Search results for: structural equation modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3982

Search results for: structural equation modeling

1882 Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites

Authors: Sutar Rani Ananda, M. V. Murugendrappa

Abstract:

To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.

Keywords: Polypyrrole, dielectric constant, dielectric loss, AC conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
1881 Low Power Approach for Decimation Filter Hardware Realization

Authors: Kar Foo Chong, Pradeep K. Gopalakrishnan, T. Hui Teo

Abstract:

There are multiple ways to implement a decimator filter. This paper addresses usage of CIC (cascaded-integrator-comb) filter and HB (half band) filter as the decimator filter to reduce the frequency sample rate by factor of 64 and detail of the implementation step to realize this design in hardware. Low power design approach for CIC filter and half band filter will be discussed. The filter design is implemented through MATLAB system modeling, ASIC (application specific integrated circuit) design flow and verified using a FPGA (field programmable gate array) board and MATLAB analysis.

Keywords: CIC filter, decimation filter, half-band filter, lowpower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377
1880 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra-High Performance Concrete Beams

Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes

Abstract:

Ultra-high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined that the fiber orientation was not significantly different. It is believed that the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting that a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.

Keywords: Fiber orientation, reinforced ultra-high performance concrete beams, shear, transverse steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171
1879 Recent Trends in Supply Chain Delivery Models

Authors: Alfred L. Guiffrida

Abstract:

A review of the literature on supply chain delivery models which use delivery windows to measure delivery performance is presented. The review herein serves to meet the following objectives: (i) provide a synthesis of previously published literature on supply chain delivery performance models, (ii) provide in one paper a consolidation of research that can serve as a single source to keep researchers up to date with the research developments in supply chain delivery models, and (iii) identify gaps in the modeling of supply chain delivery performance which could stimulate new research agendas.

Keywords: Delivery performance, Delivery window, Supply chain delivery models, Supply chain performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
1878 Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach

Authors: B. Fahimnia, L.H.S. Luong, R. M. Marian

Abstract:

The Aggregate Production Plan (APP) is a schedule of the organization-s overall operations over a planning horizon to satisfy demand while minimizing costs. It is the baseline for any further planning and formulating the master production scheduling, resources, capacity and raw material planning. This paper presents a methodology to model the Aggregate Production Planning problem, which is combinatorial in nature, when optimized with Genetic Algorithms. This is done considering a multitude of constraints of contradictory nature and the optimization criterion – overall cost, made up of costs with production, work force, inventory, and subcontracting. A case study of substantial size, used to develop the model, is presented, along with the genetic operators.

Keywords: Aggregate Production Planning, Costs, and Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
1877 Research on Development and Accuracy Improvement of an Explosion Proof Combustible Gas Leak Detector Using an IR Sensor

Authors: Gyoutae Park, Seungho Han, Byungduk Kim, Youngdo Jo, Yongsop Shim, Yeonjae Lee, Sangguk Ahn, Hiesik Kim, Jungil Park

Abstract:

In this paper, we presented not only development technology of an explosion proof type and portable combustible gas leak detector but also algorithm to improve accuracy for measuring gas concentrations. The presented techniques are to apply the flame-proof enclosure and intrinsic safe explosion proof to an infrared gas leak detector at first in Korea and to improve accuracy using linearization recursion equation and Lagrange interpolation polynomial. Together, we tested sensor characteristics and calibrated suitable input gases and output voltages. Then, we advanced the performances of combustible gaseous detectors through reflecting demands of gas safety management fields. To check performances of two company's detectors, we achieved the measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated our instruments better in detecting accuracy other than detectors through experimental results.

Keywords: Gas sensor, leak, detector, accuracy, interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
1876 A Multilingual Virtual Simulated Patient Framework for Training Primary Health Care Students

Authors: Juan L. Castro, Maria I. NavarroVictor Lopez, Eduardo M. Eisman, Jose M. Zurita

Abstract:

This paper describes the Multilingual Virtual Simulated Patient framework. It has been created to train the social skills and testing the knowledge of primary health care medical students. The framework generates conversational agents which perform in serveral languages as virtual simulated patients that help to improve the communication and diagnosis skills of the students complementing their training process.

