Web–Based Tools and Databases for Micro-RNA Analysis: A Review
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Web–Based Tools and Databases for Micro-RNA Analysis: A Review

Authors: Sitansu Kumar Verma, Soni Yadav, Jitendra Singh, Shraddha, Ajay Kumar

Abstract:

MicroRNAs (miRNAs), a class of approximately 22 nucleotide long non coding RNAs which play critical role in different biological processes. The mature microRNA is usually 19–27 nucleotides long and is derived from a bigger precursor that folds into a flawed stem-loop structure. Mature micro RNAs are involved in many cellular processes that encompass development, proliferation, stress response, apoptosis, and fat metabolism by gene regulation. Resent finding reveals that certain viruses encode their own miRNA that processed by cellular RNAi machinery. In recent research indicate that cellular microRNA can target the genetic material of invading viruses. Cellular microRNA can be used in the virus life cycle; either to up regulate or down regulate viral gene expression Computational tools use in miRNA target prediction has been changing drastically in recent years. Many of the methods have been made available on the web and can be used by experimental researcher and scientist without expert knowledge of bioinformatics. With the development and ease of use of genomic technologies and computational tools in the field of microRNA biology has superior tremendously over the previous decade. This review attempts to give an overview over the genome wide approaches that have allow for the discovery of new miRNAs and development of new miRNA target prediction tools and databases.

Keywords: MicroRNAs, computational tools, gene regulation, databases, RNAi.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1090735

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3192

References:


