Search results for: modeling techniques.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4367

Search results for: modeling techniques.

4187 Context Modeling and Context-Aware Service Adaptation for Pervasive Computing Systems

Authors: Moeiz Miraoui, Chakib Tadj, Chokri ben Amar

Abstract:

Devices in a pervasive computing system (PCS) are characterized by their context-awareness. It permits them to provide proactively adapted services to the user and applications. To do so, context must be well understood and modeled in an appropriate form which enhance its sharing between devices and provide a high level of abstraction. The most interesting methods for modeling context are those based on ontology however the majority of the proposed methods fail in proposing a generic ontology for context which limit their usability and keep them specific to a particular domain. The adaptation task must be done automatically and without an explicit intervention of the user. Devices of a PCS must acquire some intelligence which permits them to sense the current context and trigger the appropriate service or provide a service in a better suitable form. In this paper we will propose a generic service ontology for context modeling and a context-aware service adaptation based on a service oriented definition of context.

Keywords: Pervasive computing system, context, contextawareness, service, context modeling, ontology, adaptation, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
4186 Cosastudio: A Software Architecture Modeling Tool

Authors: Adel Smeda, Adel Alti, Mourad Oussalah, Abdallah Boukerram

Abstract:

A key aspect of the design of any software system is its architecture. An architecture description provides a formal model of the architecture in terms of components and connectors and how they are composed together. COSA (Component-Object based Software Structures), is based on object-oriented modeling and component-based modeling. The model improves the reusability by increasing extensibility, evolvability, and compositionality of the software systems. This paper presents the COSA modelling tool which help architects the possibility to verify the structural coherence of a given system and to validate its semantics with COSA approach.

Keywords: Software Architecture, Architecture Description Languages, UML, Components, Connectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
4185 Investigation of Various PWM Techniques for Shunt Active Filter

Authors: J. Chelladurai, G. Saravana Ilango, C. Nagamani, S. Senthil Kumar

Abstract:

Pulse width modulation (PWM) techniques have been the subject of intensive research for different industrial and power sector applications. A large variety of methods, different in concept and performance, have been newly developed and described. This paper analyzes the comparative merits of Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM) techniques and the suitability of these techniques in a Shunt Active Filter (SAF). The objective is to select the scheme that offers effective utilization of DC bus voltage and also harmonic reduction at the input side. The effectiveness of the PWM techniques is tested in the SAF configuration with a non linear load. The performance of the SAF with the SPWM and (SVPWM) techniques are compared with respect to the THD in source current. The study reveals that in the context of closed loop SAF control with the SVPWM technique there is only a minor improvement in THD. The utilization of the DC bus with SVPWM is also not significant compared to that with SPWM because of the non sinusoidal modulating signal from the controller in SAF configuration.

Keywords: Voltage source inverter, Shunt active filter, SPWM, SVPWM, Matlab/SIMULINK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
4184 Microstrip Patch Antenna Enhancement Techniques

Authors: Ahmad H. Abdelgwad

Abstract:

Microstrip patch antennas are widely used in many wireless communication applications because of their various advantages such as light weight, compact size, inexpensive, ease of fabrication and high reliability. However, narrow bandwidth and low gain are the major drawbacks of microstrip antennas. The radiation properties of microstrip antenna is affected by many designing factors like feeding techniques, manufacturing substrate, patch and ground structure. This manuscript presents a review of the most popular gain and bandwidth enhancement methods of microstrip antenna and reports a brief description of its feeding techniques.

Keywords: Gain and bandwidth enhancement, slotted patch, parasitic patch, electromagnetic band gap, defected ground, feeding techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
4183 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
4182 Evaluation of Minimization of Moment Ratio Method by Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Under active stress conditions, a rigid cantilever retaining wall tends to rotate about a pivot point located within the embedded depth of the wall. For purely granular and cohesive soils, a methodology was previously reported called minimization of moment ratio to determine the location of the pivot point of rotation. The usage of this new methodology is to estimate the rotational stability safety factor. Moreover, the degree of improvement required in a backfill to get a desired safety factor can be estimated by the concept of the shear strength demand. In this article, the accuracy of this method for another type of cantilever walls called Contiguous Bored Pile (CBP) retaining wall is evaluated by using physical modeling technique. Based on observations, the results of moment ratio minimization method are in good agreement with the results of the carried out physical modeling.

Keywords: Cantilever Retaining Wall, Physical Modeling, Minimization of Moment Ratio Method, Pivot Point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
4181 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells

Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari

Abstract:

Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.