Keywords: Medical training, conversational agents, patient modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
1875 Influence of Propeller Blade Lift Distribution on Whirl Flutter Stability Characteristics

Authors: J. Cecrdle

Abstract:

This paper deals with the whirl flutter of the turboprop aircraft structures. It is focused on the influence of the blade lift span-wise distribution on the whirl flutter stability. Firstly it gives the overall theoretical background of the whirl flutter phenomenon. After that the propeller blade forces solution and the options of the blade lift modeling are described. The problem is demonstrated on the example of a twin turboprop aircraft structure. There are evaluated the influences with respect to the propeller aerodynamic derivatives and finally the influences to the whirl flutter speed and the whirl flutter margin respectively.

Keywords: Aeroelasticity, flutter, propeller blade force, whirl flutter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
1874 FZP Design Considering Spherical Wave Incidence

Authors: Sergio Pérez-López, Daniel Tarrazó-Serrano, José M. Fuster, Pilar Candelas, Constanza Rubio

Abstract:

Fresnel Zone Plates (FZPs) are widely used in many areas, such as optics, microwaves or acoustics. On the design of FZPs, plane wave incidence is typically considered, but that is not usually the case in ultrasounds, especially in applications where a piston emitter is placed at a certain distance from the lens. In these cases, having control of the focal distance is very important, and with the usual Fresnel equation a focal displacement from the theoretical distance is observed due to the plane wave supposition. In this work, a comparison between FZP with plane wave incidence design and FZP with point source design in the case of piston emitter is presented. Influence of the main parameters of the piston in the final focalization profile has been studied. Numerical models and experimental results are shown, and they prove that when spherical wave incidence is considered for the piston case, it is possible to have a fine control of the focal distance in comparison with the classical design method.

Keywords: Focusing, Fresnel zone plate, ultrasound, spherical wave incidence, piston emitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
1873 Effects of Mo Thickness on the Properties of AZO/Mo/AZO Multilayer Thin Films

Authors: Hung-Wei Wu, Chien-Hsun Chu, Ru-Yuan Yang, Chin-Min Hsiung

Abstract:

In this paper, we proposed the effects of Mo thickness on the properties of AZO/Mo/AZO multilayer thin films for opto-electronics applications. The structural, optical and electrical properties of AZO/Mo/AZO thin films were investigated. Optimization of the thin films coatings resulted with low resistivity of 9.98 × 10-5 )-cm, mobility of 12.75 cm2/V-s, carrier concentration of 1.05 × 1022 cm-3, maximum transmittance of 79.13% over visible spectrum of 380 – 780 nm and Haacke figure of merit (FOM) are 5.95 × 10-2 )-1 under Mo layer thickness of 15 nm. These results indicate an alternative candidate for use as a transparent electrode in solar cells and various displays applications.

Keywords: Aluminum-doped zinc oxide, AZO, multilayer, RF magnetron sputtering, AZO/Mo/AZO, thin film, transparent conductive oxides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
1872 Virtual Scene based on VRML and Java

Authors: Hui-jun Ren, Da-kun ZHang

Abstract:

VRML( The virtual reality modeling language) is a standard language used to build up 3D virtualized models. The quick development of internet technology and computer manipulation has promoted the commercialization of reality virtualization. VRML, thereof, is expected to be the most effective framework of building up virtual reality. This article has studied plans to build virtualized scenes based on the technology of virtual reality and Java programe, and introduced how to execute real-time data transactions of VRML file and Java programe by applying Script Node, in doing so we have the VRML interactivity being strengthened.

Keywords: VRML, Java, Virtual scene, Script.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1871 AGV Guidance System: An Application of Simple Active Contour for Visual Tracking

Authors: M.Asif, M.R.Arshad, P.A.Wilson

Abstract:

In this paper, a simple active contour based visual tracking algorithm is presented for outdoor AGV application which is currently under development at the USM robotic research group (URRG) lab. The presented algorithm is computationally low cost and able to track road boundaries in an image sequence and can easily be implemented on available low cost hardware. The proposed algorithm used an active shape modeling using the B-spline deformable template and recursive curve fitting method to track the current orientation of the road.

