Search results for: prediction model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7884

Search results for: prediction model

7704 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information about Earthquake Existed throughout history & the Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of the object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, Prediction, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218
7703 Formant Tracking Linear Prediction Model using HMMs for Noisy Speech Processing

Authors: Zaineb Ben Messaoud, Dorra Gargouri, Saida Zribi, Ahmed Ben Hamida

Abstract:

This paper presents a formant-tracking linear prediction (FTLP) model for speech processing in noise. The main focus of this work is the detection of formant trajectory based on Hidden Markov Models (HMM), for improved formant estimation in noise. The approach proposed in this paper provides a systematic framework for modelling and utilization of a time- sequence of peaks which satisfies continuity constraints on parameter; the within peaks are modelled by the LP parameters. The formant tracking LP model estimation is composed of three stages: (1) a pre-cleaning multi-band spectral subtraction stage to reduce the effect of residue noise on formants (2) estimation stage where an initial estimate of the LP model of speech for each frame is obtained (3) a formant classification using probability models of formants and Viterbi-decoders. The evaluation results for the estimation of the formant tracking LP model tested in Gaussian white noise background, demonstrate that the proposed combination of the initial noise reduction stage with formant tracking and LPC variable order analysis, results in a significant reduction in errors and distortions. The performance was evaluated with noisy natual vowels extracted from international french and English vocabulary speech signals at SNR value of 10dB. In each case, the estimated formants are compared to reference formants.

Keywords: Formants Estimation, HMM, Multi Band Spectral Subtraction, Variable order LPC coding, White Gauusien Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
7702 Degradation Model of Optical Characteristics of Zno-Pigmented White Paint by Electron Radiation

Authors: Tian Hai, Yang Shengsheng, Jr., Wang Yi

Abstract:

Based on an analysis of the mechanism of degradation of optical characteristics of the ZnO-pigmented white paint by electron irradiation, a model of single molecular color centers is built. An equation that explains the relationship between the changes of variation of the ZnO-pigmented white paint-s spectrum absorptance and electron fluence is derived. The uncertain parameters in the equation can be calculated using the curve fitting by experimental data. The result indicates that the model can be applied to predict the degradation of optical characteristics of ZnO-pigmented white paint by electron radiation.

Keywords: ZnO-pigmented white pain, effects of electron radiation, optical characteristics degradation, prediction model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
7701 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model

Authors: Chongyang Ye, Rong Liu

Abstract:

Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.

Keywords: Elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
7700 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting

Authors: Yiannis G. Smirlis

Abstract:

The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.

Keywords: Data envelopment analysis, interval DEA, efficiency classification, efficiency prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
7699 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review

Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen

Abstract:

The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.

Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
7698 A Quick Prediction for Shear Behaviour of RC Membrane Elements by Fixed-Angle Softened Truss Model with Tension-Stiffening

Authors: X. Wang, J. S. Kuang

Abstract:

The Fixed-angle Softened Truss Model with Tension-stiffening (FASTMT) has a superior performance in predicting the shear behaviour of reinforced concrete (RC) membrane elements, especially for the post-cracking behaviour. Nevertheless, massive computational work is inevitable due to the multiple transcendental equations involved in the stress-strain relationship. In this paper, an iterative root-finding technique is introduced to FASTMT for solving quickly the transcendental equations of the tension-stiffening effect of RC membrane elements. This fast FASTMT, which performs in MATLAB, uses the bisection method to calculate the tensile stress of the membranes. By adopting the simplification, the elapsed time of each loop is reduced significantly and the transcendental equations can be solved accurately. Owing to the high efficiency and good accuracy as compared with FASTMT, the fast FASTMT can be further applied in quick prediction of shear behaviour of complex large-scale RC structures.

Keywords: Bisection method, fixed-angle softened truss model with tension-stiffening, iterative root-finding technique, reinforced concrete membrane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
7697 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.

Keywords: Water inflow, Tunnel, Discontinues rock, Numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
7696 A Study on Metal Hexagonal Honeycomb Crushing Under Quasi-Static Loading

Authors: M. Zarei Mahmoudabadi, M. Sadighi

Abstract:

In the study of honeycomb crushing under quasistatic loading, two parameters are important, the mean crushing stress and the wavelength of the folding mode. The previous theoretical models did not consider the true cylindrical curvature effects and the flow stress in the folding mode of honeycomb material. The present paper introduces a modification on Wierzbicki-s model based on considering two above mentioned parameters in estimating the mean crushing stress and the wavelength through implementation of the energy method. Comparison of the results obtained by the new model and Wierzbicki-s model with existing experimental data shows better prediction by the model presented in this paper.

