operation utilizing live tooling were a feed rate of 3 inches/min(A3); a spindle speed of 1300 rpm(B3); a 2-flute titanium nitrite coated 3/8” endmill (C1); and a depth of cut of 0.025 inches (D2). The mean surface roughness of the confirmation runs in turning operation was 8.22 micro inches. The final results demonstrate that Taguchi methodology is a sufficient way of process improvement in turning process on surface roughness.
Keywords: Live tooling, surface roughness, Taguchi Parameter Design, CNC turning operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803642 Image Transmission: A Case Study on Combined Scheme of LDPC-STBC in Asynchronous Cooperative MIMO Systems
Authors: Shan Ding, Lijia Zhang, Hongming Xu
Abstract:
this paper presents a novel scheme which is capable of reducing the error rate and improves the transmission performance in the asynchronous cooperative MIMO systems. A case study of image transmission is applied to prove the efficient of scheme. The linear dispersion structure is employed to accommodate the cooperative wireless communication network in the dynamic topology of structure, as well as to achieve higher throughput than conventional space–time codes based on orthogonal designs. The LDPC encoder without girth-4 and the STBC encoder with guard intervals are respectively introduced. The experiment results show that the combined coder of LDPC-STBC with guard intervals can be the good error correcting coders and BER performance in the asynchronous cooperative communication. In the case study of image transmission, the results show that in the transmission process, the image quality which is obtained by applied combined scheme is much better than it which is not applied the scheme in the asynchronous cooperative MIMO systems.
Keywords: Cooperative MIMO, image transmission, lineardispersion codes, Low-Density Parity-Check (LDPC)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932641 The Urban Expansion Characterization of the Bir El Djir Municipality Using Remote Sensing and GIS
Authors: Zakaria Smahi, Khadidja Remaoun, Fatima Achouri
Abstract:
Bir El Djir is an important coastal township in Oran department, located at 450 Km far away from Algiers on northwest of Algeria. In this coastal area, the urban sprawl is one of the main problems that reduce the limited highly fertile land. So, using the remote sensing and GIS technologies have shown their great capabilities to solve many earth resources issues. The aim of this study is to produce land use and cover map for the studied area at varied periods to monitor possible changes that may occurred, particularly in the urban areas and subsequently predict likely changes. For this, two spatial images SPOT and Landsat satellites from 1987 and 2014 respectively were used to assess the changes of urban expansion and encroachment during this period with photo-interpretation and GIS approach. The results revealed that the town of Bir El Djir has shown a highest growth rate in the period 1987-2014 which is 1201.5 hectares in terms of area. These expansions largely concern the new real estate constructions falling within the social and promotional housing programs launched by the government. The most urban expansion is characterized by the new construction in the form of spontaneous or peripheral precarious habitat, but also unstructured slums settled especially in the southeastern part of town.
Keywords: Urban expansion, Remote Sensing, Photointerpretation, Spatial dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133640 Exergy Analysis of a Solar Humidification- Dehumidification Desalination Unit
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
This paper presents the exergy analysis of a desalination unit using humidification-dehumidification process. Here, this unit is considered as a thermal system with three main components, which are the heating unit by using a solar collector, the evaporator or the humidifier, and the condenser or the dehumidifier. In these components the exergy is a measure of the quality or grade of energy and it can be destroyed in them. According to the second law of thermodynamics this destroyed part is due to irreversibilities which must be determined to obtain the exergetic efficiency of the system. In the current paper a computer program has been developed using visual basic to determine the exergy destruction and the exergetic efficiencies of the components of the desalination unit at variable operation conditions such as feed water temperature, outlet air temperature, air to feed water mass ratio and salinity, in addition to cooling water mass flow rate and inlet temperature, as well as quantity of solar irradiance. The results obtained indicate that the exergy efficiency of the humidifier increases by increasing the mass ratio and decreasing the outlet air temperature. In the other hand the exergy efficiency of the condenser increases with the increase of this ratio and also with the increase of the outlet air temperature.
