Search results for: computational mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1293

Search results for: computational mechanics

1113 CBCTL: A Reasoning System of TemporalEpistemic Logic with Communication Channel

Authors: Suguru Yoshioka, Satoshi Tojo

Abstract:

This paper introduces a temporal epistemic logic CBCTL that updates agent-s belief states through communications in them, based on computational tree logic (CTL). In practical environments, communication channels between agents may not be secure, and in bad cases agents might suffer blackouts. In this study, we provide inform* protocol based on ACL of FIPA, and declare the presence of secure channels between two agents, dependent on time. Thus, the belief state of each agent is updated along with the progress of time. We show a prover, that is a reasoning system for a given formula in a given a situation of an agent ; if it is directly provable or if it could be validated through the chains of communications, the system returns the proof.

Keywords: communication channel, computational tree logic, reasoning system, temporal epistemic logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
1112 Investigation of Flow Characteristics on Upstream and Downstream of Orifice Using Computational Fluid Dynamics

Authors: War War Min Swe, Aung Myat Thu, Khin Cho Thet, Zaw Moe Htet, Thuzar Mon

Abstract:

The main parameter of the orifice hole diameter was designed according to the range of throttle diameter ratio which gave the required discharge coefficient. The discharge coefficient is determined by difference diameter ratios. The value of discharge coefficient is 0.958 occurred at throttle diameter ratio 0.5. The throttle hole diameter is 80 mm. The flow analysis is done numerically using ANSYS 17.0, computational fluid dynamics. The flow velocity was analyzed in the upstream and downstream of the orifice meter. The downstream velocity of non-standard orifice meter is 2.5% greater than that of standard orifice meter. The differential pressure is 515.379 Pa in standard orifice.

Keywords: CFD-CFX, discharge coefficients, flow characteristics, inclined.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574
1111 A Numerical Simulation of the Indoor Air Flow

Authors: Karel Frana, Jianshun S. Zhang, Milos Muller

Abstract:

The indoor airflow with a mixed natural/forced convection was numerically calculated using the laminar and turbulent approach. The Boussinesq approximation was considered for a simplification of the mathematical model and calculations. The results obtained, such as mean velocity fields, were successfully compared with experimental PIV flow visualizations. The effect of the distance between the cooled wall and the heat exchanger on the temperature and velocity distributions was calculated. In a room with a simple shape, the computational code OpenFOAM demonstrated an ability to numerically predict flow patterns. Furthermore, numerical techniques, boundary type conditions and the computational grid quality were examined. Calculations using the turbulence model k-omega had a significant effect on the results influencing temperature and velocity distributions.

Keywords: natural and forced convections, numerical simulations, indoor airflows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3206
1110 Using Divergent Nozzle with Aerodynamic Lens to Focus Nanoparticles

Authors: Hasan Jumaah Mrayeh, Fue-Sang Lien

Abstract:

ANSYS Fluent will be used to simulate Computational Fluid Dynamics (CFD) for an efficient lens and nozzle design which will be explained in this paper. We have designed and characterized an aerodynamic lens and a divergent nozzle for focusing flow that transmits sub 25 nm particles through the aerodynamic lens. The design of the lens and nozzle has been improved using CFD for particle trajectories. We obtained a case for calculating nanoparticles (25 nm) flowing through the aerodynamic lens and divergent nozzle. Nanoparticles are transported by air, which is pumped into the aerodynamic lens through the nozzle at 1 atmospheric pressure. We have also developed a computational methodology that can determine the exact focus characteristics of aerodynamic lens systems. Particle trajectories were traced using the Lagrange approach. The simulation shows the ability of the aerodynamic lens to focus on 25 nm particles after using a divergent nozzle.

Keywords: Aerodynamic lens AL, divergent nozzle DN, ANSYS Fluent, Lagrange approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
1109 Validation of Automation Systems using Temporal Logic Model Checking and Groebner Bases

Authors: Quoc-Nam Tran, Anjib Mulepati

Abstract:

Validation of an automation system is an important issue. The goal is to check if the system under investigation, modeled by a Petri net, never enters the undesired states. Usually, tools dedicated to Petri nets such as DESIGN/CPN are used to make reachability analysis. The biggest problem with this approach is that it is impossible to generate the full occurence graph of the system because it is too large. In this paper, we show how computational methods such as temporal logic model checking and Groebner bases can be used to verify the correctness of the design of an automation system. We report our experimental results with two automation systems: the Automated Guided Vehicle (AGV) system and the traffic light system. Validation of these two systems ranged from 10 to 30 seconds on a PC depending on the optimizing parameters.