Keywords: Ultrasound, mechanical index, modeling, stem cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
4180 CFD Modeling of Reduction in NOX Emission Using HiTAC Technique

Authors: Abbas Khoshhal, Masoud Rahimi, Sayed Reza Shabanian, Ammar Abdulaziz Alsairafi

Abstract:

In the present study, the rate of NOx emission in a combustion chamber working in conventional combustion and High Temperature Air Combustion (HiTAC) system are examined using CFD modeling. The effect of peak temperature, combustion air temperature and oxygen concentration on NOx emission rate was undertaken. Results show that in a fixed oxygen concentration, increasing the preheated air temperature will increase the peak temperature and NOx emission rate. In addition, it was observed that the reduction of the oxygen concentration in the fixed preheated air temperature decreases the peak temperature and NOx emission rate. On the other hand, the results show that increase of preheated air temperature at various oxygen concentrations increases the NOx emission rate. However, the rate of increase in HiTAC conditions is quite lower than the conventional combustion. The modeling results show that the NOx emission rate in HiTAC combustion is 133% less than that of the conventional combustion.

Keywords: CFD Modeling, HiTAC, NOx, Combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
4179 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor

Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin

Abstract:

This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.

Keywords: Ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
4178 Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method

Authors: Hadas Sopher, Davide Schaumann, Yehuda E. Kalay

Abstract:

This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple Actors, Spaces, and Activities, to describe dynamically how people use spaces. This approach requires expanding the computational representation of Actors beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors’ internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions.

Keywords: Agent based modeling, architectural design evaluation, event modeling, human behavior simulation, spatial cognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
4177 Decision Tree Modeling in Emergency Logistics Planning

Authors: Yousef Abu Nahleh, Arun Kumar, Fugen Daver, Reham Al-Hindawi

Abstract:

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Keywords: Decision tree modeling, Forecasting, Humanitarian relief, emergency supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3307
4176 Modeling Prices of Electricity Futures at EEX

Authors: Robest Flasza, Milan Rippel, Jan Solc

Abstract:

The main aim of this paper is to develop and calibrate an econometric model for modeling prices of long term electricity futures contracts. The calibration of our model is performed on data from EEX AG allowing us to capture the specific features of German electricity market. The data sample contains several structural breaks which have to be taken into account for modeling. We model the data with an ARIMAX model which reveals high correlation between the price of electricity futures contracts and prices of LT futures contracts of fuels (namely coal, natural gas and crude oil). Besides this, also a share price index of representative electricity companies traded on Xetra, spread between 10Y and 1Y German bonds and exchange rate between EUR and USD appeared to have significant explanatory power over these futures contracts on EEX.

Keywords: electricity futures, EEX, ARIMAX, emissionallowances

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
4175 E-Learning Methodology Development using Modeling

Authors: Sarma Cakula, Maija Sedleniece

Abstract:

Simulation and modeling computer programs are concerned with construction of models for analyzing different perspectives and possibilities in changing conditions environment. The paper presents theoretical justification and evaluation of qualitative e-learning development model in perspective of advancing modern technologies. There have been analyzed principles of qualitative e-learning in higher education, productivity of studying process using modern technologies, different kind of methods and future perspectives of e-learning in formal education. Theoretically grounded and practically tested model of developing e-learning methods using different technologies for different type of classroom, which can be used in professor-s decision making process to choose the most effective e-learning methods has been worked out.

Keywords: E-learning, modeling, E-learning methods development, personal knowledge management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
4174 Studying Efficiency of Digital Technology Facilitated Assessment Techniques in Higher Education

Authors: B. Ferdousi

Abstract:

This study examines the adoption of digital technology in academic assessment or e-assessment in higher education. The main focus of this research is to determine the impact of advanced digital technology on different assessment techniques such as formative assessment and summative assessment. The goal of this study is to critically evaluate the selection of different assessment methods using digital technology to enhance assessment for more effective learning. Given the increasing use of digital technology in the assessment of students' achievement in the learning process, this research is significant. Based on a literature review of different assessment techniques using technology, this study focuses on the formative and summative techniques of e-assessment. The paper offers an in-depth analysis of the innovative and creative use of digital technology in assessment. The findings of this research will enhance knowledge and in-depth understanding of using technology in assessment, especially in active learning environments, in higher academic institutions.

Keywords: E-assessment techniques, assessment for learning, assessment of learning, digital technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198
4173 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
4172 Modeling Language for Constructing Solvers in Machine Learning: Reductionist Perspectives

Authors: Tsuyoshi Okita

Abstract:

For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach in order to make a solver quickly. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem. It is noted that our formal modeling language is not intend for providing an efficient notation for data mining application, but for facilitating a designer who develops solvers in machine learning.

