Search results for: neuro-fuzzy techniques
2317 Near-Infrared Hyperspectral Imaging Spectroscopy to Detect Microplastics and Pieces of Plastic in Almond Flour
Authors: H. Apaza, L. Chévez, H. Loro
Abstract:
Plastic and microplastic pollution in human food chain is a big problem for human health that requires more elaborated techniques that can identify their presences in different kinds of food. Hyperspectral imaging technique is an optical technique than can detect the presence of different elements in an image and can be used to detect plastics and microplastics in a scene. To do this statistical techniques are required that need to be evaluated and compared in order to find the more efficient ones. In this work, two problems related to the presence of plastics are addressed, the first is to detect and identify pieces of plastic immersed in almond seeds, and the second problem is to detect and quantify microplastic in almond flour. To do this we make use of the analysis hyperspectral images taken in the range of 900 to 1700 nm using 4 unmixing techniques of hyperspectral imaging which are: least squares unmixing (LSU), non-negatively constrained least squares unmixing (NCLSU), fully constrained least squares unmixing (FCLSU), and scaled constrained least squares unmixing (SCLSU). NCLSU, FCLSU, SCLSU techniques manage to find the region where the plastic is found and also manage to quantify the amount of microplastic contained in the almond flour. The SCLSU technique estimated a 13.03% abundance of microplastics and 86.97% of almond flour compared to 16.66% of microplastics and 83.33% abundance of almond flour prepared for the experiment. Results show the feasibility of applying near-infrared hyperspectral image analysis for the detection of plastic contaminants in food.
Keywords: Food, plastic, microplastic, NIR hyperspectral imaging, unmixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11982316 Electrocardiogram Signal Denoising Using a Hybrid Technique
Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim
Abstract:
This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.Keywords: Hybrid technique, ADTF, DWT, tresholding, ECG signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12042315 MCOKE: Multi-Cluster Overlapping K-Means Extension Algorithm
Authors: Said Baadel, Fadi Thabtah, Joan Lu
Abstract:
Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold be defined a priori which can be difficult to determine by novice users.
Keywords: Data mining, k-means, MCOKE, overlapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27592314 Combining Skin Color and Optical Flow for Computer Vision Systems
Authors: Muhammad Raza Ali, Tim Morris
Abstract:
Skin color is an important visual cue for computer vision systems involving human users. In this paper we combine skin color and optical flow for detection and tracking of skin regions. We apply these techniques to gesture recognition with encouraging results. We propose a novel skin similarity measure. For grouping detected skin regions we propose a novel skin region grouping mechanism. The proposed techniques work with any number of skin regions making them suitable for a multiuser scenario.Keywords: Bayesian tracking, chromaticity space, optical flowgesture recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19312313 Examination of Pre-Tender Budgeting Techniques for Mechanical and Electrical Services in Malaysia
Authors: Ganiyu Amuda Yusuf, Sarajul Fikri Mohamed
Abstract:
The procurement and cost management approach adopted for mechanical and electrical (M&E) services in Malaysian construction industry have been criticized for its inefficiency. The study examined early cost estimating practices adopted for mechanical and electrical services (M&E) in Malaysia so as to understand the level of compliance of the current techniques with best practices. The methodology adopted for the study is a review of bidding documents used on both completed and on – going building projects awarded between 2008 – 2010 under 9th Malaysian Plan. The analysis revealed that, M&E services cost cannot be reliably estimated at pre-contract stage; the bidding techniques adopted for M&E services failed to provide uniform basis for contractors to submit tender; detailed measurement of items were not made which could complicate post contract cost control and financial management. The paper concluded that, there is need to follow a structured approach in determining the pre-contract cost estimate for M&E services which will serve as a virile tool for post contract cost control.
Keywords: Cost Management, Mechanical and Electrical Services, Procurement, Standard Method of Measurement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19132312 Secure and Efficient Transmission of Aggregated Data for Mobile Wireless Sensor Networks
Authors: A. Krishna Veni, R.Geetha
Abstract:
Wireless Sensor Networks (WSNs) are suitable for many scenarios in the real world. The retrieval of data is made efficient by the data aggregation techniques. Many techniques for the data aggregation are offered and most of the existing schemes are not energy efficient and secure. However, the existing techniques use the traditional clustering approach where there is a delay during the packet transmission since there is no proper scheduling. The presented system uses the Velocity Energy-efficient and Link-aware Cluster-Tree (VELCT) scheme in which there is a Data Collection Tree (DCT) which improves the lifetime of the network. The VELCT scheme and the construction of DCT reduce the delay and traffic. The network lifetime can be increased by avoiding the frequent change in cluster topology. Secure and Efficient Transmission of Aggregated data (SETA) improves the security of the data transmission via the trust value of the nodes prior the aggregation of data. Since SETA considers the data only from the trustworthy nodes for aggregation, it is more secure in transmitting the data thereby improving the accuracy of aggregated data.