Keywords: Computational Intelligence, Temporal Logic Reasoning, Model Checking, Groebner Bases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
1108 A Signal Driven Adaptive Resolution Short-Time Fourier Transform

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

The frequency contents of the non-stationary signals vary with time. For proper characterization of such signals, a smart time-frequency representation is necessary. Classically, the STFT (short-time Fourier transform) is employed for this purpose. Its limitation is the fixed timefrequency resolution. To overcome this drawback an enhanced STFT version is devised. It is based on the signal driven sampling scheme, which is named as the cross-level sampling. It can adapt the sampling frequency and the window function (length plus shape) by following the input signal local variations. This adaptation results into the proposed technique appealing features, which are the adaptive time-frequency resolution and the computational efficiency.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Resolution Analysis, Computational Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1107 Balancing Neural Trees to Improve Classification Performance

Authors: Asha Rani, Christian Micheloni, Gian Luca Foresti

Abstract:

In this paper, a neural tree (NT) classifier having a simple perceptron at each node is considered. A new concept for making a balanced tree is applied in the learning algorithm of the tree. At each node, if the perceptron classification is not accurate and unbalanced, then it is replaced by a new perceptron. This separates the training set in such a way that almost the equal number of patterns fall into each of the classes. Moreover, each perceptron is trained only for the classes which are present at respective node and ignore other classes. Splitting nodes are employed into the neural tree architecture to divide the training set when the current perceptron node repeats the same classification of the parent node. A new error function based on the depth of the tree is introduced to reduce the computational time for the training of a perceptron. Experiments are performed to check the efficiency and encouraging results are obtained in terms of accuracy and computational costs.

Keywords: Neural Tree, Pattern Classification, Perceptron, Splitting Nodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
1106 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction

Authors: Kyoungjin Kim

Abstract:

Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.

Keywords: Nanoparticles, Thermite reaction, Combustion wave, Numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
1105 A Computational Study of Very High Turbulent Flow and Heat Transfer Characteristics in Circular Duct with Hemispherical Inline Baffles

Authors: Dipak Sen, Rajdeep Ghosh

Abstract:

This paper presents a computational study of steady state three dimensional very high turbulent flow and heat transfer characteristics in a constant temperature-surfaced circular duct fitted with 900 hemispherical inline baffles. The computations are based on realizable k-ɛ model with standard wall function considering the finite volume method, and the SIMPLE algorithm has been implemented. Computational Study are carried out for Reynolds number, Re ranging from 80000 to 120000, Prandtl Number, Pr of 0.73, Pitch Ratios, PR of 1,2,3,4,5 based on the hydraulic diameter of the channel, hydrodynamic entry length, thermal entry length and the test section. Ansys Fluent 15.0 software has been used to solve the flow field. Study reveals that circular pipe having baffles has a higher Nusselt number and friction factor compared to the smooth circular pipe without baffles. Maximum Nusselt number and friction factor are obtained for the PR=5 and PR=1 respectively. Nusselt number increases while pitch ratio increases in the range of study; however, friction factor also decreases up to PR 3 and after which it becomes almost constant up to PR 5. Thermal enhancement factor increases with increasing pitch ratio but with slightly decreasing Reynolds number in the range of study and becomes almost constant at higher Reynolds number. The computational results reveal that optimum thermal enhancement factor of 900 inline hemispherical baffle is about 1.23 for pitch ratio 5 at Reynolds number 120000.It also shows that the optimum pitch ratio for which the baffles can be installed in such very high turbulent flows should be 5. Results show that pitch ratio and Reynolds number play an important role on both fluid flow and heat transfer characteristics.