Keywords: Formal language, statistical inference problem, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
4171 Performance Boundaries for Interactive Finite Element Applications

Authors: Jaewon Jang, Gregory R. Miller

Abstract:

This paper presents work characterizing finite element performance boundaries within which live, interactive finite element modeling is feasible on current and emerging systems. These results are based on wide-ranging tests performed using a prototype finite element program implemented specifically for this study, thereby enabling the unified investigation of numerous direct and iterative solver strategies and implementations in a variety of modeling contexts. The results are intended to be useful for researchers interested in interactive analysis by providing baseline performance estimates, to give guidance in matching solution strategies to problem domains, and to spur further work addressing the challenge of extending the present boundaries.

Keywords: Finite Elements, Interactive Modeling, NumericalAnalysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
4170 Surface Topography Assessment Techniques based on an In-process Monitoring Approach of Tool Wear and Cutting Force Signature

Authors: A. M. Alaskari, S. E. Oraby

Abstract:

The quality of a machined surface is becoming more and more important to justify the increasing demands of sophisticated component performance, longevity, and reliability. Usually, any machining operation leaves its own characteristic evidence on the machined surface in the form of finely spaced micro irregularities (surface roughness) left by the associated indeterministic characteristics of the different elements of the system: tool-machineworkpart- cutting parameters. However, one of the most influential sources in machining affecting surface roughness is the instantaneous state of tool edge. The main objective of the current work is to relate the in-process immeasurable cutting edge deformation and surface roughness to a more reliable easy-to-measure force signals using a robust non-linear time-dependent modeling regression techniques. Time-dependent modeling is beneficial when modern machining systems, such as adaptive control techniques are considered, where the state of the machined surface and the health of the cutting edge are monitored, assessed and controlled online using realtime information provided by the variability encountered in the measured force signals. Correlation between wear propagation and roughness variation is developed throughout the different edge lifetimes. The surface roughness is further evaluated in the light of the variation in both the static and the dynamic force signals. Consistent correlation is found between surface roughness variation and tool wear progress within its initial and constant regions. At the first few seconds of cutting, expected and well known trend of the effect of the cutting parameters is observed. Surface roughness is positively influenced by the level of the feed rate and negatively by the cutting speed. As cutting continues, roughness is affected, to different extents, by the rather localized wear modes either on the tool nose or on its flank areas. Moreover, it seems that roughness varies as wear attitude transfers from one mode to another and, in general, it is shown that it is improved as wear increases but with possible corresponding workpart dimensional inaccuracy. The dynamic force signals are found reasonably sensitive to simulate either the progressive or the random modes of tool edge deformation. While the frictional force components, feeding and radial, are found informative regarding progressive wear modes, the vertical (power) components is found more representative carrier to system instability resulting from the edge-s random deformation.

Keywords: Dynamic force signals, surface roughness (finish), tool wear and deformation, tool wear modes (nose, flank)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
4169 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-destructive techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: Rebound, ultra-sonic pulse, penetration, ANN, NDT, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4384
4168 A Survey on Usage and Diffusion of Project Risk Management Techniques and Software Tools in the Construction Industry

Authors: Muhammad Jamaluddin Thaheem, Alberto De Marco

Abstract:

The area of Project Risk Management (PRM) has been extensively researched, and the utilization of various tools and techniques for managing risk in several industries has been sufficiently reported. Formal and systematic PRM practices have been made available for the construction industry. Based on such body of knowledge, this paper tries to find out the global picture of PRM practices and approaches with the help of a survey to look into the usage of PRM techniques and diffusion of software tools, their level of maturity, and their usefulness in the construction sector. Results show that, despite existing techniques and tools, their usage is limited: software tools are used only by a minority of respondents and their cost is one of the largest hurdles in adoption. Finally, the paper provides some important guidelines for future research regarding quantitative risk analysis techniques and suggestions for PRM software tools development and improvement.

Keywords: Construction industry, Project risk management, Software tools, Survey study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2974
4167 Mathematical Modeling of Current Harmonics Caused by Personal Computers

Authors: Rana Abdul Jabbar Khan, Muhammad Akmal

Abstract:

Personal computers draw non-sinusoidal current with odd harmonics more significantly. Power Quality of distribution networks is severely affected due to the flow of these generated harmonics during the operation of electronic loads. In this paper, mathematical modeling of odd harmonics in current like 3rd, 5th, 7th and 9th influencing the power quality has been presented. Live signals have been captured with the help of power quality analyzer for analysis purpose. The interesting feature is that Total Harmonic Distortion (THD) in current decreases with the increase of nonlinear loads has been verified theoretically. The results obtained using mathematical expressions have been compared with the practical results and exciting results have been found.

