Search results for: chemical heat pump
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2411

Search results for: chemical heat pump

341 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption

Authors: I. O. Nascimento, J. T. Manzi

Abstract:

The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.

Keywords: Drying, entropy minimization, modeling dryers, thermodynamic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
340 Mercury Removing Capacity of Multiwall Carbon Nanotubes as Detected by Cold Vapor Atomic Absorption Spectroscopy: Kinetic & Equilibrium Studies

Authors: Yasser M. Moustafa, Rania E. Morsi, Mohammed Fathy

Abstract:

Multiwall carbon nanotubes, prepared by chemical vapor deposition, have an average diameter of 60-100 nm as shown by High Resolution Transmittance Electron Microscope, HR-TEM. The Multiwall carbon nanotubes (MWCNTs) were further characterized using X-ray Diffraction and Raman Spectroscopy. Mercury uptake capacity of MWCNTs was studied using batch adsorption method at different concentration ranges up to 150 ppm. Mercury concentration (before and after the treatment) was measured using cold vapor atomic absorption spectroscopy. The effect of time, concentration, pH and adsorbent dose were studied. MWCNT were found to perform complete absorption in the sub-ppm concentrations (parts per billion levels) while for high concentrations, the adsorption efficiency was 92% at the optimum conditions; 0.1 g of the adsorbent at 150 ppm mercury (II) solution. The adsorption of mercury on MWCNTs was found to follow the Freundlich adsorption isotherm and the pseudo-second order kinetic model.

Keywords: Cold Vapor Atomic Absorption Spectroscopy, Hydride System, Mercury Removing, Multi Wall Carbon Nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
339 Automated Separation of Organic Liquids through Their Boiling Points

Authors: Muhammad Tahir Qadri, Syed Shafi-Uddin Qadri, Faizan Farid, Nabeel Abid

Abstract:

This paper discuss the separation of the miscible liquids by means of fractional distillation. For complete separation of liquids, the process of heating, condensation, separation and storage is done automatically to achieve the objective. PIC micro-controller has been used to control each and every process of the work. The controller also controls the storage process by activating and deactivating the conveyors. The liquids are heated which on reaching their respective boiling points evaporate and enter the condensation chamber where they convert into liquid. The liquids are then directed to their respective tanks by means of stepper motor which moves in three directions, each movement into different tank. The tank on filling sends the signal to controller which then opens the solenoid valves. The tank is emptied into the beakers below the nozzle. As the beaker filled, the nozzle closes and the conveyors come into operation. The filled beaker is replaced by an empty beaker from behind. The work can be used in oil industries, chemical industries and paint industries.

Keywords: Miscible Liquid Separation Unit, Distillation, Waste Water Treatment, Organic Liquids Collection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
338 Optimization of Petroleum Refinery Configuration Design with Logic Propositions

Authors: Cheng Seong Khor, Xiao Qi Yeoh

Abstract:

This work concerns the topological optimization problem for determining the optimal petroleum refinery configuration. We are interested in further investigating and hopefully advancing the existing optimization approaches and strategies employing logic propositions to conceptual process synthesis problems. In particular, we seek to contribute to this increasingly exciting area of chemical process modeling by addressing the following potentially important issues: (a) how the formulation of design specifications in a mixed-logical-and-integer optimization model can be employed in a synthesis problem to enrich the problem representation by incorporating past design experience, engineering knowledge, and heuristics; and (b) how structural specifications on the interconnectivity relationships by space (states) and by function (tasks) in a superstructure should be properly formulated within a mixed-integer linear programming (MILP) model. The proposed modeling technique is illustrated on a case study involving the alternative processing routes of naphtha, in which significant improvement in the solution quality is obtained.