Keywords: Friction factor, heat transfer, turbulent flow, circular duct, baffle, pitch ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
1104 Consistent Modeling of Functional Dependencies along with World Knowledge

Authors: Sven Rebhan, Nils Einecke, Julian Eggert

Abstract:

In this paper we propose a method for vision systems to consistently represent functional dependencies between different visual routines along with relational short- and long-term knowledge about the world. Here the visual routines are bound to visual properties of objects stored in the memory of the system. Furthermore, the functional dependencies between the visual routines are seen as a graph also belonging to the object-s structure. This graph is parsed in the course of acquiring a visual property of an object to automatically resolve the dependencies of the bound visual routines. Using this representation, the system is able to dynamically rearrange the processing order while keeping its functionality. Additionally, the system is able to estimate the overall computational costs of a certain action. We will also show that the system can efficiently use that structure to incorporate already acquired knowledge and thus reduce the computational demand.

Keywords: Adaptive systems, Knowledge representation, Machinevision, Systems engineering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
1103 Soil Laboratory Classes in Curtin University, Australia

Authors: Amin Chegenizadeh, Hamid Nikraz

Abstract:

Soil mechanics is a traditional course in any university. Management of lab classes is one of the main issues to deliver a proper outline. In Curtin University, different methods applied to check the efficiency of these methods. One of them was mainly rely on demonstration and the other one mainly on involving students in running tests. Comparison between these delivery methods also are outlined in summary section. The recommendation also made that the more satisfaction is reachable while the students engaged.

Keywords: Soil, Geomechanic, Laboratory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
1102 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation

Authors: Aymen Laadhari, Gábor Székely

Abstract:

In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.

Keywords: Hemodynamics, Transcatheter Aortic Valve Implantation, blood flow stagnation, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
1101 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments

Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis

Abstract:

In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.

Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
1100 Effect of Sand Particle Transportation in Oil and Gas Pipeline Erosion

Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao

Abstract:

Erosion in a pipe bends caused by particles is a major concern in the oil and gas fields and might cause breakdown to production equipment. This work investigates the effect of sand particle transport in an elbow using computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model is employed to calculate the air/solid particle flow in the elbow. Generic erosion model in Ansys fluent and three particle rebound models are used to predict the erosion rate on the 90° elbows. The model result is compared with experimental data from the open literature validating the CFD-based predictions which reveals that due to the sand particles impinging on the wall of the elbow at high velocity, a point on the pipe elbow were observed to have started turning red due to velocity increase and the maximum erosion locations occur at 48°.

Keywords: Erosion, prediction, elbow, computational fluid dynamics, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
1099 Web–Based Tools and Databases for Micro-RNA Analysis: A Review

Authors: Sitansu Kumar Verma, Soni Yadav, Jitendra Singh, Shraddha, Ajay Kumar

Abstract:

MicroRNAs (miRNAs), a class of approximately 22 nucleotide long non coding RNAs which play critical role in different biological processes. The mature microRNA is usually 19–27 nucleotides long and is derived from a bigger precursor that folds into a flawed stem-loop structure. Mature micro RNAs are involved in many cellular processes that encompass development, proliferation, stress response, apoptosis, and fat metabolism by gene regulation. Resent finding reveals that certain viruses encode their own miRNA that processed by cellular RNAi machinery. In recent research indicate that cellular microRNA can target the genetic material of invading viruses. Cellular microRNA can be used in the virus life cycle; either to up regulate or down regulate viral gene expression Computational tools use in miRNA target prediction has been changing drastically in recent years. Many of the methods have been made available on the web and can be used by experimental researcher and scientist without expert knowledge of bioinformatics. With the development and ease of use of genomic technologies and computational tools in the field of microRNA biology has superior tremendously over the previous decade. This review attempts to give an overview over the genome wide approaches that have allow for the discovery of new miRNAs and development of new miRNA target prediction tools and databases.

Keywords: MicroRNAs, computational tools, gene regulation, databases, RNAi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184
1098 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit

Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu

Abstract:

Efficient matrix-vector multiplication with diagonal sparse matrices is pivotal in a multitude of computational domains, ranging from scientific simulations to machine learning workloads. When encoded in the conventional Diagonal (DIA) format, these matrices often induce computational overheads due to extensive zero-padding and non-linear memory accesses, which can hamper the computational throughput, and elevate the usage of precious compute and memory resources beyond necessity. The ’DIA-Adaptive’ approach, a methodological enhancement introduced in this paper, confronts these challenges head-on by leveraging the advanced parallel instruction sets embedded within Machine Learning Units (MLUs). This research presents a thorough analysis of the DIA-Adaptive scheme’s efficacy in optimizing Sparse Matrix-Vector Multiplication (SpMV) operations. The scope of the evaluation extends to a variety of hardware architectures, examining the repercussions of distinct thread allocation strategies and cluster configurations across multiple storage formats. A dedicated computational kernel, intrinsic to the DIA-Adaptive approach, has been meticulously developed to synchronize with the nuanced performance characteristics of MLUs. Empirical results, derived from rigorous experimentation, reveal that the DIA-Adaptive methodology not only diminishes the performance bottlenecks associated with the DIA format but also exhibits pronounced enhancements in execution speed and resource utilization. The analysis delineates a marked improvement in parallelism, showcasing the DIA-Adaptive scheme’s ability to adeptly manage the interplay between storage formats, hardware capabilities, and algorithmic design. The findings suggest that this approach could set a precedent for accelerating SpMV tasks, thereby contributing significantly to the broader domain of high-performance computing and data-intensive applications.

Keywords: Adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235
1097 Creating Streamtubes Based on Mass Conservative Streamlines

Authors: Nawin Raj, Zhenquan Li

Abstract:

Streamtube is used to visualize expansion, contraction and various properties of the fluid flow. These are useful in fluid mechanics, engineering and geophysics. The streamtube constructed in this paper only reveals the flow expansion rate along streamline. Based on the mass conservative streamline, we will show how to construct the streamtube.

Keywords: Flow visualization, mass conservative, streamline, streamtube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1096 Low Complexity Hybrid Scheme for PAPR Reduction in OFDM Systems Based on SLM and Clipping

Authors: V. Sudha, D. Sriram Kumar

Abstract:

In this paper, we present a low complexity hybrid scheme using conventional selective mapping (C-SLM) and clipping algorithms to reduce the high peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal. In the proposed scheme, the input data sequence (X) is divided into two sub-blocks, then clipping algorithm is applied to the first sub-block, whereas C-SLM algorithm is applied to the second sub-block in order to reduce both computational complexity and PAPR. The resultant time domain OFDM signal is obtained by combining the output of two sub-blocks. The simulation results show that the proposed hybrid scheme provides 0.45 dB PAPR reduction gain at CCDF value of 10-2 and 52% of computational complexity reduction when compared to C-SLM scheme at the expense of slight degradation in bit error rate (BER) performance.

Keywords: CCDF, Clipping, OFDM, PAPR, SLM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
1095 A CTL Specification of Serializability for Transactions Accessing Uniform Data

Authors: Rafat Alshorman, Walter Hussak

Abstract:

Existing work in temporal logic on representing the execution of infinitely many transactions, uses linear-time temporal logic (LTL) and only models two-step transactions. In this paper, we use the comparatively efficient branching-time computational tree logic CTL and extend the transaction model to a class of multistep transactions, by introducing distinguished propositional variables to represent the read and write steps of n multi-step transactions accessing m data items infinitely many times. We prove that the well known correspondence between acyclicity of conflict graphs and serializability for finite schedules, extends to infinite schedules. Furthermore, in the case of transactions accessing the same set of data items in (possibly) different orders, serializability corresponds to the absence of cycles of length two. This result is used to give an efficient encoding of the serializability condition into CTL.

Keywords: computational tree logic, serializability, multi-step transactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
1094 Investigation of Minor Actinide-Contained Thorium Fuel Impacts on CANDU-Type Reactor Neutronics Using Computational Method

Authors: S. A. H. Feghhi, Z. Gholamzadeh, Z. Alipoor, C. Tenreiro

Abstract:

Currently, thorium fuel has been especially noticed because of its proliferation resistance than long half-life alpha emitter minor actinides, breeding capability in fast and thermal neutron flux and mono-isotopic naturally abundant. In recent years, efficiency of minor actinide burning up in PWRs has been investigated. Hence, a minor actinide-contained thorium based fuel matrix can confront both proliferation resistance and nuclear waste depletion aims. In the present work, minor actinide depletion rate in a CANDU-type nuclear core modeled using MCNP code has been investigated. The obtained effects of minor actinide load as mixture of thorium fuel matrix on the core neutronics has been studied with comparing presence and non-presence of minor actinide component in the fuel matrix. Depletion rate of minor actinides in the MA-contained fuel has been calculated using different power loads. According to the obtained computational data, minor actinide loading in the modeled core results in more negative reactivity coefficients. The MA-contained fuel achieves less radial peaking factor in the modeled core. The obtained computational results showed 140 kg of 464 kg initial load of minor actinide has been depleted in during a 6-year burn up in 10 MW power.

