Search results for: Adaptive fuzzy clustering
1746 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms
Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan
Abstract:
Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.
Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27891745 Fuzzy T-Neighborhood Groups Acting on Sets
Authors: Hazem. A. Khorshed, Mostafa A. El Gendy, Amer. Abd El-Razik
Abstract:
In this paper, The T-G-action topology on a set acted on by a fuzzy T-neighborhood (T-neighborhood, for short) group is defined as a final T-neighborhood topology with respect to a set of maps. We mainly prove that this topology is a T-regular Tneighborhood topology.Keywords: Fuzzy set, Fuzzy topology, Triangular norm, Separation axioms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13041744 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach
Authors: Uttam Vijay, Nitin Gupta
Abstract:
Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.
Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24751743 More on Gaussian Quadratures for Fuzzy Functions
Authors: Shu-Xin Miao
Abstract:
In this paper, the Gaussian type quadrature rules for fuzzy functions are discussed. The errors representation and convergence theorems are given. Moreover, four kinds of Gaussian type quadrature rules with error terms for approximate of fuzzy integrals are presented. The present paper complements the theoretical results of the paper by T. Allahviranloo and M. Otadi [T. Allahviranloo, M. Otadi, Gaussian quadratures for approximate of fuzzy integrals, Applied Mathematics and Computation 170 (2005) 874-885]. The obtained results are illustrated by solving some numerical examples.
Keywords: Guassian quadrature rules, fuzzy number, fuzzy integral, fuzzy solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14381742 Characterizations of Ordered Semigroups by (∈,∈ ∨q)-Fuzzy Ideals
Authors: Jian Tang
Abstract:
Let S be an ordered semigroup. In this paper we first introduce the concepts of (∈,∈ ∨q)-fuzzy ideals, (∈,∈ ∨q)-fuzzy bi-ideals and (∈,∈ ∨q)-fuzzy generalized bi-ideals of an ordered semigroup S, and investigate their related properties. Furthermore, we also define the upper and lower parts of fuzzy subsets of an ordered semigroup S, and investigate the properties of (∈,∈ ∨q)-fuzzy ideals of S. Finally, characterizations of regular ordered semigroups and intra-regular ordered semigroups by means of the lower part of (∈ ,∈ ∨q)-fuzzy left ideals, (∈,∈ ∨q)-fuzzy right ideals and (∈,∈ ∨q)- fuzzy (generalized) bi-ideals are given.
Keywords: Ordered semigroup, regular ordered semigroup, intraregular ordered semigroup, (∈, ∈ ∨q)-fuzzy left (right) ideal of an ordered semigroup, (∈, ∈ ∨q)-fuzzy (generalized) bi-ideal of an ordered semigroup.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131741 Network Anomaly Detection using Soft Computing
Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee
Abstract:
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19551740 Comparison of ANFIS and ANN for Estimation of Biochemical Oxygen Demand Parameter in Surface Water
Authors: S. Areerachakul
Abstract:
Nowadays, several techniques such as; Fuzzy Inference System (FIS) and Neural Network (NN) are employed for developing of the predictive models to estimate parameters of water quality. The main objective of this study is to compare between the predictive ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Network (ANN) model to estimate the Biochemical Oxygen Demand (BOD) on data from 11 sampling sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2004-2011. The five parameters of water quality namely Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH3N), Nitrate Nitrogen (NO3N), and Total Coliform bacteria (T-coliform) are used as the input of the models. These water quality indices affect the biochemical oxygen demand. The experimental results indicate that the ANN model provides a higher correlation coefficient (R=0.73) and a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model.Keywords: adaptive neuro-fuzzy inference system, artificial neural network, biochemical oxygen demand, surface water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25271739 Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method
Authors: Tarifa S. Almulhim, Ludmil Mikhailov, Dong-Ling Xu
Abstract:
In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.