Keywords: Mixed-integer linear programming (MILP), petroleum refinery, process synthesis, superstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
337 Synthesis of Activated Carbon Using Agricultural Wastes from Biodiesel Production

Authors: A. Buasri, N. Chaiyut, V. Loryuenyong, E. Phakdeepataraphan, S. Watpathomsub, V. Kunakemakorn

Abstract:

In this research, the optimum conditions for the synthesis of activated carbon from biodiesel wastes such as palm shells (PS) and Jatropha curcas fruit shells (JS) by chemical activation method using potassium hydroxide (KOH) as an activating agent under nitrogen atmosphere were investigated. The effects of soaking in hydrofluoric acid (HF), impregnation ratio, activation temperature and activation time on adsorption capacity of methylene blue (MB) and iodine (I2) solution were examined. The results showed that HF-treated activated carbons exhibited higher adsorption capacities by eliminating ash residues, which might fill up the pores. In addition, the adsorption capacities of methylene blue and iodine solution were also significantly influenced by the types of raw materials, the activation temperature and the activation time. The highest adsorption capacity of methylene blue 257.07mg/g and iodine 847.58mg/g were obtained from Jatropha curcas wastes.

Keywords: Activated Carbon, Palm Shells (PS), Jatropha Curcas Fruit Shells (JS), Agricultural Wastes, Biodiesel Wastes, Optimum Conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4162
336 Alcoholic Extract of Terminalia Arjuna Protects Rabbit Heart against Ischemic-Reperfusion Injury: Role of Antioxidant Enzymes and Heat Shock Protein

Authors: K. Gauthaman, T.S. Mohamed Saleem, V. Ravi, Sita Sharan Patel, S. Niranjali Devaraj

Abstract:

The present study was designed to investigate the cardio protective role of chronic oral administration of alcoholic extract of Terminalia arjuna in in-vivo ischemic reperfusion injury and the induction of HSP72. Rabbits, divided into three groups, and were administered with the alcoholic extract of the bark powder of Terminalia arjuna (TAAE) by oral gavage [6.75mg/kg: (T1) and 9.75mg/kg: (T2), 6 days /week for 12 weeks]. In open-chest Ketamine pentobarbitone anaesthetized rabbits, the left anterior descending coronary artery was occluded for 15 min of ischemia followed by 60 min of reperfusion. In the vehicle-treated group, ischemic-reperfusion injury (IRI) was evidenced by depression of global hemodynamic function (MAP, HR, LVEDP, peak LV (+) & (- ) (dP/dt) along with depletion of HEP compounds. Oxidative stress in IRI was evidenced by, raised levels of myocardial TBARS and depletion of endogenous myocardial antioxidants GSH, SOD and catalase. Western blot analysis showed a single band corresponding to 72 kDa in homogenates of hearts from rabbits treated with both the doses. In the alcoholic extract of the bark powder of Terminalia arjuna treatment groups, both the doses had better recovery of myocardial hemodynamic function, with significant reduction in TBARS, and rise in SOD, GSH, catalase were observed. The results of the present study suggest that the alcoholic extract of the bark powder of Terminalia arjuna in rabbit induces myocardial HSP 72 and augments myocardial endogenous antioxidants, without causing any cellular injury and offered better cardioprotection against oxidative stress associated with myocardial IR injury.

Keywords: Antioxidants, HSP72, Ischemic reperfusion injury, Terminalia arjuna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
335 Artificial Accelerated Ageing Test of 22 kVXLPE Cable for Distribution System Applications in Thailand

Authors: A. Rawangpai, B. Maraungsri, N. Chomnawang

Abstract:

This paper presents the experimental results on artificial ageing test of 22 kV XLPE cable for distribution system application in Thailand. XLPE insulating material of 22 kV cable was sliced to 60-70 μm in thick and was subjected to ac high voltage at 23 Ôùª C, 60 Ôùª C and 75 Ôùª C. Testing voltage was constantly applied to the specimen until breakdown. Breakdown voltage and time to breakdown were used to evaluate life time of insulating material. Furthermore, the physical model by J. P. Crine for predicts life time of XLPE insulating material was adopted as life time model and was calculated in order to compare the experimental results. Acceptable life time results were obtained from Crine-s model comparing with the experimental result. In addition, fourier transform infrared spectroscopy (FTIR) for chemical analysis and scanning electron microscope (SEM) for physical analysis were conducted on tested specimens.