Keywords: Minor actinide burning, CANDU-type reactor, MCNPX code, Neutronic parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
1093 A Numerical Model Simulation for an Updraft Gasifier Using High Temperature Steam

Authors: T. M. Ismail, M. Abd El-Salam

Abstract:

A mathematical model study was carried out to investigate gasification of biomass fuels using high temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promise way in its capability and sensitivity for the parameter affects that influence the gasification process.

Keywords: Computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2826
1092 Recursive Wiener-Khintchine Theorem

Authors: Khalid M. Aamir, Mohammad A. Maud

Abstract:

Power Spectral Density (PSD) computed by taking the Fourier transform of auto-correlation functions (Wiener-Khintchine Theorem) gives better result, in case of noisy data, as compared to the Periodogram approach. However, the computational complexity of Wiener-Khintchine approach is more than that of the Periodogram approach. For the computation of short time Fourier transform (STFT), this problem becomes even more prominent where computation of PSD is required after every shift in the window under analysis. In this paper, recursive version of the Wiener-Khintchine theorem has been derived by using the sliding DFT approach meant for computation of STFT. The computational complexity of the proposed recursive Wiener-Khintchine algorithm, for a window size of N, is O(N).

Keywords: Power Spectral Density (PSD), Wiener-KhintchineTheorem, Periodogram, Short Time Fourier Transform (STFT), TheSliding DFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
1091 A Computational Stochastic Modeling Formalism for Biological Networks

Authors: Werner Sandmann, Verena Wolf

Abstract:

Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.

Keywords: Computational Modeling, Biological Networks, Stochastic Models, Markov Chains, Transition Class Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
1090 A New Vision of Fractal Geometry with Triangulati on Algorithm

Authors: Yasser M. Abd El-Latif, Fatma S.Abousaleh, Daoud S. S.

Abstract:

L-system is a tool commonly used for modeling and simulating the growth of fractal plants. The aim of this paper is to join some problems of the computational geometry with the fractal geometry by using the L-system technique to generate fractal plant in 3D. L-system constructs the fractal structure by applying rewriting rules sequentially and this technique depends on recursion process with large number of iterations to get different shapes of 3D fractal plants. Instead, it was reiterated a specific number of iterations up to three iterations. The vertices generated from the last stage of the Lsystem rewriting process are used as input to the triangulation algorithm to construct the triangulation shape of these vertices. The resulting shapes can be used as covers for the architectural objects and in different computer graphics fields. The paper presents a gallery of triangulation forms which application in architecture creates an alternative for domes and other traditional types of roofs.

Keywords: Computational geometry, fractal geometry, L-system, triangulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
1089 Introductory Design Optimisation of a Machine Tool using a Virtual Machine Concept

Authors: Johan Wall, Johan Fredin, Anders Jönsson, Göran Broman

Abstract:

Designing modern machine tools is a complex task. A simulation tool to aid the design work, a virtual machine, has therefore been developed in earlier work. The virtual machine considers the interaction between the mechanics of the machine (including structural flexibility) and the control system. This paper exemplifies the usefulness of the virtual machine as a tool for product development. An optimisation study is conducted aiming at improving the existing design of a machine tool regarding weight and manufacturing accuracy at maintained manufacturing speed. The problem can be categorised as constrained multidisciplinary multiobjective multivariable optimisation. Parameters of the control and geometric quantities of the machine are used as design variables. This results in a mix of continuous and discrete variables and an optimisation approach using a genetic algorithm is therefore deployed. The accuracy objective is evaluated according to international standards. The complete systems model shows nondeterministic behaviour. A strategy to handle this based on statistical analysis is suggested. The weight of the main moving parts is reduced by more than 30 per cent and the manufacturing accuracy is improvement by more than 60 per cent compared to the original design, with no reduction in manufacturing speed. It is also shown that interaction effects exist between the mechanics and the control, i.e. this improvement would most likely not been possible with a conventional sequential design approach within the same time, cost and general resource frame. This indicates the potential of the virtual machine concept for contributing to improved efficiency of both complex products and the development process for such products. Companies incorporating such advanced simulation tools in their product development could thus improve its own competitiveness as well as contribute to improved resource efficiency of society at large.