Keywords: Crush strength, Flow stress, Honeycomb, Quasistatic load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
7695 New Strategy Agents to Improve Power System Transient Stability

Authors: Mansour A. Mohamed, George G. Karady, Ali M. Yousef

Abstract:

This paper proposes transient angle stability agents to enhance power system stability. The proposed transient angle stability agents divided into two strategy agents. The first strategy agent is a prediction agent that will predict power system instability. According to the prediction agent-s output, the second strategy agent, which is a control agent, is automatically calculating the amount of active power reduction that can stabilize the system and initiating a control action. The control action considered is turbine fast valving. The proposed strategies are applied to a realistic power system, the IEEE 50- generator system. Results show that the proposed technique can be used on-line for power system instability prediction and control.

Keywords: Multi-agents, Fast Valving, Power System Transient Stability, Prediction methods,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
7694 Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole

Authors: Hasan Keshavarzian, Tayebeh Nesari

Abstract:

Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area.

Keywords: Rail-wheel tribology, rolling contact mechanic, finite element modeling, reliability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
7693 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

Authors: Omer Nebil Yaveroglu, Tolga Can

Abstract:

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
7692 Typical Day Prediction Model for Output Power and Energy Efficiency of a Grid-Connected Solar Photovoltaic System

Authors: Yan Su, L. C. Chan

Abstract:

A novel typical day prediction model have been built and validated by the measured data of a grid-connected solar photovoltaic (PV) system in Macau. Unlike conventional statistical method used by previous study on PV systems which get results by averaging nearby continuous points, the present typical day statistical method obtain the value at every minute in a typical day by averaging discontinuous points at the same minute in different days. This typical day statistical method based on discontinuous point averaging makes it possible for us to obtain the Gaussian shape dynamical distributions for solar irradiance and output power in a yearly or monthly typical day. Based on the yearly typical day statistical analysis results, the maximum possible accumulated output energy in a year with on site climate conditions and the corresponding optimal PV system running time are obtained. Periodic Gaussian shape prediction models for solar irradiance, output energy and system energy efficiency have been built and their coefficients have been determined based on the yearly, maximum and minimum monthly typical day Gaussian distribution parameters, which are obtained from iterations for minimum Root Mean Squared Deviation (RMSD). With the present model, the dynamical effects due to time difference in a day are kept and the day to day uncertainty due to weather changing are smoothed but still included. The periodic Gaussian shape correlations for solar irradiance, output power and system energy efficiency have been compared favorably with data of the PV system in Macau and proved to be an improvement than previous models.

Keywords: Grid Connected, RMSD, Solar PV System, Typical Day.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
7691 Software Effort Estimation Using Soft Computing Techniques

Authors: Parvinder S. Sandhu, Porush Bassi, Amanpreet Singh Brar

Abstract:

Various models have been derived by studying large number of completed software projects from various organizations and applications to explore how project sizes mapped into project effort. But, still there is a need to prediction accuracy of the models. As Neuro-fuzzy based system is able to approximate the non-linear function with more precision. So, Neuro-Fuzzy system is used as a soft computing approach to generate model by formulating the relationship based on its training. In this paper, Neuro-Fuzzy technique is used for software estimation modeling of on NASA software project data and performance of the developed models are compared with the Halstead, Walston-Felix, Bailey-Basili and Doty Models mentioned in the literature.

Keywords: Effort Estimation, Neural-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
7690 On Hyperbolic Gompertz Growth Model

Authors: Angela Unna Chukwu, Samuel Oluwafemi Oyamakin

Abstract:

We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a shape parameter (allometric). This was achieved by convoluting hyperbolic sine function on the intrinsic rate of growth in the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while the independence of the error term was confirmed using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE and AIC confirmed the predictive power of the Hyperbolic Gompertz growth models over its source model.