Keywords: Artificial accelerated ageing test, XLPE cable, distribution system, insulating material, life time, life time model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3642
334 Influence of Electrolytes and High Viscosity on Liquid-Liquid Separation

Authors: K. Anusarn, P. Chuttrakul, M. Schmidt, T. Kangsadan, A. Pfennig

Abstract:

Liquid-liquid extraction is a process using two immiscible liquids to extract compounds from one phase without high temperature requirement. Mostly, the technical implementation of this process is carried out in mixer-settlers or extraction columns. In real chemical processes, chemicals may have high viscosity and contain impurities. These impurities may change the settling behavior of the process without measurably changing the physical properties of the phases. In the current study, the settling behavior and the affected parameters in a high-viscosity system were observed. Batchsettling experiments were performed to experimentally quantify the settling behavior and the mixer-settler model of Henschke [1] was used to evaluate the behavior of the toluene + water system. The viscosity of the system was increased by adding polyethylene glycol 4000 to the aqueous phase. NaCl and Na2SO4 were used to study the influence of electrolytes. The results from this study show that increasing the viscosity of water has a higher influence on the settling behavior in comparison to the effects of the electrolytes. It can be seen from the experiments that at high salt concentrations, there was no effect on the settling behavior.

Keywords: Coalescence; electrolytes; liquid-liquid separation; high viscosity; mixer- settler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
333 Mechanical Characterization and Impact Study on the Environment of Raw Sediments and Sediments Dehydrated by Addition of Polymer

Authors: A. Kasmi, N. E. Abriak, M. Benzerzour, I. Shahrour

Abstract:

Large volumes of river sediments are dredged each year in Europe in order to maintain harbour activities and prevent floods. The management of this sediment has become increasingly complex. Several European projects were implemented to find environmentally sound solutions for these materials. The main objective of this study is to show the ability of river sediment to be used in road. Since sediments contain a high amount of water, then a dehydrating treatment by addition of the flocculation aid has been used. Firstly, a lot of physical characteristics are measured and discussed for a better identification of the raw sediment and this dehydrated sediment by addition the flocculation aid. The identified parameters are, for example, the initial water content, the density, the organic matter content, the grain size distribution, the liquid limit and plastic limit and geotechnical parameters. The environmental impacts of the used material were evaluated. The results obtained show that there is a slight change on the physical-chemical and geotechnical characteristics of sediment after dehydration by the addition of polymer. However, these sediments cannot be used in road construction.

Keywords: River sediment, dehydration, flocculation aid, characteristics, environmental impacts, road construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
332 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: Cutting temperatures, DSS2205, dry turning, HiPIMS, surface integrity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852
331 Modeling Drying and Pyrolysis of Moist Wood Particles at Slow Heating Rates

Authors: Avdhesh K. Sharma

Abstract:

Formulation for drying and pyrolysis process in packed beds at slow heating rates is presented. Drying of biomass particles bed is described by mass diffusion equation and local moisture-vapour-equilibrium relations. In gasifiers, volatilization rate during pyrolysis of biomass is modeled by using apparent kinetic rate expression, while product compositions at slow heating rates is modeled using empirical fitted mass ratios (i.e., CO/CO2, ME/CO2, H2O/CO2) in terms of pyrolysis temperature. The drying module is validated fairly with available chemical kinetics scheme and found that the testing zone in gasifier bed constituted of relatively smaller particles having high airflow with high isothermal temperature expedite the drying process. Further, volatile releases more quickly within the shorter zone height at high temperatures (isothermal). Both, moisture loss and volatile release profiles are found to be sensitive to temperature, although the influence of initial moisture content on volatile release profile is not so sensitive.

Keywords: Modeling downdraft gasifier, drying, pyrolysis, moist woody biomass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793
330 Extracellular Protein Secreted by Bacillus subtilis ATCC21332 in the Presence of Streptomycin Sulfate

Authors: Hanina M. N., Hairul Shahril M., Ismatul Nurul Asyikin I., Abdul Jalil A. K., Salina M. R., Maryam M. R., Rosfarizan M.