Keywords: Aggregation, lifetime, network security, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12182311 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data
Authors: Hyun-Woo Cho
Abstract:
Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.
Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17492310 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics
Authors: Nader Ghareeb, R¨udiger Schmidt
Abstract:
Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.Keywords: Finite element analysis, super-element, state-space model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8312309 Multimodal Reasoning in a Knowledge Engineering Framework for Product Support
Authors: Rossitza M. Setchi, Nikolaos Lagos
Abstract:
Problem solving has traditionally been one of the principal research areas for artificial intelligence. Yet, although artificial intelligence reasoning techniques have been employed in several product support systems, the benefit of integrating product support, knowledge engineering, and problem solving, is still unclear. This paper studies the synergy of these areas and proposes a knowledge engineering framework that integrates product support systems and artificial intelligence techniques. The framework includes four spaces; the data, problem, hypothesis, and solution ones. The data space incorporates the knowledge needed for structured reasoning to take place, the problem space contains representations of problems, and the hypothesis space utilizes a multimodal reasoning approach to produce appropriate solutions in the form of virtual documents. The solution space is used as the gateway between the system and the user. The proposed framework enables the development of product support systems in terms of smaller, more manageable steps while the combination of different reasoning techniques provides a way to overcome the lack of documentation resources.Keywords: Knowledge engineering framework, product support, case-based reasoning, model-based reasoning, multimodal reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18032308 Estimation of Real Power Transfer Allocation Using Intelligent Systems
Authors: H. Shareef, A. Mohamed, S. A. Khalid, Aziah Khamis
Abstract:
This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation.
Keywords: Artificial intelligence, Power tracing, Artificial neural network, ANFIS, Power system deregulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25882307 Extraction of Squalene from Lebanese Olive Oil
Authors: Henri El Zakhem, Christina Romanos, Charlie Bakhos, Hassan Chahal, Jessica Koura
Abstract:
Squalene is a valuable component of the oil composed of 30 carbon atoms and is mainly used for cosmetic materials. The main concern of this article is to study the Squalene composition in the Lebanese olive oil and to compare it with foreign oil results. To our knowledge, extraction of Squalene from the Lebanese olive oil has not been conducted before. Three different techniques were studied and experiments were performed on three brands of olive oil, Al Wadi Al Akhdar, Virgo Bio and Boulos. The techniques performed are the Fractional Crystallization, the Soxhlet and the Esterification. By comparing the results, it is found that the Lebanese oil contains squalene and Soxhlet method is the most effective between the three methods extracting about 6.5E-04 grams of Squalene per grams of olive oil.
Keywords: Squalene, extraction, crystallization, Soxhlet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23092306 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.
Keywords: DNA microarray, feature selection, missing data, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28052305 Sidelobe Reduction in Cognitive Radio Systems Using Hybrid Technique
Authors: Atif Elahi, Ijaz Mansoor Qureshi, Mehreen Atif, Noor Gul
Abstract:
Orthogonal frequency division multiplexing (OFDM) is one of the best candidates for dynamic spectrum access due to its flexibility of spectrum shaping. However, the high sidelobes of the OFDM signal that result in high out-of-band radiation, introduce significant interference to the users operating in its vicinity. This problem becomes more critical in cognitive radio (CR) system that enables the secondary users (SUs) users to access the spectrum holes not used by the primary users (PUs) at that time. In this paper, we present a generalized OFDM framework that has a capability of describing any sidelobe suppression techniques, despite of whether one or a number of techniques are used. Based on that framework, we propose cancellation carrier (CC) technique in conjunction with the generalized sidelobe canceller (GSC) to reduce the out-of-band radiation in the region where the licensed users are operating. Simulation results show that the proposed technique can reduce the out-of-band radiation better when compared with the existing techniques found in the literature.
Keywords: Cognitive radio, cancellation carriers, generalized sidelobe canceller, out-of-band radiation, orthogonal frequency division multiplexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12002304 The Efficiency of Irrigation System and Nitrogen Fixation for inoculated Soybeans by using N15 Tracer Techniques
Authors: Hisham Nuri Akrim, Abubaker Edkymish, Nissreen Gryani
Abstract:
Repeated additions of the unfertilized bacteria led to increase the activity of Nitrogen-fixing bacteria in the root zone with drip irrigation system compared to traditional manual vaccination to increase the proportion of Nitrogen from 29% to 64%, and the efficiency of adding Nitrogen fertilizer did not exceed 9.5% while dropped to 4%, due to the amount of fertilizer added was not exceed 20kg N/h, and the second was the existence of a large amount of available Nitrogen in the soil by fixation, while the efficiency of irrigation system between 2.08 to 2.26 kg/m3.Keywords: Drip irrigation system, Nitrogen Biological Fixation, Neutron Probe, N-15 Tracer Techniques
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15002303 Digital Image Forensics: Discovering the History of Digital Images
Authors: Gurinder Singh, Kulbir Singh
Abstract:
Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.