Keywords: Exergy analysis, desalination, solar, humidifier, condenser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470639 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB – Technical University of Ostrava
Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík
Abstract:
The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB – Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.
Keywords: Blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990638 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets
Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew
Abstract:
Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.Keywords: Nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587637 Multilayer Adsorption as a Possible Transition State in Heterogeneous Hydrogenation of C=C Double Bonds
Authors: V. Heral
Abstract:
Ideas about the mechanism of heterogeneous catalytic hydrogenation are diverse. The Horiuti-Polanyi mechanism is most often referred to base on the idea of a semi-hydrogenated state. In our opinion, it does not represent a satisfactory explanation of the hydrogenation mechanism because, for example, (1) It neglects the fact that the bond of atomic hydrogen to the metal surface is strongly polarized, (2) It does not explain why a surface deprived of atomic hydrogen (by thermal desorption or by alkyne) loses isomerization capabilities, but hydrogenation capabilities remain preserved, (3) It was observed that during the hydrogenation of 1-alkenes, the reaction can be of the 0th order to hydrogen and to the alkene at the same time, which is excluded during the competitive adsorption of both reactants on the catalyst surface. We offer an alternative mechanism that satisfactorily explains many of the ambiguities: It is the idea of an independent course of olefin isomerization, catalyzed by acidic atomic hydrogen bonded on the surface of the catalyst, in addition to the hydrogenation itself, in which a two-layer complex appears on the surface of the catalyst: olefin bound to the surface and molecular hydrogen bound to it in the second layer. The rate-determining step of hydrogenation is the conversion of this complex into the final product. In our opinion, the Horiuti-Polanyi mechanism is flawed, and we naturally think that our two-layer theory better describes the experimental findings.
Keywords: Acidity of hydrogenation catalyst, Horiuti-Polanyi, hydrogenation, two-layer hydrogenation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55636 Banana Peels as an Eco-Sorbent for Manganese Ions
Authors: M. S. Mahmoud
Abstract:
This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4% is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2°C, stirring rate 200 rpm and contact time 2h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4% and 97.1%, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7% and 82.4%, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy.
Keywords: Biosorption, banana peels, isothermal models, manganese.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3251635 Health Risk Assessment for Sewer Workers using Bayesian Belief Networks
Authors: Kevin Fong-Rey Liu, Ken Yeh, Cheng-Wu Chen, Han-Hsi Liang
Abstract:
The sanitary sewerage connection rate becomes an important indicator of advanced cities. Following the construction of sanitary sewerages, the maintenance and management systems are required for keeping pipelines and facilities functioning well. These maintenance tasks often require sewer workers to enter the manholes and the pipelines, which are confined spaces short of natural ventilation and full of hazardous substances. Working in sewers could be easily exposed to a risk of adverse health effects. This paper proposes the use of Bayesian belief networks (BBN) as a higher level of noncarcinogenic health risk assessment of sewer workers. On the basis of the epidemiological studies, the actual hospital attendance records and expert experiences, the BBN is capable of capturing the probabilistic relationships between the hazardous substances in sewers and their adverse health effects, and accordingly inferring the morbidity and mortality of the adverse health effects. The provision of the morbidity and mortality rates of the related diseases is more informative and can alleviate the drawbacks of conventional methods.Keywords: Bayesian belief networks, sanitary sewerage, healthrisk assessment, hazard quotient, target organ-specific hazard index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705634 A Study for the Effect of Fire Initiated Location on Evacuation Success Rate
Authors: Jin A Ryu, Ga Ye Kim, Hee Sun Kim
Abstract:
As the number of fire accidents is gradually raising, many studies have been reported on evacuation. Previous studies have mostly focused on evaluating the safety of evacuation and the risk of fire in particular buildings. However, studies on effects of various parameters on evacuation have not been nearly done. Therefore, this paper aims at observing evacuation time under the effect of fire initiated location. In this study, evacuation simulations are performed on a 5-floor building located in Seoul, South Korea using the commercial program, Fire Dynamics Simulator with Evacuation (FDS+EVAC). Only the fourth and fifth floors are modeled with an assumption that fire starts in a room located on the fourth floor. The parameter for evacuation simulations is location of fire initiation to observe the evacuation time and safety. Results show that the location of fire initiation is closer to exit, the more time is taken to evacuate. The case having the nearest location of fire initiation to exit has the lowest ratio of successful occupants to the total occupants. In addition, for safety evaluation, the evacuation time calculated from computer simulation model is compared with the tolerable evacuation time according to code in Japan. As a result, all cases are completed within the tolerable evacuation time. This study allows predicting evacuation time under various conditions of fire and can be used to evaluate evacuation appropriateness and fire safety of building.Keywords: Evacuation safety, Evacuation simulation, FDS+Evac, Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509633 Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests
Authors: Nacim Khelil, Amar Kahil, Said Boukais
Abstract:
The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.