Abstract:

The extracellular proteins secreted by bacteria may be increased in stressful surroundings, such as in the presence of antibiotics. It appears that many antibiotics, when used at low concentrations, have in common the ability to activate or repress gene transcription, which is distinct from their inhibitory effect. There have been comparatively few studies on the potential of antibiotics as a specific chemical signal that can trigger a variety of biological functions. Therefore, this study was carried out to determine the effect of Streptomycin Sulfate in regulating extracellular proteins secreted by Bacillus subtilis ATCC21332. Results of Microdilution assay showed that the Minimum Inhibition Concentration (MIC) of Streptomycin Sulfate on B. subtilis ATCC21332 was 2.5 mg/ml. The bacteria cells were then exposed to Streptomycin Sulfate at concentration of 0.01 MIC before being further incubated for 48h to 72 h. The extracellular proteins secreted were then isolated and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins profile revealed that three additional bands with approximate sizes of 30 kDa, 22 kDa and 23 kDa were appeared for the treated bacteria with Streptomycin Sulfate. Thus, B. subtilis ATCC21332 in stressful condition with the presence of Streptomycin Sulfate at low concentration could induce the extracellular proteins secretion.

Keywords: Bacillus subtilis ATCC21332, Streptomycin Sulfate, extracellular proteins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135
329 Comprehensive Characteristics of the Municipal Solid Waste Generated in the Faculty of Engineering, UKM

Authors: A. Salsabili, M.Aghajani Mir, S.Saheri, Noor Ezlin Ahmad Basri

Abstract:

The main aims in this research are to study the solid waste generation in the Faculty of Engineering and Built Environment in the UKM and at the same time to determine composition and some of the waste characteristics likewise: moisture content, density, pH and C/N ratio. For this purpose multiple campaigns were conducted to collect the wastes produced in all hostels, faculties, offices and so on, during 24th of February till 2nd of March 2009, measure and investigate them with regard to both physical and chemical characteristics leading to highlight the necessary management policies. Research locations are Faculty of Engineering and the Canteen nearby that. From the result gained, the most suitable solid waste management solution will be proposed to UKM. The average solid waste generation rate in UKM is 203.38 kg/day. The composition of solid waste generated are glass, plastic, metal, aluminum, organic and inorganic waste and others waste. From the laboratory result, the average moisture content, density, pH and C/N ratio values from the solid waste generated are 49.74%, 165.1 kg/m3, 5.3, and 7:1 respectively. Since, the food waste (organic waste) were the most dominant component, around 62% from the total waste generated hence, the most suitable solid waste management solution is composting.

Keywords: Solid Waste, Waste Management, Characterizationand Composition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3564
328 Optimizing Electrospinning Parameters for Finest Diameter of Nano Fibers

Authors: M. Maleki, M. Latifi, M. Amani-Tehran

Abstract:

Nano fibers produced by electrospinning are of industrial and scientific attention due to their special characteristics such as long length, small diameter and high surface area. Applications of electrospun structures in nanotechnology are included tissue scaffolds, fibers for drug delivery, composite reinforcement, chemical sensing, enzyme immobilization, membrane-based filtration, protective clothing, catalysis, solar cells, electronic devices and others. Many polymer and ceramic precursor nano fibers have been successfully electrospun with diameters in the range from 1 nm to several microns. The process is complex so that fiber diameter is influenced by various material, design and operating parameters. The objective of this work is to apply genetic algorithm on the parameters of electrospinning which have the most significant effect on the nano fiber diameter to determine the optimum parameter values before doing experimental set up. Effective factors including initial polymer concentration, initial jet radius, electrical potential, relaxation time, initial elongation, viscosity and distance between nozzle and collector are considered to determine finest diameter which is selected by user.

Keywords: Electrospinning, genetic algorithm, nano fiber diameter, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
327 Multi-agent On-line Monitor for the Safety of Critical Systems

Authors: Amer A. Dheedan

Abstract:

Operational safety of critical systems, such as nuclear power plants, industrial chemical processes and means of transportation, is a major concern for system engineers and operators. A means to assure that is on-line safety monitors that deliver three safety tasks; fault detection and diagnosis, alarm annunciation and fault controlling. While current monitors deliver these tasks, benefits and limitations in their approaches have at the same time been highlighted. Drawing from those benefits, this paper develops a distributed monitor based on semi-independent agents, i.e. a multiagent system, and monitoring knowledge derived from a safety assessment model of the monitored system. Agents are deployed hierarchically and provided with knowledge portions and collaboration protocols to reason and integrate over the operational conditions of the components of the monitored system. The monitor aims to address limitations arising from the large-scale, complicated behaviour and distributed nature of monitored systems and deliver the aforementioned three monitoring tasks effectively.