Keywords: Computer forensics, multimedia forensics, image ballistics, camera source identification, forgery detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18272302 Evaluating Content Based Image Retrieval Techniques with the One Million Images CLIC Test Bed
Authors: Pierre-Alain Moëllic, Patrick Hède, Gr egory Grefenstette, Christophe Millet
Abstract:
Pattern recognition and image recognition methods are commonly developed and tested using testbeds, which contain known responses to a query set. Until now, testbeds available for image analysis and content-based image retrieval (CBIR) have been scarce and small-scale. Here we present the one million images CEA-List Image Collection (CLIC) testbed that we have produced, and report on our use of this testbed to evaluate image analysis merging techniques. This testbed will soon be made publicly available through the EU MUSCLE Network of Excellence.
Keywords: CBIR, CLIC, evaluation, image indexing and retrieval, testbed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13952301 A Monte Carlo Method to Data Stream Analysis
Authors: Kittisak Kerdprasop, Nittaya Kerdprasop, Pairote Sattayatham
Abstract:
Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.Keywords: Data Stream, Monte Carlo, Sampling, DensityEstimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14192300 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity
Authors: Hoda A. Abdel Hafez
Abstract:
Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24832299 Restoring, Revitalizing and Recovering Brazilian Rivers: Application of the Concept to Small Basins in the City of São Paulo, Brazil
Authors: Juliana C. Alencar, Monica Ferreira do Amaral Porto
Abstract:
Watercourses in Brazilian urban areas are constantly being degraded due to the unplanned use of the urban space; however, due to the different contexts of land use and occupation in the river watersheds, different intervention strategies are required to requalify them. When it comes to requalifying watercourses, we can list three main techniques to fulfill this purpose: restoration, revitalization and recovery; each one being indicated for specific contexts of land use and occupation in the basin. In this study, it was demonstrated that the application of these three techniques to three small basins in São Paulo city, listing the aspects involved in each of the contexts and techniques of requalification. For a protected watercourse within a forest park, renaturalization was proposed, where the watercourse is preserved in a state closer to the natural one. For a watercourse in an urban context that still preserves open spaces for its maintenance as a landscape element, an intervention was proposed following the principles of revitalization, integrating the watercourse with the landscape and the population. In the case of a watercourse in a harder context, only recovery was proposed, since the watercourse is found under the road system, which makes it difficult to integrate it into the landscape.
Keywords: Sustainable drainage, river restoration, river revitalization, river recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7562298 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.
Keywords: Data science, fraud detection, machine learning, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7792297 A New Approaches for Seismic Signals Discrimination
Authors: M. Benbrahim, K. Benjelloun, A. Ibenbrahim, M. Kasmi, E. Ardil
Abstract:
The automatic discrimination of seismic signals is an important practical goal for the earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present new techniques for seismic signals classification: local, regional and global discrimination. These techniques were tested on seismic signals from the data base of the National Geophysical Institute of the Centre National pour la Recherche Scientifique et Technique (Morocco) by using the Moroccan software for seismic signals analysis.
Keywords: Seismic signals, local discrimination, regionaldiscrimination, global discrimination, Moroccan software for seismicsignals analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15602296 Analysis of Spamming Threats and Some Possible Solutions for Online Social Networking Sites (OSNS)
Authors: Dilip Singh Sisodia, Shrish Verma
Abstract:
In this paper we are presenting some spamming techniques their behaviour and possible solutions. We have analyzed how Spammers enters into online social networking sites (OSNSs) to target them and diverse techniques used by them for this purpose. Spamming is very common issue in present era of Internet especially through Online Social Networking Sites (like Facebook, Twitter, and Google+ etc.). Spam messages keep wasting Internet bandwidth and the storage space of servers. On social networking sites; spammers often disguise themselves by creating fake accounts and hijacking user’s accounts for personal gains. They behave like normal user and they continue to change their spamming strategy. Following spamming techniques are discussed in this paper like clickjacking, social engineered attacks, cross site scripting, URL shortening, and drive by download. We have used elgg framework for demonstration of some of spamming threats and respective implementation of solutions.
Keywords: Online social networking sites, spam attacks, Internet, clickjacking/likejacking, drive-by-download, URL shortening, cross site scripting, socially engineered attacks, elgg framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23622295 Practical Aspects of Face Recognition
Authors: S. Vural, H. Yamauchi
Abstract:
Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.Keywords: Adaboost, Face Detection, Face recognition, SVM, Gabor filters, PCA-ICA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16022294 Optimization of Strategies and Models Review for Optimal Technologies - Based On Fuzzy Schemes for Green Architecture
Authors: Ghada Elshafei, Abdelazim Negm
Abstract:
Recently, the green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives in green buildings should be designed to minimize the overall impact of the built environment that effect on ecosystems in general and in particularly human health and natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state- ofart- review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.