Keywords: Fuzzy Analytic Network Process (FANP), Fuzzy Non-linear Programming, Fuzzy Preferences Programming Method (FPP), Multiple Criteria Decision-Making (MCDM), Triangular Fuzzy Number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23861738 Fuzzy Decision Making via Multiple Attribute
Authors: Behnaz Zohouri, Mahdi Zowghiand, Mohsen haghighi
Abstract:
In this paper, a method for decision making in fuzzy environment is presented.A new subjective and objective integrated approach is introduced that used to assign weight attributes in fuzzy multiple attribute decision making (FMADM) problems and alternatives and fmally ranked by proposed method.
Keywords: Multiple Attribute Decision Making, Triangular fuzzy numbers, ranking index, Fuzzy Entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731737 Isomorphism on Fuzzy Graphs
Authors: A.Nagoor Gani, J.Malarvizhi
Abstract:
In this paper, the order, size and degree of the nodes of the isomorphic fuzzy graphs are discussed. Isomorphism between fuzzy graphs is proved to be an equivalence relation. Some properties of self complementary and self weak complementary fuzzy graphs are discussed.Keywords: complementary fuzzy graphs, co-weak isomorphism, equivalence relation, fuzzy relation, weak isomorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40761736 Performance Analysis of Brain Tumor Detection Based On Image Fusion
Authors: S. Anbumozhi, P. S. Manoharan
Abstract:
Medical Image fusion plays a vital role in medical field to diagnose the brain tumors which can be classified as benign or malignant. It is the process of integrating multiple images of the same scene into a single fused image to reduce uncertainty and minimizing redundancy while extracting all the useful information from the source images. Fuzzy logic is used to fuse two brain MRI images with different vision. The fused image will be more informative than the source images. The texture and wavelet features are extracted from the fused image. The multilevel Adaptive Neuro Fuzzy Classifier classifies the brain tumors based on trained and tested features. The proposed method achieved 80.48% sensitivity, 99.9% specificity and 99.69% accuracy. Experimental results obtained from fusion process prove that the use of the proposed image fusion approach shows better performance while compared with conventional fusion methodologies.
Keywords: Image fusion, Fuzzy rules, Neuro-fuzzy classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30581735 An Interval Type-2 Dual Fuzzy Polynomial Equations and Ranking Method of Fuzzy Numbers
Authors: Nurhakimah Ab. Rahman, Lazim Abdullah
Abstract:
According to fuzzy arithmetic, dual fuzzy polynomials cannot be replaced by fuzzy polynomials. Hence, the concept of ranking method is used to find real roots of dual fuzzy polynomial equations. Therefore, in this study we want to propose an interval type-2 dual fuzzy polynomial equation (IT2 DFPE). Then, the concept of ranking method also is used to find real roots of IT2 DFPE (if exists). We transform IT2 DFPE to system of crisp IT2 DFPE. This transformation performed with ranking method of fuzzy numbers based on three parameters namely value, ambiguity and fuzziness. At the end, we illustrate our approach by two numerical examples.
Keywords: Dual fuzzy polynomial equations, Interval type-2, Ranking method, Value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17641734 Fuzzy Fingerprint Vault using Multiple Polynomials
Authors: Daesung Moon, Woo-Yong Choi, Kiyoung Moon
Abstract:
Fuzzy fingerprint vault is a recently developed cryptographic construct based on the polynomial reconstruction problem to secure critical data with the fingerprint data. However, the previous researches are not applicable to the fingerprint having a few minutiae since they use a fixed degree of the polynomial without considering the number of fingerprint minutiae. To solve this problem, we use an adaptive degree of the polynomial considering the number of minutiae extracted from each user. Also, we apply multiple polynomials to avoid the possible degradation of the security of a simple solution(i.e., using a low-degree polynomial). Based on the experimental results, our method can make the possible attack difficult 2192 times more than using a low-degree polynomial as well as verify the users having a few minutiae.