Keywords: Alarm annunciation, fault controlling, fault detection and diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
326 Modeling the Fischer-Tropsch Reaction In a Slurry Bubble Column Reactor

Authors: F. Gholami, M. Torabi Angaji, Z. Gholami

Abstract:

Fischer-Tropsch synthesis is one of the most important catalytic reactions that convert the synthetic gas to light and heavy hydrocarbons. One of the main issues is selecting the type of reactor. The slurry bubble reactor is suitable choice for Fischer- Tropsch synthesis because of its good qualification to transfer heat and mass, high durability of catalyst, low cost maintenance and repair. The more common catalysts for Fischer-Tropsch synthesis are Iron-based and Cobalt-based catalysts, the advantage of these catalysts on each other depends on which type of hydrocarbons we desire to produce. In this study, Fischer-Tropsch synthesis is modeled with Iron and Cobalt catalysts in a slurry bubble reactor considering mass and momentum balance and the hydrodynamic relations effect on the reactor behavior. Profiles of reactant conversion and reactant concentration in gas and liquid phases were determined as the functions of residence time in the reactor. The effects of temperature, pressure, liquid velocity, reactor diameter, catalyst diameter, gasliquid and liquid-solid mass transfer coefficients and kinetic coefficients on the reactant conversion have been studied. With 5% increase of liquid velocity (with Iron catalyst), H2 conversions increase about 6% and CO conversion increase about 4%, With 8% increase of liquid velocity (with Cobalt catalyst), H2 conversions increase about 26% and CO conversion increase about 4%. With 20% increase of gas-liquid mass transfer coefficient (with Iron catalyst), H2 conversions increase about 12% and CO conversion increase about 10% and with Cobalt catalyst H2 conversions increase about 10% and CO conversion increase about 6%. Results show that the process is sensitive to gas-liquid mass transfer coefficient and optimum condition operation occurs in maximum possible liquid velocity. This velocity must be more than minimum fluidization velocity and less than terminal velocity in such a way that avoid catalysts particles from leaving the fluidized bed.

Keywords: Modeling, Fischer-Tropsch Synthesis, Slurry Bubble Column Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2996
325 Professional Burn out of Teachers: Reasons and Regularities

Authors: Dabyltayeva R. Y., Smatova K.B., Кabekenov G., Toleshova U., Shagyrbayeva M.

Abstract:

In recent years in Kazakhstan, as well as in all countries, we have been talking not only about the professional stress, but also professional Burnout Syndrome of employees. Burnout is essentially a response to chronic emotional stress – manifests itself in the form of chronic fatigue, despondency, unmotivated aggression, anger, and others. This condition is due to mental fatigue among teachers as a sort of payment for overstrain when professional commitments include the impact of “heat your soul", emotional investment. The emergence of professional Burnout among teachers is due to the system of interrelated and mutually reinforcing factors relating to the various levels of the personality: individually-psychological level is psychodynamic special subject characteristics of valuemotivational sphere and formation of skills and habits of selfregulation; the socio-psychological level includes especially the Organization and interpersonal interaction of a teacher. Signs of the Burnout were observed in 15 testees, and virtually a symptom could be observed in every teacher. As a result of the diagnosis 48% of teachers had the signs of stress (phase syndrome), resulting in a sense of anxiety, mood, heightened emotional susceptibility. The following results have also been got:-the fall of General energy potential – 14 pers. -Psychosomatic and psycho vegetative syndrome – 26 pers. -emotional deficit-34 pers. -emotional Burnout Syndrome-6 pers. The problem of professional Burnout of teachers in the current conditions should become not only meaningful, but particularly relevant. The quality of education of the younger generation depends on professional development; teachers- training level, and how “healthy" teachers are. That is why the systematic maintenance of pedagogic-professional development for teachers (including disclosure of professional Burnout Syndrome factors) takes on a special meaning.