Keywords: Height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707
7689 Effective Context Lossless Image Coding Approach Based on Adaptive Prediction

Authors: Grzegorz Ulacha, Ryszard Stasiński

Abstract:

In the paper an effective context based lossless coding technique is presented. Three principal and few auxiliary contexts are defined. The predictor adaptation technique is an improved CoBALP algorithm, denoted CoBALP+. Cumulated predictor error combining 8 bias estimators is calculated. It is shown experimentally that indeed, the new technique is time-effective while it outperforms the well known methods having reasonable time complexity, and is inferior only to extremely computationally complex ones.

Keywords: Adaptive prediction, context coding, image losslesscoding, prediction error bias correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
7688 A Hybrid Recommender System based on Collaborative Filtering and Cloud Model

Authors: Chein-Shung Hwang, Ruei-Siang Fong

Abstract:

User-based Collaborative filtering (CF), one of the most prevailing and efficient recommendation techniques, provides personalized recommendations to users based on the opinions of other users. Although the CF technique has been successfully applied in various applications, it suffers from serious sparsity problems. The cloud-model approach addresses the sparsity problems by constructing the user-s global preference represented by a cloud eigenvector. The user-based CF approach works well with dense datasets while the cloud-model CF approach has a greater performance when the dataset is sparse. In this paper, we present a hybrid approach that integrates the predictions from both the user-based CF and the cloud-model CF approaches. The experimental results show that the proposed hybrid approach can ameliorate the sparsity problem and provide an improved prediction quality.

Keywords: Cloud model, Collaborative filtering, Hybridrecommender system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
7687 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: Artificial Neural Network, Taguchi Method, Real Estate Valuation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065
7686 Application of Turbulence Modeling in Computational Fluid Dynamics for Airfoil Simulations

Authors: Mohammed Bilal

Abstract:

The precise prediction of aerodynamic behavior is necessary for the design and optimization of airfoils for a variety of applications. Turbulence, a phenomenon of complex and irregular flow, significantly affects the aerodynamic properties of airfoils. Therefore, turbulence modeling is essential for accurately predicting the behavior of airfoils in simulations. This study investigates five commonly employed turbulence models: Spalart-Allmaras (SA) model, k-epsilon model, k-omega model, Reynolds Stress Model (RSM), and Large Eddy Simulation (LES) model. The paper includes a comparison of the models' precision, computational expense, and applicability to various flow conditions. The strengths and weaknesses of each model are highlighted, allowing researchers and engineers to make informed decisions regarding simulations of specific airfoils. Unquestionably, the continuous development of turbulence modeling will contribute to further improvements in airfoil design and optimization, which will be advantageous to numerous industries.

Keywords: Computational fluid dynamics, airfoil, turbulence, aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281
7685 A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm

Authors: Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet Kaur, Gurvinder Singh

Abstract:

Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.

Keywords: Genetic Algorithm, Fault Proneness, Software Faultand Software Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
7684 Iraqi Short Term Electrical Load Forecasting Based On Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: Short term load forecasting, prediction interval, type 2 fuzzy logic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
7683 Analytical Model to Predict the Shear Capacity of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Conditions

Authors: Rajai Al-Rousan

Abstract:

This paper presents a proposed analytical model for predicting the shear strength of reinforced concrete beams strengthened with CFRP composites as external reinforcement. The proposed analytical model can predict the shear contribution of CFRP composites of RC beams with an acceptable coefficient of correlation with the tested results. Based on the comparison of the proposed model with the published well-known models (ACI model, Triantafillou model, and Colotti model), the ACI model had a wider range of 0.16 to 10.08 for the ratio between tested and predicted ultimate shears at failure. Also, an acceptable range of 0.27 to 2.78 for the ratio between tested and predicted ultimate shears by the Triantafillou model. Finally, the best prediction (the ratio between the tested and predicted ones) of the ultimate shear capacity is observed by using Colotti model with a range of 0.20 to 1.78. Thus, the contribution of the CFRP composites as external reinforcement can be predicted with high accuracy by using the proposed analytical model.

Keywords: Predicting, shear capacity, reinforced concrete, beams, strengthened, externally, CFRP composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
7682 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
7681 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
7680 Minimum Fluidization Velocities of Binary-Solid Mixtures: Model Comparison

Authors: Mohammad Asif

Abstract:

An accurate prediction of the minimum fluidization velocity is a crucial hydrodynamic aspect of the design of fluidized bed reactors. Common approaches for the prediction of the minimum fluidization velocities of binary-solid fluidized beds are first discussed here. The data of our own careful experimental investigation involving a binary-solid pair fluidized with water is presented. The effect of the relative composition of the two solid species comprising the fluidized bed on the bed void fraction at the incipient fluidization condition is reported and its influence on the minimum fluidization velocity is discussed. In this connection, the capability of packing models to predict the bed void fraction is also examined.