Keywords: Compressive strength, condensed silica fume, hydrated lime, pozzolanic reaction, UPV testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571632 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
Paper presents an comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in speaker dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signal to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients gives best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfy the real-time requirements and is suitable for applications in embedded systems.
Keywords: Isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3539631 Germination of Barley as Affected by the Allelopathy of Sisymbrium irio L. and Descurainiasophia (L.) Schur
Authors: Sh. Edrisi, A. Farahbakhsh
Abstract:
An experiment was conducted under controlled conditions to study the effect of water extract of leaves, shoots and roots of either Sisymbrium irio L. =SISIR and or Descurainia sophia (L.) Schur =DESSO on the germination and primary growth of barley. A split-split plot experiment in CRD with three replications was used. The main plots were the type of weed: i.e. SISIR and DESSO and the sub-plots were type of organ: i.e. leaf, stem and root and, the sub-sub plots were concentration of the water extract of each organ of the weeds: i.e. 0, 2, 4 and 8 % w/v. The results showed that the SISIR water extracts had a greater inhibitory effects on the germination and primary growth of barley than those of DESSO water extracts. The water extracts of the leaves of both weeds had the greatest inhibitory effects on the germination and primary growth of barley, compared to those of stems and roots. Increasing the concentration of water extracts of leaves, stems and roots of both weeds up to 8 % caused the greatest inhibitory effects to barley and reduced the germination rate and primary growth of it linearly.Keywords: Allelopathy, barley, DESSO, SISIR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526630 Comparative Productivity Analysis of Median Scale Battery Cage and Deep Litter Housing Chicken Egg Production in Rivers State, Nigeria
Authors: D. I. Ekine, C. C. Akpanibah
Abstract:
This paper analyses the productivity of median scale battery cage and deep litter chicken egg producers in Rivers State, Nigeria. 90 battery cage and 90 deep litter farmers giving a total of 180 farmers were sampled through a multistage sampling procedure. Mean productivity was higher for the battery cage than the deep litter farmers at 2.65 and 2.33 respectively. Productivity of battery cage farmers were positively influenced by age, extension contacts, experience and feed quantity while the productivity of deep litter farmers was positively influenced by age, extension contacts, household size, experience and labour. The major constraints identified by both categories are high cost of feed, high price of day-old chick, inadequate finance, lack of credit and high cost of drug/vaccination. Furthermore, the work recommends that government should assist chicken egg farmers through subsidies of input resources and put policies to make financial institutions give out loans at low interest rate to the farmers. The farmers should abide by the recommended number of birds per unit area while stocking.