Keywords: Harmonic Distortion, Mathematical Modeling, Power Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522
4166 Modeling of a Small Unmanned Aerial Vehicle

Authors: A. Elsayed Ahmed, A. Hafez, A. N. Ouda, H. Eldin Hussein Ahmed, H. Mohamed Abd-Elkader

Abstract:

Unmanned aircraft systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. . In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized, and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end the model is checked by matching between the behavior of the states of the nonlinear UAV and the resulted linear model with doublet at the control surfaces.

Keywords: Equations of motion, linearization, modeling, nonlinear model, UAV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5611
4165 A Comparative Study of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) for Airflow Measurement

Authors: Sijie Fu, Pascal-Henry Biwolé, Christian Mathis

Abstract:

Among modern airflow measurement methods, Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), as visualized and non-instructive measurement techniques, are playing more important role. This paper conducts a comparative experimental study for airflow measurement employing both techniques with the same condition. Velocity vector fields, velocity contour fields, voticity profiles and turbulence profiles are selected as the comparison indexes. The results show that the performance of both PIV and PTV techniques for airflow measurement is satisfied, but some differences between the both techniques are existed, it suggests that selecting the measurement technique should be based on a comprehensive consideration.

Keywords: PIV, PTV, airflow measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4307
4164 Flow Modeling and Runner Design Optimization in Turgo Water Turbines

Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis

Abstract:

The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.

Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4056
4163 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: Composite material, crashworthiness, finite element analysis, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
4162 Modeling and Analysis of a Cruise Control System

Authors: Anthony Spiteri Staines

Abstract:

This paper examines the modeling and analysis of a cruise control system using a Petri net based approach, task graphs, invariant analysis and behavioral properties. It shows how the structures used can be verified and optimized.

Keywords: Software Engineering, Real Time Analysis andDesign, Petri Nets, Task Graphs, Parallelism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
4161 Modeling and Optimization of Process Parameters in PMEDM by Genetic Algorithm

Authors: Farhad Kolahan, Mohammad Bironro

Abstract:

This paper addresses modeling and optimization of process parameters in powder mixed electrical discharge machining (PMEDM). The process output characteristics include metal removal rate (MRR) and electrode wear rate (EWR). Grain size of Aluminum powder (S), concentration of the powder (C), discharge current (I) pulse on time (T) are chosen as control variables to study the process performance. The experimental results are used to develop the regression models based on second order polynomial equations for the different process characteristics. Then, a genetic algorithm (GA) has been employed to determine optimal process parameters for any desired output values of machining characteristics.

Keywords: Regression modeling, PMEDM, GeneticAlgorithm, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
4160 A Comparative Study of Virus Detection Techniques

Authors: Sulaiman Al Amro, Ali Alkhalifah

Abstract:

The growing number of computer viruses and the detection of zero day malware have been the concern for security researchers for a large period of time. Existing antivirus products (AVs) rely on detecting virus signatures which do not provide a full solution to the problems associated with these viruses. The use of logic formulae to model the behaviour of viruses is one of the most encouraging recent developments in virus research, which provides alternatives to classic virus detection methods. In this paper, we proposed a comparative study about different virus detection techniques. This paper provides the advantages and drawbacks of different detection techniques. Different techniques will be used in this paper to provide a discussion about what technique is more effective to detect computer viruses.

Keywords: Computer viruses, virus detection, signature-based, behaviour-based, heuristic-based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4597
4159 Topic Modeling Using Latent Dirichlet Allocation and Latent Semantic Indexing on South African Telco Twitter Data

Authors: Phumelele P. Kubheka, Pius A. Owolawi, Gbolahan Aiyetoro

Abstract:

Twitter is one of the most popular social media platforms where users share their opinions on different subjects. Twitter can be considered a great source for mining text due to the high volumes of data generated through the platform daily. Many industries such as telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model in this experiment. A higher topic coherence score indicates better performance of the model.

Keywords: Big data, latent Dirichlet allocation, latent semantic indexing, Telco, topic modeling, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459
4158 Process Modeling and Problem Solving: Connecting Two Worlds by BPMN

Authors: Gionata Carmignani, Mario G. C. A. Cimino, Franco Failli

Abstract:

Business Processes (BPs) are the key instrument to understand how companies operate at an organizational level, taking an as-is view of the workflow, and how to address their issues by identifying a to-be model. In last year’s, the BP Model and Notation (BPMN) has become a de-facto standard for modeling processes. However, this standard does not incorporate explicitly the Problem- Solving (PS) knowledge in the Process Modeling (PM) results. Thus, such knowledge cannot be shared or reused. To narrow this gap is today a challenging research area. In this paper we present a framework able to capture the PS knowledge and to improve a workflow. This framework extends the BPMN specification by incorporating new general-purpose elements. A pilot scenario is also presented and discussed.

Keywords: Business Process Management, BPMN, Problem Solving, Process mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037