Keywords: Professional burnout syndrome, adaptive syndrome, stage of depletion syndrome, symptoms and characteristics of burnout, prophylactic of professional destruction techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
324 Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer

Authors: K. V. Kalinichenko, G. N. Nikovskaya

Abstract:

The efficiency of heavy metals removal from sewage  sludge in bioleaching processes with heterotrophic, chemoautotrophic  (sulphur-oxidizing) sludge cenoses and chemical leaching (in  distilled water, weakly acidic or alkaline medium) was compared.  The efficacy of heavy metals removal from sewage sludge varies  from 83 % (Zn) up to 14 % (Cr) and follows the order: Zn > Mn > Cu  > Ni > Co > Pb > Cr. The advantages of metals bioleaching process  at heterotrophic metabolism were shown. A new process for  bioconversation of sewage sludge into fertilizer at middle  temperatures after partial heavy metals removal was developed. This  process is based on enhancing vital ability of heterotrophic  microorganisms by adding easily metabolized nutrients and synthesis  of metabolites by growing sludge cenoses. These metabolites possess  the properties of heavy metals extractants and flocculants which  provide the enhancement of sludge flocks sedimentation. The process  results in biomineral fertilizer of prolonged action with immobilized  sludge bioelements. The fertilizer satisfies the EU limits for the  sewage sludge of agricultural utilization. High efficiency of the  biomineral fertilizer obtained has been demonstrated in vegetation  experiments.

 

Keywords: Fertilizer, heavy metals, leaching, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
323 Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding

Authors: Reza Gheisari, Paulo J. Bartolo, Nicholas Goddard

Abstract:

Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and biosensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434 . In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.

Keywords: Flow length, micro-cantilevers, micro injection moulding, microfabrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
322 Effect of Weathering on the Mineralogy and Geochemistry of Sediments of the Hyper Saline Urmia Salt Lake, Iran

Authors: Samad Alipour, Khadije Mosavi Onlaghi

Abstract:

Urmia Salt Lake (USL) is a hypersaline lake in the northwest of Iran. It contains halite as main dissolved and precipitated mineral and the major mineral mixed with lake bed sediments. Other detrital minerals such as calcite, aragonite, dolomite, quartz, feldspars, augite are forming lake sediments. This study examined the impact of weathering of this sediments collected from 1.5 meters depth and augite placers. The study indicated that weathering of tephritic and adakite rocks of the Islamic Island at the immediate boundary of the lake play a main control of lake bed sediments and has produced a large volume of augite placer along the lake bank. Weathering increases from south to toward north with increasing distance from Islamic Island. Geochemistry of lake sediments demonstrated the enrichment of MgO, CaO, Sr with an elevated anomaly of Eu, possibly due to surface absorbance of Mn and Fe associated Sr elevation originating from adakite volcanic rocks in the vicinity of the lake basin. The study shows the local geology is the major factor in origin of lake sediments than chemical and biochemical produced mineral during diagenetic processes.

Keywords: Urmia Lake, weathering, mineralogy, augite, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
321 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber

Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan

Abstract:

Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution have been prepared and the amount of silver nitrate have been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), Tensile tester, Differential scanning calorimeter DSC (Q10) and SEM respectively. Also antimicrobial efficiency test (ASTM E2149-10) was done against to Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.

Keywords: Composite polyacrylonitrile nano-fiber, electrical conductivity, electrospinning, mechanical and thermal properties, silver nano-particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
320 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 476
319 An Investigation into the Impact of the Relocation of Tannery Industry on Water Quality Parameters of Urban River Buriganga

Authors: Md Asif Imrul, Maria Rafique, M. Habibur Rahman

Abstract:

The study deals with an investigation into the impact of the relocation of tannery industry on water quality parameters of Buriganga. For this purpose, previous records have been collected from authentic data resources and for the attainment of present values, several samples were collected from three major locations of the Buriganga River during summer and winter seasons in 2018 to determine the distribution and variation of water quality parameters. Samples were collected six ft below the river water surface. Analysis indicates slightly acidic to slightly alkaline (6.8-7.49) in nature. Bio-Chemical Oxygen Demand, Total Dissolved Solids, Total Solids (TS) & Total Suspended Solids (TSS) have been found greater in summer. On the other hand, Dissolved Oxygen is found greater in rainy seasons. Relocation shows improvement in water quality parameters. Though the improvement related to relocation of tannery industry is not adequate to turn the water body to be an inhabitable place for aquatic lives.