Keywords: Productivity, battery cage, deep litter, median scale, egg production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250629 Simulation of PM10 Source Apportionment at An Urban Site in Southern Taiwan by a Gaussian Trajectory Model
Authors: Chien-Lung Chen, Jeng-Lin Tsai, Feng-Chao Chung, Su-Ching Kuo, Kuo-Hsin Tseng, Pei-Hsuan Kuo, Li-Ying Hsieh, Ying I. Tsai
Abstract:
This study applied the Gaussian trajectory transfer-coefficient model (GTx) to simulate the particulate matter concentrations and the source apportionments at Nanzih Air Quality Monitoring Station in southern Taiwan from November 2007 to February 2008. The correlation coefficient between the observed and the calculated daily PM10 concentrations is 0.5 and the absolute bias of the PM10 concentrations is 24%. The simulated PM10 concentrations matched well with the observed data. Although the emission rate of PM10 was dominated by area sources (58%), the results of source apportionments indicated that the primary sources for PM10 at Nanzih Station were point sources (42%), area sources (20%) and then upwind boundary concentration (14%). The obvious difference of PM10 source apportionment between episode and non-episode days was upwind boundary concentrations which contributed to 20% and 11% PM10 sources, respectively. The gas-particle conversion of secondary aerosol and long range transport played crucial roles on the PM10 contribution to a receptor.Keywords: back trajectory model, particulate matter, sourceapportionment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597628 Chitosan Nanoparticle as a Novel Delivery System for A/H1n1 Influenza Vaccine: Safe Property and Immunogenicity in Mice
Authors: Nguyen Anh Dzung, Nguyen Thi Ngoc Hà, Dang Thi Hong Van, Nguyen Thi Lan Phuong, Nguyen Thi Nhu Quynh, Dinh Minh Hiep, Le Van Hiep
Abstract:
The aims of this paper are to study the efficacy of chitosan nanoparticles in stimulating specific antibody against A/H1N1 influenza antigen in mice. Chitosan nanoparticles (CSN) were characterized by TEM. The results showed that the average size of CSN was from 80nm to 106nm. The efficacy of A/H1N1 influenza vaccine loaded on the surface of CSN showed that loading efficiency of A/H1N1 influenza antigen on CSN was from 93.75 to 100%. Safe property of the vaccine were tested. In 10 days post vaccination, group of CSN 30 kDa and 300 kDa loaded A/H1N1 influenza antigen were the rate of immune response on mice to be 100% (9/9) higher than Al(OH)3 and other adjuvant. 100% mice in the experiment of all groups had immune response in 20 days post vaccination. The results also showed that HI titer of the group using CSN 300 kDa as an adjuvant increased significantly up to 3971 HIU, over three-fold higher than the Al(OH)3 adjuvant, chitosan (CS), and one hundredfold than the A/H1N1 antigen only. Stability of the vaccine formulation was investigated.Keywords: Chitosan nanoparticles, A/H1N1 influenza antigen, vaccine, immunogenicity, adjuvant, antibody titer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487627 A Method for Iris Recognition Based on 1D Coiflet Wavelet
Authors: Agus Harjoko, Sri Hartati, Henry Dwiyasa
Abstract:
There have been numerous implementations of security system using biometric, especially for identification and verification cases. An example of pattern used in biometric is the iris pattern in human eye. The iris pattern is considered unique for each person. The use of iris pattern poses problems in encoding the human iris. In this research, an efficient iris recognition method is proposed. In the proposed method the iris segmentation is based on the observation that the pupil has lower intensity than the iris, and the iris has lower intensity than the sclera. By detecting the boundary between the pupil and the iris and the boundary between the iris and the sclera, the iris area can be separated from pupil and sclera. A step is taken to reduce the effect of eyelashes and specular reflection of pupil. Then the four levels Coiflet wavelet transform is applied to the extracted iris image. The modified Hamming distance is employed to measure the similarity between two irises. This research yields the identification success rate of 84.25% for the CASIA version 1.0 database. The method gives an accuracy of 77.78% for the left eyes of MMU 1 database and 86.67% for the right eyes. The time required for the encoding process, from the segmentation until the iris code is generated, is 0.7096 seconds. These results show that the accuracy and speed of the method is better than many other methods.Keywords: Biometric, iris recognition, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905626 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms
Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma
Abstract:
In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685625 Thermo-mechanical Behavior of Pressure Tube of Indian PHWR at 20 bar Pressure
Authors: Gopal Nandan, P. K. Sahooa, Ravi Kumara, B Chatterjeeb, D. Mukhopadhyayb, H. G. Leleb
Abstract:
In a nuclear reactor Loss of Coolant accident (LOCA) considers wide range of postulated damage or rupture of pipe in the heat transport piping system. In the case of LOCA with/without failure of emergency core cooling system in a Pressurised Heavy water Reactor, the Pressure Tube (PT) temperature could rise significantly due to fuel heat up and gross mismatch of the heat generation and heat removal in the affected channel. The extent and nature of deformation is important from reactor safety point of view. Experimental set-ups have been designed and fabricated to simulate ballooning (radial deformation) of PT for 220 MWe IPHWRs. Experiments have been conducted by covering the CT by ceramic fibers and then by submerging CT in water of voided PTs. In both the experiments, it is observed that ballooning initiates at a temperature around 665´┐¢C and complete contact between PT and Caldaria Tube (CT) occurs at around 700´┐¢C approximately. The strain rate is found to be 0.116% per second. The structural integrity of PT is retained (no breach) for all the experiments. The PT heatup is found to be arrested after the contact between PT and CT, thus establishing moderator acting as an efficient heat sink for IPHWRs.Keywords: Pressure Tube, Calandria Tube, Thermo-mechanicaldeformation, Boiling heat transfer, Reactor safety
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222624 Electrostatic Cleaning System Integrated with Thunderon Brush for Lunar Dust Mitigation
Authors: Voss Harrigan, Korey Carter, Mohammad Reza Shaeri
Abstract:
Detrimental effects of lunar dust on space hardware, spacesuits, and astronauts’ health have been already identified during Apollo missions. Developing effective dust mitigation technologies is critically important for successful space exploration and related missions in NASA applications. In this study, an electrostatic cleaning system (ECS) integrated with a negatively ionized Thunderon brush was developed to mitigate small-sized lunar dust particles with diameters ranging from 0.04 µm to 35 µm, and the mean and median size of 7 µm and 5 µm, respectively. It was found that the frequency pulses of the negative ion generator caused particles to stick to the Thunderon bristles and repel between the pulses. The brush was used manually to ensure that particles were removed from areas where the ECS failed to mitigate the lunar simulant. The acquired data demonstrated that the developed system removed over 91-96% of the lunar dust particles. The present study was performed as a proof-of-concept to enhance the cleaning performance of ECSs by integrating a brushing process. Suggestions were made to further improve the performance of the developed technology through future research.
Keywords: lunar dust mitigation, electrostatic cleaning system, brushing, Thunderon brush, cleaning rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 566623 Radiation Damage as Nonlinear Evolution of Complex System
Authors: Pavlo Selyshchev
Abstract:
Irradiated material is a typical example of a complex system with nonlinear coupling between its elements. During irradiation the radiation damage is developed and this development has bifurcations and qualitatively different kinds of behavior. The accumulation of primary defects in irradiated crystals is considered in frame work of nonlinear evolution of complex system. The thermo-concentration nonlinear feedback is carried out as a mechanism of self-oscillation development. It is shown that there are two ways of the defect density evolution under stationary irradiation. The first is the accumulation of defects; defect density monotonically grows and tends to its stationary state for some system parameters. Another way that takes place for opportune parameters is the development of self-oscillations of the defect density. The stationary state, its stability and type are found. The bifurcation values of parameters (environment temperature, defect generation rate, etc.) are obtained. The frequency of the selfoscillation and the conditions of their development is found and rated. It is shown that defect density, heat fluxes and temperature during self-oscillations can reach much higher values than the expected steady-state values. It can lead to a change of typical operation and an accident, e.g. for nuclear equipment.Keywords: Irradiation, Primary Defects, Solids, Self-oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731622 Effect of Leaks in Solid Oxide Electrolysis Cells Tested for Durability under Co-Electrolysis Conditions
Authors: Megha Rao, Søren H. Jensen, Xiufu Sun, Anke Hagen, Mogens B. Mogensen
Abstract:
Solid oxide electrolysis cells have an immense potential in converting CO2 and H2O into syngas during co-electrolysis operation. The produced syngas can be further converted into hydrocarbons. This kind of technology is called power-to-gas or power-to-liquid. To produce hydrocarbons via this route, durability of the cells is still a challenge, which needs to be further investigated in order to improve the cells. In this work, various nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode supported or YSZ electrolyte supported cells, cerium gadolinium oxide (CGO) barrier layer, and an oxygen electrode are investigated for durability under co-electrolysis conditions in both galvanostatic and potentiostatic conditions. While changing the gas on the oxygen electrode, keeping the fuel electrode gas composition constant, a change in the gas concentration arc was observed by impedance spectroscopy. Measurements of open circuit potential revealed the presence of leaks in the setup. It is speculated that the change in concentration impedance may be related to the leaks. Furthermore, the cells were also tested under pressurized conditions to find an inter-play between the leak rate and the pressure. A mathematical modeling together with electrochemical and microscopy analysis is presented.