[1] V. Ambrod. microRNAs: tiny regulators with great potential. Cell 2001, 107(7): 823-826 2001.
[2] J. C. Carrington, V. Ambros. Role of microRNAs in plant and animal development. Science 2003, 301(5631):336-338, 2003.
[3] M. Chalfie, H. R. Horvitz, J. E. Sulston. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 1981, 24:59–69. 2, 1981.
[4] R. C. Lee, R. L. Feinbaum, V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75: 843–854, 1993.
[5] B. Wightman, I. Ha, G. Ruvkun. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75:855–862, 1993.
[6] O. Aparicio, N. Razquin, M. Zaratiegui, I. Narvaiza, P. Fortes. Adenovirus virus-associated RNA is processed to functional interfering RNAs involved in virus production. J Virol,. 80(3): p. 1376-84, 2006.
[7] R. F. Ketting, S. E. Fischer, E. Bernstein, T. Sijen, G. J. Hannon, R. H. Plasterk. Dicer functions in RNA interference and in synthesis of small RNA involved in development timing in C. elegans. Gene Dev, 15(20):2654-2659. 2001.
[8] J. Han, Y. Lee, K. H. Yeom, Y. K. Kim, H. Jin, V. N. Kim. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 125(5): p. 887-901, 2001. 2006.
[9] R. Yi, Y. Qin, I. G. Macara, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev,. 17(24): p. 3011-6, 2003.
[10] E. Lund, S. Güttinger, A. Calado, J. E. Dahlberg, U Kutay. Nuclear export of microRNA precursors. Science, 303(5654): p. 95-8, 2004.
[11] D. P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297. 2004.
[12] M. Chekulaeva, W. Filipowicz. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. CurrOpin Cell Biol, 21(3):452-460. 2004.
[13] H. W. Hwang, J. T. Mendell. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer, 94(6):776-780. 2006.
[14] K. U. Kumar, Srivastava SP, and Kaufman RJ. Double-stranded RNA-activated protein kinase (PKR) is negatively regulated by 60S ribosomal subunit protein L18. Mol Cell Biol, 19(2): p. 1116-25. 1999.
[15] A. K. Lo, K. F. To, K. W. Lo, R. W. Lung, J. W. J. W. Hui, G. Liao, D. Hayward. Modulation of LMP1 protein expression by EBV-encoded microRNAs. PNAS, 104(41):16164-16169. 2007.
[16] S. Pfeffer, A. Sewer, Q. M. Lagos, R. Sheridan, C. Sander, F. A. Grässer, L. F. Dyk, C. K. Ho. Identification of microRNAs of the herpesvirus family. Nat Methods, 2(4):269-276. 2005.
[17] C. S. Sullivan, A. T. Grundhoff, S. Tevethia, J. M. Pipas, D. Ganem. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature, 435(7042):682-686. 2005.
[18] S. Omoto, M. Ito, Y. Tsutsumi, Y. Ichikawa, H. Okuyama, E. A. Brisibe, N. K. Saksena, Y. R. Fujii. HIV-1 nef suppression by virally encoded microRNA. Retrovirology, 1(44). 2004.
[19] M. Otsuka, Q. Jing, P. Georgel, L. New, J. Chen, J. Mols, Y. J. Kang, Z. Jiang, X. Du. Hypersusceptibility to vesticular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity, 27(1):123-134. 2007.
[20] C. H. Lecellier, P. Dunoyer, K. Arar, C. J. Lehmann, S. Eyquem, C. Himber, A. Saïb, O. Voinnet. A cellular microRNA mediates antiviral defense in human cells. Science, 308(5721):557-560. 2005.
[21] C. L. Jopling, M. Yi, A. M. Lancaster, S. M. Lemon, P. Sarnow. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science, 309(5740):1577-1581. 2005
[22] G. J. Sam, K. S. Harpreet, D. Stijn and J. E. Anton. miRBase: tools for microRNA genomics. Nucleic Acids Research, Vol. 36, Database issue D154–D158. 2008.
[23] D. H. Sheng, H. C. Chia, P. T. Ann, J. C. Shu, C. C. Hua, C. H. Paul Wei, H. W. Yung, H. C. Yi, H. C. Gian and D. H. Hsien. miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Research, Vol. 36, Database issue D165–D169. 2008.
[24] J. Qinghua, W. Yadong, H. Yangyang, J. Liran, T. Mingxiang, Z. Xinjun, L. Meimei, W. Guohua and L. Yunlong. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Research, Vol. 37, Database issue D98–D104. 2009.
[25] N. Haroon, K. Robert, C. Gergely, Z. Ralf Z. miRSel: Automated extraction of associations between microRNAs and genes from the biomedical literature. BMC Bioinformatics. 11:135. 2010
[26] D. H. Sheng, M. L. Feng, Y. W. Wei, L. Chao, C. H. Wei, L. C. Wen, T. T. Wen, Z. C. Goun, J. L. Chia, M. C. Chih, H. C. Chia, C. W. Ming, Y. H. Chi, P. T. Ann and D. H. Hsien. miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Research, Vol. 39, Database issue D163–D169. 2011.
[27] V. Thanasis, S. V. Ioannis, A. Panagiotis, G. George, M. Manolis, R. Martin, G. Stefanos, K. Nectarios, D. Theodore and G. H. Artemis. TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support, Nucleic Acids Research, Vol. 40 D222–D229. 2012.