Keywords: Buriganga river, river pollution, tannery industry, water quality parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
318 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures

Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa

Abstract:

The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.

Keywords: Carrier-charge-separation, nickel, sulphur, zinc oxide, photoluminescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
317 Assessing Nutrient Concentration and Trophic Status of Brahma Sarover at Kurukshetra, India

Authors: Shailendra Kumar Patidar

Abstract:

Eutrophication of surface water is one of the most widespread environmental problems at present. Large number of pilgrims and tourists visit sacred artificial tank known as “Brahma Sarover” located at Kurukshetra, India to take holy dip and perform religious ceremonies. The sources of pollutants include impurities in feed water, mass bathing, religious offerings and windblown particulate matter. Studies so far have focused mainly on assessing water quality for bathing purpose by using physico-chemical and bacteriological parameters. No effort has been made to assess nutrient concentration and trophic status of the tank to take more appropriate measures for improving water quality on long term basis. In the present study, total nitrogen, total phosphorous and chlorophyll a measurements have been done to assess the nutrient level and trophic status of the tank. The results show presence of high concentration of nutrients and Chlorophyll a indicating mesotrophic and eutrophic state of the tank. Phosphorous has been observed as limiting nutrient in the tank water.

Keywords: Brahma Sarover, eutrophication, nutrients, trophic status.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
316 Mathematical Model of Smoking Time Temperature Effect on Ribbed Smoked Sheets Quality

Authors: Rifah Ediati, Jajang

Abstract:

The quality of Ribbed Smoked Sheets (RSS) primarily based on color, dryness, and the presence or absence of fungus and bubbles. This quality is strongly influenced by the drying and fumigation process namely smoking process. Smoking that is held in high temperature long time will result scorched dark brown sheets, whereas if the temperature is too low or slow drying rate would resulted in less mature sheets and growth of fungus. Therefore need to find the time and temperature for optimum quality of sheets. Enhance, unmonitored heat and mass transfer during smoking process lead to high losses of energy balance. This research aims to generate simple empirical mathematical model describing the effect of smoking time and temperature to RSS quality of color, water content, fungus and bubbles. The second goal of study was to analyze energy balance during smoking process. Experimental study was conducted by measuring temperature, residence time and quality parameters of 16 sheets sample in smoking rooms. Data for energy consumption balance such as mass of fuel wood, mass of sheets being smoked, construction temperature, ambient temperature and relative humidity were taken directly along the smoking process. It was found that mathematical model correlating smoking temperature and time with color is Color = -169 - 0.184 T4 - 0.193 T3 - 0.160 0.405 T1 + T2 + 0.388 t1 +3.11 t2 + 3.92t3 + 0.215 t4 with R square 50.8% and with moisture is Moisture = -1.40-0.00123 T4 + 0.00032 T3 + 0.00260 T2 - 0.00292 T1 - 0.0105 t1 + 0.0290 t2 + 0.0452 t3 + 0.00061 t4 with R square of 49.9%. Smoking room energy analysis found useful energy was 27.8%. The energy stored in the material construction 7.3%. Lost of energy in conversion of wood combustion, ventilation and others were 16.6%. The energy flowed out through the contact of material construction with the ambient air was found to be the highest contribution to energy losses, it reached 48.3%.

Keywords: RSS quality, temperature, time, smoking room, energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
315 Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin

Authors: A. A. Hekmatzadeh, A. Karimi-Jashani, N. Talebbeydokhti

Abstract:

The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.