Keywords: Fuzzy vault, fingerprint recognition multiple polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471733 An Innovative Fuzzy Decision Making Based Genetic Algorithm
Authors: M. A. Sharbafi, M. Shakiba Herfeh, Caro Lucas, A. Mohammadi Nejad
Abstract:
Several researchers have proposed methods about combination of Genetic Algorithm (GA) and Fuzzy Logic (the use of GA to obtain fuzzy rules and application of fuzzy logic in optimization of GA). In this paper, we suggest a new method in which fuzzy decision making is used to improve the performance of genetic algorithm. In the suggested method, we determine the alleles that enhance the fitness of chromosomes and try to insert them to the next generation. In this algorithm we try to present an innovative vaccination in the process of reproduction in genetic algorithm, with considering the trade off between exploration and exploitation.Keywords: Genetic Algorithm, Fuzzy Decision Making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16081732 Identifying the Gap between Consumers with Down Syndrome and Apparel Brands
Authors: Lucky Farha, Martha L. Hall
Abstract:
The current adaptive clothing brands are limited in numbers and specific categories. This study explores clothing challenges for children with Down syndrome and factors that influence their perception of adaptive clothing brands. Another aim of this study was to explore brands' challenges in the adaptive business and factors that influence their perceptions towards the adaptive market. In order to determine the market barriers affecting adaptive target market needs, we applied Technology Acceptance Model. After interviewing and surveying parents/caregivers having children with Down syndrome and current adaptive brands, the results found education as the significant gap in the adaptive clothing market yet to be overcome. Based on the finding, several recommendations were suggested to improve the current barriers in the adaptive clothing market.
Keywords: Adaptive fashion, disability, functional clothing, clothing needs assessment, Down syndrome, clothing challenge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3681731 Using Data Clustering in Oral Medicine
Authors: Fahad Shahbaz Khan, Rao Muhammad Anwer, Olof Torgersson
Abstract:
The vast amount of information hidden in huge databases has created tremendous interests in the field of data mining. This paper examines the possibility of using data clustering techniques in oral medicine to identify functional relationships between different attributes and classification of similar patient examinations. Commonly used data clustering algorithms have been reviewed and as a result several interesting results have been gathered.Keywords: Oral Medicine, Cluto, Data Clustering, Data Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19771730 Dependent Weighted Aggregation Operators of Hesitant Fuzzy Numbers
Authors: Jing Liu
Abstract:
In this paper, motivated by the ideas of dependent weighted aggregation operators, we develop some new hesitant fuzzy dependent weighted aggregation operators to aggregate the input arguments taking the form of hesitant fuzzy numbers rather than exact numbers, or intervals. In fact, we propose three hesitant fuzzy dependent weighted averaging(HFDWA) operators, and three hesitant fuzzy dependent weighted geometric(HFDWG) operators based on different weight vectors, and the most prominent characteristic of these operators is that the associated weights only depend on the aggregated hesitant fuzzy numbers and can relieve the influence of unfair hesitant fuzzy numbers on the aggregated results by assigning low weights to those “false” and “biased” ones. Some examples are given to illustrated the efficiency of the proposed operators.
Keywords: Hesitant fuzzy numbers, hesitant fuzzy dependent weighted averaging(HFDWA) operators, hesitant fuzzy dependent weighted geometric(HFDWG) operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17751729 Simplex Method for Fuzzy Variable Linear Programming Problems
Authors: S.H. Nasseri, E. Ardil
Abstract:
Fuzzy linear programming is an application of fuzzy set theory in linear decision making problems and most of these problems are related to linear programming with fuzzy variables. A convenient method for solving these problems is based on using of auxiliary problem. In this paper a new method for solving fuzzy variable linear programming problems directly using linear ranking functions is proposed. This method uses simplex tableau which is used for solving linear programming problems in crisp environment before.