Keywords: Bed void fraction, Binary solid mixture, Minimumfluidization velocity, Packing models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
7679 Wheat Yield Prediction through Agro Meteorological Indices for Ardebil District

Authors: Fariba Esfandiary, Ghafoor Aghaie, Ali Dolati Mehr

Abstract:

Wheat prediction was carried out using different meteorological variables together with agro meteorological indices in Ardebil district for the years 2004-2005 & 2005–2006. On the basis of correlation coefficients, standard error of estimate as well as relative deviation of predicted yield from actual yield using different statistical models, the best subset of agro meteorological indices were selected including daily minimum temperature (Tmin), accumulated difference of maximum & minimum temperatures (TD), growing degree days (GDD), accumulated water vapor pressure deficit (VPD), sunshine hours (SH) & potential evapotranspiration (PET). Yield prediction was done two months in advance before harvesting time which was coincide with commencement of reproductive stage of wheat (5th of June). It revealed that in the final statistical models, 83% of wheat yield variability was accounted for variation in above agro meteorological indices.

Keywords: Wheat yields prediction, agro meteorological indices, statistical models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
7678 Prediction of Computer and Video Game Playing Population: An Age Structured Model

Authors: T. K. Sriram, Joydip Dhar

Abstract:

Models based on stage structure have found varied applications in population models. This paper proposes a stage structured model to study the trends in the computer and video game playing population of US. The game paying population is divided into three compartments based on their age group. After simulating the mathematical model, a forecast of the number of game players in each stage as well as an approximation of the average age of game players in future has been made.

Keywords: Age structure, Forecasting, Mathematical modeling, Stage structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
7677 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. de Sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of back propagation of back propagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this caseiodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: Artificial Neural Networks, Biodiesel, Iodine Value, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
7676 Development of the Structure of the Knowledgebase for Countermeasures in the Knowledge Acquisition Process for Trouble Prediction in Healthcare Processes

Authors: Shogo Kato, Daisuke Okamoto, Satoko Tsuru, Yoshinori Iizuka, Ryoko Shimono

Abstract:

Healthcare safety has been perceived important. It is essential to prevent troubles in healthcare processes for healthcare safety. Trouble prevention is based on trouble prediction using accumulated knowledge on processes, troubles, and countermeasures. However, information on troubles has not been accumulated in hospitals in the appropriate structure, and it has not been utilized effectively to prevent troubles. In the previous study, however a detailed knowledge acquisition process for trouble prediction was proposed, the knowledgebase for countermeasures was not involved. In this paper, we aim to propose the structure of the knowledgebase for countermeasures, in the knowledge acquisition process for trouble prediction in healthcare process. We first design the structure of countermeasures and propose the knowledge representation form on countermeasures. Then, we evaluate the validity of the proposal, by applying it into an actual hospital.

Keywords: Trouble prevention, knowledge structure, structured knowledge, reusable knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
7675 Prediction of Dissolved Oxygen in Rivers Using a Wang-Mendel Method – Case Study of Au Sable River

Authors: Mahmoud R. Shaghaghian

Abstract:

Amount of dissolve oxygen in a river has a great direct affect on aquatic macroinvertebrates and this would influence on the region ecosystem indirectly. In this paper it is tried to predict dissolved oxygen in rivers by employing an easy Fuzzy Logic Modeling, Wang Mendel method. This model just uses previous records to estimate upcoming values. For this purpose daily and hourly records of eight stations in Au Sable watershed in Michigan, United States are employed for 12 years and 50 days period respectively. Calculations indicate that for long period prediction it is better to increase input intervals. But for filling missed data it is advisable to decrease the interval. Increasing partitioning of input and output features influence a little on accuracy but make the model too time consuming. Increment in number of input data also act like number of partitioning. Large amount of train data does not modify accuracy essentially, so, an optimum training length should be selected.

Keywords: Dissolved oxygen, Au Sable, fuzzy logic modeling, Wang Mendel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890