Keywords: Co-electrolysis, solid oxide electrolysis cells, leaks, durability, gas concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895621 Study on the Effect of Sulphur, Glucose, Nitrogen and Plant Residues on the Immobilization of Sulphate-S in Soil
Authors: S. Shahsavani, A. Gholami
Abstract:
In order to evaluate the relationship between the sulphur (S), glucose (G), nitrogen (N) and plant residues (st), sulphur immobilization and microbial transformation were monitored in five soil samples from 0-30 cm of Bastam farmers fields of Shahrood area following 11 treatments with different levels of Sulphur (S), glucose (G), N and plant residues (wheat straw) in a randomized block design with three replications and incubated over 20, 45 and 60 days, the immobilization of SO4 -2-S presented as a percentage of that added, was inversely related to its addition rate. Additions of glucose and plant residues increased with the C-to-S ratio of the added amendments, irrespective of their origins (glucose and plant residues). In the presence of C sources (glucose or plant residues). N significantly increased the immobilization of SO4 -2-S, whilst the effect of N was insignificant in the absence of a C amendment. In first few days the amounts of added SO4 -2-S immobilized were linearly correlated with the amounts of added S recovered in the soil microbial biomass. With further incubation the proportions of immobilized SO4 -2-S remaining as biomass-S decreased. Decrease in biomass-S was thought to be due to the conversion of biomass-S into soil organic-S. Glucose addition increased the immobilization (microbial utilization and incorporation into the soil organic matter) of native soil SO4 -2-S. However, N addition enhance the mineralization of soil organic-S, increasing the concentration of SO4 - 2-S in soil.
Keywords: Immobilization, microbial biomass, sulphur, nitrogen, glucose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480620 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.
Keywords: Artificial neural network, ANN, chromatic dispersion, delay-tap sampling, optical signal-to-noise ratio, OSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711619 Creating 3D Models Using Infrared Thermography with Remotely Piloted Aerial Systems
Authors: P. van Tonder, C. C. Kruger
Abstract:
Concrete structures deteriorate over time and degradation escalates due to various factors. The rate of deterioration can be complex and unpredictable in nature. Such deteriorations may be located beneath the surface of the concrete at high elevations. This emphasizes the need for an efficient method of finding such defects to be able to assess the severity thereof. Current methods using thermography to find defects require equipment to reach higher elevations. This could become costly and time consuming not to mention the risks involved in having personnel scaffold or abseiling at such heights. Accordingly, by combining the thermal camera needed for thermography and a remotely piloted aerial system (Drone/RPAS), it could be used to alleviate some of the issues mentioned. Images can be translated into a 3D temperature model to aid concrete diagnostics and with further research can relate back to the mechanical properties of the structure but will not be dealt with in this paper. Such diagnostics includes finding delamination, similar to finding delamination on concrete decks, which resides beneath the surface of the concrete before spalling can occur. Delamination can be caused by reinforcement eroding and causing expansion beneath the concrete surface. This could lead to spalling, where concrete pieces start breaking off from the main concrete structure.
Keywords: Concrete, diagnostic, infrared thermography, 3D thermal models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408