Keywords: Active contour, B-spline, recursive curve fitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
1870 Experimental Evaluation of Methane Adsorptionon Granular Activated Carbon (GAC) and Determination of Model Isotherm

Authors: M. Delavar, A.A. Ghoreyshi, M. Jahanshahi, M. Irannejad

Abstract:

This study investigates the capacity of granular activated carbon (GAC) for the storage of methane through the equilibrium adsorption. An experimental apparatus consist of a dual adsorption vessel was set up for the measurement of equilibrium adsorption of methane on GAC using volumetric technique (pressure decay). Experimental isotherms of methane adsorption were determined by the measurement of equilibrium uptake of methane in different pressures (0-50 bar) and temperatures (285.15-328.15°K). The experimental data was fitted to Freundlich and Langmuir equations to determine the model isotherm. The results show that the experimental data is equally well fitted by the both model isotherms. Using the experimental data obtained in different temperatures the isosteric heat of methane adsorption was also calculated by the Clausius-Clapeyron equation from the Sips isotherm model. Results of isosteric heat of adsorption show that decreasing temperature or increasing methane uptake by GAC decrease the isosteric heat of methane adsorption.

Keywords: Methane adsorption, Activated carbon, Modelisotherm, Isosteric heat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
1869 The Kinetic of Biodegradation Lignin in Water Hyacinth (Eichhornia Crassipes) by Phanerochaete Chrysosporium using Solid State Fermentation (SSF) Method for Bioethanol Production, Indonesia

Authors: Eka Sari, Siti Syamsiah, Hary Sulistyo, Muslikhin

Abstract:

Lignocellulosic materials are considered the most abundant renewable resource available for the Bioethanol Production. Water Hyacinth is one of potential raw material of the world-s worst aquatic plant as a feedstock to produce Bioethanol. The purposed this research is obtain reduced of matter for biodegradation lignin in Biological pretreatment with White Rot Fungi eg. Phanerochaete Chrysosporium using Solid state Fermentation methods. Phanerochaete Chrysosporium is known to have the best ability to degraded lignin, but simultaneously it can also degraded cellulose and hemicelulose. During 8 weeks incubation, water hyacinth occurred loss of weight reached 34,67%, while loss of lignin reached 67,21%, loss of cellulose reached 11,01% and loss of hemicellulose reached 36,56%. The kinetic of losses lignin using regression linear plot, the results is obtained constant rate (k) of reduction lignin is -0.1053 and the equation of reduction of lignin is y = wo - 0, 1.53 x

Keywords: Biodegradation, lignin, PhanerochaeteChrysosporium, SSF, Water Hyacinth, Bioethanol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
1868 Magnetic Field Analysis for a Distribution Transformer with Unbalanced Load Conditions by using 3-D Finite Element Method

Authors: P. Meesuk, T. Kulworawanichpong, P. Pao-la-or

Abstract:

This paper proposes a set of quasi-static mathematical model of magnetic fields caused by high voltage conductors of distribution transformer by using a set of second-order partial differential equation. The modification for complex magnetic field analysis and time-harmonic simulation are also utilized. In this research, transformers were study in both balanced and unbalanced loading conditions. Computer-based simulation utilizing the threedimensional finite element method (3-D FEM) is exploited as a tool for visualizing magnetic fields distribution volume a distribution transformer. Finite Element Method (FEM) is one among popular numerical methods that is able to handle problem complexity in various forms. At present, the FEM has been widely applied in most engineering fields. Even for problems of magnetic field distribution, the FEM is able to estimate solutions of Maxwell-s equations governing the power transmission systems. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.

Keywords: Distribution Transformer, Magnetic Field, Load Unbalance, 3-D Finite Element Method (3-D FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
1867 Identification of the Parameters of a AC Servomotor Using Genetic Algorithm

Authors: J. G. Batista, K. N. Sousa, J. L. Nunes, R. L. S. Sousa, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measured and/or expected values.

Keywords: Modeling, AC servomotor, Permanent Magnet Synchronous Motor-PMSM, Genetic Algorithm, Vector Control, Robotic Manipulator, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
1866 Interface Location in Single Phase Stirred Tanks

Authors: I. Mahdavi, R. Janamiri, A. Sinkakarimi, M. Safdari, M. H. Sedaghat, A. Zamani, A. Hoseini, M. Karimi

Abstract:

In this work, study the location of interface in a stirred vessel with Rushton impeller by computational fluid dynamic was presented. To modeling rotating the impeller, sliding mesh (SM) technique was used and standard k-ε model was selected for turbulence closure. Mean tangential, radial and axial velocities and also turbulent kinetic energy (k) and turbulent dissipation rate (ε) in various points of tank was investigated. Results show sensitivity of system to location of interface and radius of 7 to 10cm for interface in the vessel with existence characteristics cause to increase the accuracy of simulation.