Keywords: Fuzzy variable linear programming, fuzzy number, ranking function, simplex method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33501728 Sensitizing Rules for Fuzzy Control Charts
Authors: N. Pekin Alakoç, A. Apaydın
Abstract:
Quality control charts indicate out of control conditions if any nonrandom pattern of the points is observed or any point is plotted beyond the control limits. Nonrandom patterns of Shewhart control charts are tested with sensitizing rules. When the processes are defined with fuzzy set theory, traditional sensitizing rules are insufficient for defining all out of control conditions. This is due to the fact that fuzzy numbers increase the number of out of control conditions. The purpose of the study is to develop a set of fuzzy sensitizing rules, which increase the flexibility and sensitivity of fuzzy control charts. Fuzzy sensitizing rules simplify the identification of out of control situations that results in a decrease in the calculation time and number of evaluations in fuzzy control chart approach.Keywords: Fuzzy set theory, Quality control charts, Run Rules, Unnatural patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35401727 A Two-Stage Expert System for Diagnosis of Leukemia Based on Type-2 Fuzzy Logic
Authors: Ali Akbar Sadat Asl
Abstract:
Diagnosis and deciding about diseases in medical fields is facing innate uncertainty which can affect the whole process of treatment. This decision is made based on expert knowledge and the way in which an expert interprets the patient's condition, and the interpretation of the various experts from the patient's condition may be different. Fuzzy logic can provide mathematical modeling for many concepts, variables, and systems that are unclear and ambiguous and also it can provide a framework for reasoning, inference, control, and decision making in conditions of uncertainty. In systems with high uncertainty and high complexity, fuzzy logic is a suitable method for modeling. In this paper, we use type-2 fuzzy logic for uncertainty modeling that is in diagnosis of leukemia. The proposed system uses an indirect-direct approach and consists of two stages: In the first stage, the inference of blood test state is determined. In this step, we use an indirect approach where the rules are extracted automatically by implementing a clustering approach. In the second stage, signs of leukemia, duration of disease until its progress and the output of the first stage are combined and the final diagnosis of the system is obtained. In this stage, the system uses a direct approach and final diagnosis is determined by the expert. The obtained results show that the type-2 fuzzy expert system can diagnose leukemia with the average accuracy about 97%.
Keywords: Expert system, leukemia, medical diagnosis, type-2 fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10531726 Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System
Authors: Arshia Azam, J. Amarnath, Ch. D. V. Paradesi Rao
Abstract:
The advantage of solving the complex nonlinear problems by utilizing fuzzy logic methodologies is that the experience or expert-s knowledge described as a fuzzy rule base can be directly embedded into the systems for dealing with the problems. The current limitation of appropriate and automated designing of fuzzy controllers are focused in this paper. The structure discovery and parameter adjustment of the Branched T-S fuzzy model is addressed by a hybrid technique of type constrained sparse tree algorithms. The simulation result for different system model is evaluated and the identification error is observed to be minimum.Keywords: Fuzzy logic, branch T-S fuzzy model, tree modeling, complex nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13891725 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.
Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9301724 A Note on Characterization of Regular Γ-Semigroups in terms of (∈,∈ ∨q)-Fuzzy Bi-ideal
Authors: S.K.Sardar, B.Davvaz, S.Kayal, S.K.Majumdar
Abstract:
The purpose of this note is to obtain some properties of (∈,∈ ∨q)- fuzzy bi-ideals in a Γ-semigroup in order to characterize regular and intra-regular Γ-semigroups.Keywords: Regular Γ-semigroup, belong to or quasi-coincident, (∈, ∈ ∨q)-fuzzy subsemigroup, (∈, ∈ ∨q)-fuzzy bi-ideals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241723 Medical Image Segmentation and Detection of MR Images Based on Spatial Multiple-Kernel Fuzzy C-Means Algorithm
Authors: J. Mehena, M. C. Adhikary
Abstract:
In this paper, a spatial multiple-kernel fuzzy C-means (SMKFCM) algorithm is introduced for segmentation problem. A linear combination of multiples kernels with spatial information is used in the kernel FCM (KFCM) and the updating rules for the linear coefficients of the composite kernels are derived as well. Fuzzy cmeans (FCM) based techniques have been widely used in medical image segmentation problem due to their simplicity and fast convergence. The proposed SMKFCM algorithm provides us a new flexible vehicle to fuse different pixel information in medical image segmentation and detection of MR images. To evaluate the robustness of the proposed segmentation algorithm in noisy environment, we add noise in medical brain tumor MR images and calculated the success rate and segmentation accuracy. From the experimental results it is clear that the proposed algorithm has better performance than those of other FCM based techniques for noisy medical MR images.Keywords: Clustering, fuzzy C-means, image segmentation, MR images, multiple kernels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21291722 Some Equalities Connected with Fuzzy Soft Matrices
Authors: D. R. Jain
Abstract:
The aim of this paper is to use matrix representation of Fuzzy soft sets for proving some equalities connected with Fuzzy soft sets based on set-operations.