Keywords: External mass transfer, pore volume diffusion, surface diffusion, mass action law isotherm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
314 Bronchospasm Analysis Following the Implementation of a Program of Maximum Aerobic Exercise in Active Men

Authors: Sajjad Shojaeidoust, Mohsen Ghanbarzadeh, Abdolhamid Habibi

Abstract:

Exercise-induced bronchospasm (EIB) is a transitory condition of airflow obstruction that is associated with physical activities. It is noted that high ventilation can lead to an increase in the heat and reduce in the moisture in airways resistance of trachea. Also causes of pathophysiological mechanism are EIB. Accordingly, studying some parameters of pulmonary function (FVC, FEV1) among active people seems quintessential. The aim of this study was to analyze bronchospasm following the implementation of a program of maximum aerobic exercise in active men at Chamran University of Ahwaz. Method: In this quasi-experimental study, the population consisted of all students at Chamran University. Among from 55 participants, of which, 15 were randomly selected as the experimental group. In this study, the size of the maximum oxygen consumption was initially measured, and then, based on the maximum oxygen consumed, the active individuals were identified. After five minutes’ warm-up, Strand treadmill exercise test was taken (one session) and pulmonary parameters were measured at both pre- and post-tests (spirometer). After data normalization using KS and non-normality of the data, the Wilcoxon test was used to analyze the data. The significance level for all statistical surveys was considered p≤0/05. Results: The results showed that the ventilation factors and bronchospasm (FVC, FEV1) in the pre-test and post-test resulted in no significant difference among the active people (p≥0/05). Discussion and conclusion: Based on the results observed in this study, it appears that pulmonary indices in active individuals increased after aerobic test. The increase in this indicator in active people is due to increased volume and elasticity of the lungs as well. In other words, pulmonary index is affected by rib muscles. It is considered that progress over respiratory muscle strength and endurance has raised FEV1 in the active cases.

Keywords: Bronchospasm, aerobic active maximum, pulmonary function, spirometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
313 ASLT Method for Beer Accelerated Shelf-Life Determination

Authors: Tatjana Rakcejeva, Valentina Skorina, Daina Karklina, Liga Skudra

Abstract:

The aim of current research was to investigate ASLT method suitability for accelerated beer shelf-life determination. The research was accomplished on popular Latvian beer: light filtrated and unfiltered pasteurized beer with alcohol content 5.2%; dark filtrated pasteurized beer with alcohol content 4.2% with shelf-life five months. Bottled in dark glass bottles beer samples were storage during 20 weeks at several temperature regimes: +10±1 °C, +20±1 °C, +30±1 °C, +40±1 °C. Samples quality parameters as physically-chemical and microbiological was tested every two weeks using standard methods. It is possible to determine beer shelf-life rapidly during storage at +30±1 °C for filtered pasteurized light beer by 2.5 times, unfiltered pasteurized light beer by 1.4 times and for filtered pasteurized dark beer by 1.7 times. During preset experiments it was proved, that it is possible to determine beer shelf-life rapidly using ASLT method if beer storage temperature could be increased by +10±1 °C.

Keywords: Beer, shelf-life, ASLT method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6051
312 The High Strength Biocompatible Wires of Commercially Pure Titanium

Authors: J. Palán, M. Zemko

Abstract:

COMTES FHT has been active in a field of research and development of high-strength wires for quite some time. The main material was pure titanium. The primary goal of this effort is to develop a continuous production process for ultrafine and nanostructured materials with the aid of severe plastic deformation (SPD). This article outlines mechanical and microstructural properties of the materials and the options available for testing the components made of these materials. Ti Grade 2 and Grade 4 wires are the key products of interest. Ti Grade 2 with ultrafine to nano-sized grain shows ultimate strength of up to 1050 MPa. Ti Grade 4 reaches ultimate strengths of up to 1250 MPa. These values are twice or three times as higher as those found in the unprocessed material. For those fields of medicine where implantable metallic materials are used, bulk ultrafine to nanostructured titanium is available. It is manufactured by SPD techniques. These processes leave the chemical properties of the initial material unchanged but markedly improve its final mechanical properties, in particular, the strength. Ultrafine to nanostructured titanium retains all the significant and, from the biological viewpoint, desirable properties that are important for its use in medicine, i.e. those properties which made pure titanium the preferred material also for dental implants.

Keywords: CONFORM SPD, ECAP, titanium, rotary swaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956