Keywords: CFD, Interface, Rushton impeller, Turbulence model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
1865 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: Pressing, notch, matrix, flow function, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
1864 A Model for Analysis the Induced Voltage of 115 kV On-Line Acting on Neighboring 22 kV Off-Line

Authors: S. Woothipatanapan, S. Prakobkit

Abstract:

This paper presents a model for analysis the induced voltage of transmission lines (energized) acting on neighboring distribution lines (de-energized). From environmental restrictions, 22 kV distribution lines need to be installed under 115 kV transmission lines. With the installation of the two parallel circuits like this, they make the induced voltage which can cause harm to operators. This work was performed with the ATP-EMTP modeling to analyze such phenomenon before field testing. Simulation results are used to find solutions to prevent danger to operators who are on the pole.

Keywords: Transmission system, distribution system, induced voltage, off-line operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3542
1863 Mobile Robot Path Planning in a 2-Dimentional Mesh

Authors: Doraid Dalalah

Abstract:

A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.

Keywords: Mobile robot, Path Planning, Mesh, Potential field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
1862 Computational Approaches for Ballistic Impact Response of Stainless Steel 304

Authors: A. Mostafa

Abstract:

This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.

Keywords: Ballistic velocity, stainless steel, numerical approaches, security screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
1861 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: S. Aziz, B. Alexander, C. Gengnagel, S. Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the Building Information Modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: Acoustical design, additive manufacturing, computational design, multimodal optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
1860 Decoupled, Reduced Order Model for Double Output Induction Generator Using Integral Manifolds and Iterative Separation Theory

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

In this paper presents a technique for developing the computational efficiency in simulating double output induction generators (DOIG) with two rotor circuits where stator transients are to be included. Iterative decomposition is used to separate the flux– Linkage equations into decoupled fast and slow subsystems, after which the model order of the fast subsystems is reduced by neglecting the heavily damped fast transients caused by the second rotor circuit using integral manifolds theory. The two decoupled subsystems along with the equation for the very slowly changing slip constitute a three time-scale model for the machine which resulted in increasing computational speed. Finally, the proposed method of reduced order in this paper is compared with the other conventional methods in linear and nonlinear modes and it is shown that this method is better than the other methods regarding simulation accuracy and speed.

Keywords: DOIG, Iterative separation, Integral manifolds, Reduced order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
1859 Modeling of Cobalt-Chromium-Molybdenum Alloy Implant for Fractured Distal Femur

Authors: Abhishek Soni, Bhagat Singh

Abstract:

Distal femur fractures are the cause of abnormal gloomy. Several types of surgical treatments have been adopted by the practitioners to restore the fractured region of distal femur. Still within this domain of study, unstable fixation remains a challenge for orthopedists. In the present study, a fixation implant is designed and analyzed under physiological loading conditions for cobalt-chromium-molybdenum alloy (Co-Cr-Mo). It has been found that the stresses and deformation developed are quite low. It means that customized fixation plates will provide stable fixation resulting in improved fracture union.

Keywords: Biomechanical evaluations, customized implant, Co-Cr-Mo alloy, reverse engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
1858 Non-equilibrium Statistical Mechanics of a Driven Lattice Gas Model: Probability Function, FDT-violation, and Monte Carlo Simulations

Authors: K. Sudprasert, M. Precharattana, N. Nuttavut, D. Triampo, B. Pattanasiri, Y. Lenbury, W. Triampo

Abstract:

The study of non-equilibrium systems has attracted increasing interest in recent years, mainly due to the lack of theoretical frameworks, unlike their equilibrium counterparts. Studying the steady state and/or simple systems is thus one of the main interests. Hence in this work we have focused our attention on the driven lattice gas model (DLG model) consisting of interacting particles subject to an external field E. The dynamics of the system are given by hopping of particles to nearby empty sites with rates biased for jumps in the direction of E. Having used small two dimensional systems of DLG model, the stochastic properties at nonequilibrium steady state were analytically studied. To understand the non-equilibrium phenomena, we have applied the analytic approach via master equation to calculate probability function and analyze violation of detailed balance in term of the fluctuation-dissipation theorem. Monte Carlo simulations have been performed to validate the analytic results.