Keywords: Green architecture/building, technologies, optimization, strategies, fuzzy techniques and models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25262293 A Review on Higher Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques
Authors: Maryam Khazaei Pool, Lori Lewis
Abstract:
This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions including Burgers equation, spline functions, and B-spline functions are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.
Keywords: Burgers’ Equation, Septic B-spline, Modified Cubic B-Spline Differential Quadrature Method, Exponential Cubic B-Spline Technique, B-Spline Galerkin Method, and Quintic B-Spline Galerkin Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3692292 An Efficient Energy Adaptive Hybrid Error Correction Technique for Underwater Wireless Sensor Networks
Authors: Ammar Elyas babiker, M.Nordin B. Zakaria, Hassan Yosif, Samir B. Ibrahim
Abstract:
Variable channel conditions in underwater networks, and variable distances between sensors due to water current, leads to variable bit error rate (BER). This variability in BER has great effects on energy efficiency of error correction techniques used. In this paper an efficient energy adaptive hybrid error correction technique (AHECT) is proposed. AHECT adaptively changes error technique from pure retransmission (ARQ) in a low BER case to a hybrid technique with variable encoding rates (ARQ & FEC) in a high BER cases. An adaptation algorithm depends on a precalculated packet acceptance rate (PAR) look-up table, current BER, packet size and error correction technique used is proposed. Based on this adaptation algorithm a periodically 3-bit feedback is added to the acknowledgment packet to state which error correction technique is suitable for the current channel conditions and distance. Comparative studies were done between this technique and other techniques, and the results show that AHECT is more energy efficient and has high probability of success than all those techniques.Keywords: Underwater communication, wireless sensornetworks, error correction technique, energy efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21542291 Semantically Enriched Web Usage Mining for Personalization
Authors: Suresh Shirgave, Prakash Kulkarni, José Borges
Abstract:
The continuous growth in the size of the World Wide Web has resulted in intricate Web sites, demanding enhanced user skills and more sophisticated tools to help the Web user to find the desired information. In order to make Web more user friendly, it is necessary to provide personalized services and recommendations to the Web user. For discovering interesting and frequent navigation patterns from Web server logs many Web usage mining techniques have been applied. The recommendation accuracy of usage based techniques can be improved by integrating Web site content and site structure in the personalization process.
Herein, we propose semantically enriched Web Usage Mining method for Personalization (SWUMP), an extension to solely usage based technique. This approach is a combination of the fields of Web Usage Mining and Semantic Web. In the proposed method, we envisage enriching the undirected graph derived from usage data with rich semantic information extracted from the Web pages and the Web site structure. The experimental results show that the SWUMP generates accurate recommendations and is able to achieve 10-20% better accuracy than the solely usage based model. The SWUMP addresses the new item problem inherent to solely usage based techniques.
Keywords: Prediction, Recommendation, Semantic Web Usage Mining, Web Usage Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30252290 AI Applications to Metal Stamping Die Design– A Review
Authors: Vishal Naranje, Shailendra Kumar
Abstract:
Metal stamping die design is a complex, experiencebased and time-consuming task. Various artificial intelligence (AI) techniques are being used by worldwide researchers for stamping die design to reduce complexity, dependence on human expertise and time taken in design process as well as to improve design efficiency. In this paper a comprehensive review of applications of AI techniques in manufacturability evaluation of sheet metal parts, die design and process planning of metal stamping die is presented. Further the salient features of major research work published in the area of metal stamping are presented in tabular form and scope of future research work is identified.Keywords: Artificial Intelligence, Die design, ManufacturabilityEvaluation, Metal Stamping Die.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38772289 Improvement of Blood Detection Accuracy using Image Processing Techniques suitable for Capsule Endoscopy
Authors: Yong-Gyu Lee, Gilwon Yoon
Abstract:
Bleeding in the digestive duct is an important diagnostic parameter for patients. Blood in the endoscopic image can be determined by investigating the color tone of blood due to the degree of oxygenation, under- or over- illumination, food debris and secretions, etc. However, we found that how to pre-process raw images obtained from the capsule detectors was very important. We applied various image process methods suitable for the capsule endoscopic image in order to remove noises and unbalanced sensitivities for the image pixels. The results showed that much improvement was achieved by additional pre-processing techniques on the algorithm of determining bleeding areas.
Keywords: blood detection, capsule endoscopy, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18982288 Employing Operations Research at Universities to Build Management Systems
Authors: Abdallah A. Hlayel
Abstract:
Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that effect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decisionmaking.
Keywords: Best candidates' method, decision making, decision support system, operations research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917