[28] G. Daniel, V. K. Evgenia, R. Nazim, E. V. Charles and M. Z. Evgeny. miROrtho: computational survey of microRNA genes, Nucleic Acids Research, Vol. 37, Database issue D111–D117. 2009.
[29] D. Harsh, S. Carsten, P. Priyanka, G. Norbert. miRWalk – Database: Prediction of possible miRNA binding sites by ‘‘walking’’ the genes of three genomes. Journal of Biomedical Informatics 44 839–847. 2011.
[30] S. Praveen, C. Benoit and G. H. Artemis.TarBase: A comprehensive database of experimentally supported animal microRNA targets, Bioinformatics, RNA, 12:192–197. 2006.
[31] W. Xiaowei. miRDB: A microRNA target prediction and functional annotation database with a wiki interface, Bioinformatics, RNA, 14:1012–1017. 2008.
[32] M. Molly, S. Praveen, C. Benoit and G. H. Artemis. miRGen: a database for the study of animal microRNA genomic organization and function, Nucleic Acids Research, Vol. 35, Database issue D149–D155. 2007.
[33] U. Igor, C. L. Louise and S. Ron. Towards computational prediction of microRNA function and activity, Nucleic Acids Research, Vol. 38, No. 15 e160. 2010.
[34] O. Anastasis, B. Alexandra, G. Katerina, R. Martin, K. Kriton and P. Panayiota. Prediction of novel microRNA genes in cancer-associated genomic regions - a combined computational and experimental approach, Nucleic Acids Research, Vol. 37, No. 10, 3276–3287. 2009.
[35] H. H. Ting, F. Bin, F. R. Max, L. H. Zhi, L. Kui and H.Z. Shu. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics, 8:341. 2007.
[36] J. T. Christoph, G. Lydia, L. Dajana and T. Günter. SplamiR-prediction of spliced miRNAs in plants, Bioinformatics Vol. 27 no. 9, pages 1215–1223. 2011.
[37] S. Tyagi, C. Vaz, V Gupta, R. Bhatia, S. Maheshwari, A. Srinivasan , A. Bhattacharya. CID-miRNA: a web server for prediction of novel miRNA precursors in human genome, BiochemBiophys Res Commun. Aug 8;372(4):831-4. 2008.
[38] R. William, X.T. Franc and G. Daniel. Mireval: a web tool for simple microRNA prediction in genome sequences. Bioinformatics. Vol. 24 no. 11, pages 1394–1396. 2008.
[39] Z. Erle, Z. Fangqing, X. Gang, H. Huabin, Z. LingLin, L. Xiaokun, S. Zhongsheng and W. Jinyu. mirTools: microRNA profiling and discovery basedon high-throughput sequencing, Nucleic Acids Research, Vol. 38, W392–W397. 2010.
[40] H. Y. Jian, S. Peng, Z. Hui, Q. C. Yue and H. Q. Liang.deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Research, Vol. 38, Database issue D123–D130. 2010.
[41] C. W. Wei, M. L. Feng, C. C. Wen, Y. L. Kuan, D. H. Hsien and S. L. Na. miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression, BMC Bioinformatics, 10:328. 2009.
[42] H. Michael, S. Martin, L. David, M. F. P. Juan and M. A. Ana, miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments, Nucleic Acids Research, Vol. 37, W68–W76. 2009.
[43] M. Maragkakis, M. Reczko, V. A. Simossis, P. Alexiou, G. L. Papadopoulos, T. Dalamagas, G. Giannopoulos, G. Goumas, E. Koukis, K. Kourtis, T. Vergoulis, N. Koziris, T. Sellisn, P. Tsanakas and A. G. Hatzigeorgiou. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Research, Vol. 37, Web Server issue W273–W276. 2009.
[44] G. L. Papadopoulos, P. Alexiou, M. Maragkakis, M. Reczko and A. G. Hatzigeorgiou, DIANA-mirPath: Integrating human and mouse microRNAs in pathways, Bioinformatics, Vol. 25 no. 15, pages 1991–1993. 2009.
[45] R. Ventsislav, B. Vesselin, N. M. Ivan and T. Martin T. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence, Nucleic Acids Research, Vol. 33, Web Server issue W696–W700. 2005.
[46] X. Feifei, Z. Zhixiang, C. Guoshuai, K. Shuli, G. Xiaolian and L. Tongbin. miRecords: an integrated resource for microRNA–target interactions, Nucleic Acids Research, Vol. 37, Database issue D105–D110. 2009.
[47] N. Seungyoon, K. Bumjin, S. Seokmin and L. Sanghyuk. miRGator: an integrated system for functional annotation of microRNAs, Nucleic Acids Research, Vol. 36, Database issue D159–D164. 2008.
[48] L. Feng, O. Ryan and B. Barbara. SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. The Plant Journal. 2012.
[49] B. Eric, H. Ying, B. Kenny and V. P. Yves. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics, Vol. 26 no. 12, pages 1566–1568. 2010.
[50] K. V. Sitansu, Shraddha and K. Ajay. Computational Prediction of MicroRNA for Targeting HIV-1 and HIV-2 Subtype. Columbia International Publishing, American Journal of Bioinformatics and Computational Biology, 1: 9-22. 2013.