Keywords: Equality, Fuzzy soft matrix, Fuzzy soft sets, operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17821721 Fuzzy Shortest Paths Approximation for Solving the Fuzzy Steiner Tree Problem in Graphs
Authors: Miloš Šeda
Abstract:
In this paper, we deal with the Steiner tree problem (STP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. We propose a modification of the shortest paths approximation based on the fuzzy shortest paths (FSP) evaluations. Since a fuzzy min operation using the extension principle leads to nondominated solutions, we propose another approach to solving the FSP using Cheng's centroid point fuzzy ranking method.Keywords: Steiner tree, single shortest path problem, fuzzyranking, binary heap, priority queue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16951720 Ranking Fuzzy Numbers Based On Epsilon-Deviation Degree
Authors: Vincent F. Yu, Ha Thi Xuan Chi
Abstract:
Nejad and Mashinchi (2011) proposed a revision for ranking fuzzy numbers based on the areas of the left and the right sides of a fuzzy number. However, this method still has some shortcomings such as lack of discriminative power to rank similar fuzzy numbers and no guarantee the consistency between the ranking of fuzzy numbers and the ranking of their images. To overcome these drawbacks, we propose an epsilon-deviation degree method based on the left area and the right area of a fuzzy number, and the concept of the centroid point. The main advantage of the new approach is the development of an innovative index value which can be used to consistently evaluate and rank fuzzy numbers. Numerical examples are presented to illustrate the efficiency and superiority of the proposed method.
Keywords: Ranking fuzzy numbers, Centroid, Deviation degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15851719 Intuitionistic Fuzzy Implicative Ideals with Thresholds (λ,μ) of BCI-Algebras
Authors: Qianqian Li, Shaoquan Sun
Abstract:
The aim of this paper is to introduce the notion of intuitionistic fuzzy implicative ideals with thresholds (λ, μ) of BCI-algebras and to investigate its properties and characterizations.
Keywords: BCI-algebra, intuitionistic fuzzy set, intuitionistic fuzzy ideal with thresholds (λ, μ), intuitionistic fuzzy implicative ideal with thresholds (λ, μ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32791718 Takagi-Sugeno Fuzzy Control of Induction Motor
Authors: Allouche Moez, Souissi Mansour, Chaabane Mohamed, Mehdi Driss
Abstract:
This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilise the induction motor and guaranteed a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller-s effectiveness.
Keywords: Rejection disturbance, fuzzy modelling, open-loop control, Fuzzy feedback controller, fuzzy observer, Linear Matrix Inequality (LMI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19071717 Prime(Semiprime) Fuzzy h-ideal in Γ-hemiring
Authors: Sujit Kumar Sardar, Debabrata Mandal
Abstract:
The notions of prime(semiprime) fuzzy h-ideal(h-biideal, h-quasi-ideal) in Γ-hemiring are introduced and some of their characterizations are obtained by using "belongingness(∈)" and "quasi - coincidence(q)". Cartesian product of prime(semiprime) fuzzy h-ideals of Γ-hemirings are also investigated.Keywords: Γ-hemiring, Fuzzy h-ideals, Prime fuzzy left h-ideal, Prime(semiprime) (∈, ∈ ∨q)-fuzzy left h-bi-ideal(h-ideal, h-quasiideal), Cartesian product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2770