Keywords: Machine tools, Mechatronics, Non-deterministic, Optimisation, Product development, Virtual machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
1088 Exploring Dimensionality, Systematic Mutations and Number of Contacts in Simple HP ab-initio Protein Folding Using a Blackboard-based Agent Platform

Authors: Hiram I. Beltrán, Arturo Rojo-Domínguez, Máximo Eduardo Sánchez Gutiérrez, Pedro Pablo González Pérez

Abstract:

A computational platform is presented in this contribution. It has been designed as a virtual laboratory to be used for exploring optimization algorithms in biological problems. This platform is built on a blackboard-based agent architecture. As a test case, the version of the platform presented here is devoted to the study of protein folding, initially with a bead-like description of the chain and with the widely used model of hydrophobic and polar residues (HP model). Some details of the platform design are presented along with its capabilities and also are revised some explorations of the protein folding problems with different types of discrete space. It is also shown the capability of the platform to incorporate specific tools for the structural analysis of the runs in order to understand and improve the optimization process. Accordingly, the results obtained demonstrate that the ensemble of computational tools into a single platform is worthwhile by itself, since experiments developed on it can be designed to fulfill different levels of information in a self-consistent fashion. By now, it is being explored how an experiment design can be useful to create a computational agent to be included within the platform. These inclusions of designed agents –or software pieces– are useful for the better accomplishment of the tasks to be developed by the platform. Clearly, while the number of agents increases the new version of the virtual laboratory thus enhances in robustness and functionality.

Keywords: genetic algorithms, multi-agent systems, bioinformatics, optimization, protein folding, structural biology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
1087 Investigation on Fluid Flow Characteristics of the Orifice in Nuclear Power Plant

Authors: Nam-Seok Kim, Sang-Kyu Lee, Byung-Soo Shin, O-Hyun Keum

Abstract:

The present paper represents a methodology for investigating flow characteristics near orifice plate by using a commercial computational fluid dynamics code. The flow characteristics near orifice plate which is located in the auxiliary feedwater system were modeled via three different levels of grid and four different types of Reynolds Averaged Navier-Stokes (RANS) equations with proper near-wall treatment. The results from CFD code were compared with experimental data in terms of differential pressure through the orifice plate. In this preliminary study, the Realizable k-ε and the Reynolds stress models with enhanced wall treatment were suitable to analyze flow characteristics near orifice plate, and the results had a good agreement with experimental data.

Keywords: Auxiliary Feedwater, Computational Fluid Dynamics, Orifice, Nuclear Power Plant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
1086 Self-Excited Vibration in Hydraulic Ball Check Valve

Authors: L. Grinis, V. Haslavsky, U. Tzadka

Abstract:

This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow past a sphere in a hydraulic check valve. The phenomenon of the rotation of the ball around the axis of the device through which liquid flows has been found. That is, due to the rotation of the sphere in the check valve vibration is caused. We observe the rotation of the sphere around the longitudinal axis of the check valve. This rotation is induced by a vortex shedding from the sphere. We will discuss computational simulation and experimental investigations of this strong sphere rotation. The frequency of the sphere vibration and interaction with the check valve wall has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. This study demonstrates the possibility to control the vibrations in a hydraulic system and proves to be very effective suppression of the self-excited vibration.

Keywords: Check-valve, vibration, vortex shedding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
1085 Modeling of Bio Scaffolds: Structural and Fluid Transport Characterization

Authors: Sahba Sadir, M. R. A. Kadir, A. Öchsner, M. N. Harun

Abstract:

Scaffolds play a key role in tissue engineering and can be produced in many different ways depending on the applications and the materials used. Most researchers used an experimental trialand- error approach into new biomaterials but computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. This paper develops the model of scaffolds and Computational Fluid Dynamics that show the value of computer simulations in determining the influence of the geometrical scaffold parameter porosity, pore size and shape on the permeability of scaffolds, magnitude of velocity, drop pressure, shear stress distribution and level and the proper design of the geometry of the scaffold. This creates a need for more advanced studies that include aspects of dynamic conditions of a micro fluid passing through the scaffold were characterized for tissue engineering applications and differentiation of tissues within scaffolds.

Keywords: Scaffold engineering, Tissue engineering, Cellularstructure, Biomaterial, Computational fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
1084 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald

Abstract:

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Keywords: Finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288