Keywords: Non-equilibrium, lattice gas, stochastic process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
1857 Cluster Analysis for the Statistical Modeling of Aesthetic Judgment Data Related to Comics Artists

Authors: George E. Tsekouras, Evi Sampanikou

Abstract:

We compare three categorical data clustering algorithms with respect to the problem of classifying cultural data related to the aesthetic judgment of comics artists. Such a classification is very important in Comics Art theory since the determination of any classes of similarities in such kind of data will provide to art-historians very fruitful information of Comics Art-s evolution. To establish this, we use a categorical data set and we study it by employing three categorical data clustering algorithms. The performances of these algorithms are compared each other, while interpretations of the clustering results are also given.

Keywords: Aesthetic judgment, comics artists, cluster analysis, categorical data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
1856 Transient Voltage Distribution on the Single Phase Transmission Line under Short Circuit Fault Effect

Authors: A. Kojah, A. Nacaroğlu

Abstract:

Single phase transmission lines are used to transfer data or energy between two users. Transient conditions such as switching operations and short circuit faults cause the generation of the fluctuation on the waveform to be transmitted. Spatial voltage distribution on the single phase transmission line may change owing to the position and duration of the short circuit fault in the system. In this paper, the state space representation of the single phase transmission line for short circuit fault and for various types of terminations is given. Since the transmission line is modeled in time domain using distributed parametric elements, the mathematical representation of the event is given in state space (time domain) differential equation form. It also makes easy to solve the problem because of the time and space dependent characteristics of the voltage variations on the distributed parametrically modeled transmission line.

Keywords: Energy transmission, transient effects, transmission line, transient voltage, RLC short circuit, single phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
1855 DQ Analysis of 3D Natural Convection in an Inclined Cavity Using an Velocity-Vorticity Formulation

Authors: D. C. Lo, S. S. Leu

Abstract:

In this paper, the differential quadrature method is applied to simulate natural convection in an inclined cubic cavity using velocity-vorticity formulation. The numerical capability of the present algorithm is demonstrated by application to natural convection in an inclined cubic cavity. The velocity Poisson equations, the vorticity transport equations and the energy equation are all solved as a coupled system of equations for the seven field variables consisting of three velocities, three vorticities and temperature. The coupled equations are simultaneously solved by imposing the vorticity definition at boundary without requiring the explicit specification of the vorticity boundary conditions. Test results obtained for an inclined cubic cavity with different angle of inclinations for Rayleigh number equal to 103, 104, 105 and 106 indicate that the present coupled solution algorithm could predict the benchmark results for temperature and flow fields. Thus, it is convinced that the present formulation is capable of solving coupled Navier-Stokes equations effectively and accurately.

Keywords: Natural convection, velocity-vorticity formulation, differential quadrature (DQ).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1854 An Integrated Predictor for Cis-Regulatory Modules

Authors: Darby Tien-Hao Chang, Guan-Yu Shiu, You-Jie Sun

Abstract:

Various cis-regulatory module (CRM) predictors have been proposed in the last decade. Several well-established CRM predictors adopted different categories of prediction strategies, including window clustering, probabilistic modeling and phylogenetic footprinting. Appropriate integration of them has a potential to achieve high quality CRM prediction. This study analyzed four existing CRM predictors (ClusterBuster, MSCAN, CisModule and MultiModule) to seek a predictor combination that delivers a higher accuracy than individual CRM predictors. 465 CRMs across 140 Drosophila melanogaster genes from the RED fly database were used to evaluate the integrated CRM predictor proposed in this study. The results show that four predictor combinations achieved superior performance than the best individual CRM predictor.

Keywords: Cis-regulatory module, transcription factor binding site.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
1853 Modeling the Impact of Controls on Information System Risks

Authors: M. Ndaw, G. Mendy, S. Ouya

Abstract:

Information system risk management helps to reduce or eliminate risk by implementing appropriate controls. In this paper, we propose a quantification model of controls impact on information system risks by automatizing the residual criticality estimation step of FMECA which is based on a inductive reasoning. For this, we defined three equations based on type and maturity of controls. For testing, the values obtained with the model were compared to estimated values given by interlocutors during different working sessions and the result is satisfactory. This model allows an optimal assessment of controls maturity and facilitates risk analysis of information system.

Keywords: Information System, Risk, Control, FMECA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552