Search results for: recurrent neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2425

Search results for: recurrent neural networks

415 Link Availability Estimation for Modified AOMDV Protocol

Authors: R. Prabha, N. Ramaraj

Abstract:

Routing in adhoc networks is a challenge as nodes are mobile, and links are constantly created and broken. Present ondemand adhoc routing algorithms initiate route discovery after a path breaks, incurring significant cost to detect disconnection and establish a new route. Specifically, when a path is about to be broken, the source is warned of the likelihood of a disconnection. The source then initiates path discovery early, avoiding disconnection totally. A path is considered about to break when link availability decreases. This study modifies Adhoc On-demand Multipath Distance Vector routing (AOMDV) so that route handoff occurs through link availability estimation.

Keywords: Mobile Adhoc Network (MANET), Routing, Adhoc On-demand Multipath Distance Vector routing (AOMDV), Link Availability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
414 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: Classification algorithms; data mining; tourism; knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
413 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than Optical Character Recognition (OCR) results.

Keywords: Biological pathway, image understanding, gene name recognition, object detection, Siamese network, Visual Geometry Group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
412 Exploring Anti-Western Sentiment Among Arabs and Its Influence on Support for Russia in the Ukraine Conflict

Authors: Soran Tarkhani

Abstract:

The phenomenon of significant Arab support for Russia's invasion of Ukraine, despite widespread condemnation from Arab leaders, poses a puzzling scenario. This paper delves into the paradox by employing multiple regression analysis on the online reactions of Arab audiences to the conflict as reported by seven major news networks: CNN Arabic, BBC Arabic, Sky News Arabic, France24 Arabic, DW, Aljazeera, and Al-Arabiya. It hypothesizes that this support stems from prevalent anti-Western sentiment within the Arab world. The empirical findings corroborate the hypothesis, providing insight into the underlying motivations for Arab backing of Russia against Ukraine, despite their historical familiarity with the harsh realities of war.

Keywords: Anti-Western Sentiment, Arab World, Russia-Ukraine Conflict, social media analysis, political sentiment, international relations, regional influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160
411 Investigation of Interference Conditions in BFWA System Applying Adaptive TDD

Authors: Gábor Szládek, Balázs Héder, János Bitó

Abstract:

In a BFWA (Broadband Fixed Wireless Access Network) the evolved SINR (Signal to Interference plus Noise Ratio) is relevant influenced by the applied duplex method. The TDD (Time Division Duplex), especially adaptive TDD method has some advantage contrary to FDD (Frequency Division Duplex), for example the spectrum efficiency and flexibility. However these methods are suffering several new interference situations that can-t occur in a FDD system. This leads to reduced SINR in the covered area what could cause some connection outages. Therefore, countermeasure techniques against interference are necessary to apply in TDD systems. Synchronization is one way to handling the interference. In this paper the TDD systems – applying different system synchronization degree - will be compared by the evolved SINR at different locations of the BFWA service area and the percentage of the covered area by the system.

Keywords: Adaptive TDD, BFWA networks, duplex methods, intra system interferences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
410 Trust Building Mechanisms for Electronic Business Networks and Their Relation to eSkills

Authors: Radoslav Delina, Michal Tkáč

Abstract:

Globalization, supported by information and communication technologies, changes the rules of competitiveness and increases the significance of information, knowledge and network cooperation. In line with this trend, the need for efficient trust-building tools has emerged. The absence of trust building mechanisms and strategies was identified within several studies. Through trust development, participation on e-business network and usage of network services will increase and provide to SMEs new economic benefits. This work is focused on effective trust building strategies development for electronic business network platforms. Based on trust building mechanism identification, the questionnairebased analysis of its significance and minimum level of requirements was conducted. In the paper, we are confirming the trust dependency on e-Skills which play crucial role in higher level of trust into the more sophisticated and complex trust building ICT solutions.

Keywords: Correlation analysis, decision trees, e-marketplace, trust building

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
409 Quantum Enhanced Correlation Matrix Memories via States Orthogonalisation

Authors: Mario Mastriani, Marcelo Naiouf

Abstract:

This paper introduces a Quantum Correlation Matrix Memory (QCMM) and Enhanced QCMM (EQCMM), which are useful to work with quantum memories. A version of classical Gram-Schmidt orthogonalisation process in Dirac notation (called Quantum Orthogonalisation Process: QOP) is presented to convert a non-orthonormal quantum basis, i.e., a set of non-orthonormal quantum vectors (called qudits) to an orthonormal quantum basis, i.e., a set of orthonormal quantum qudits. This work shows that it is possible to improve the performance of QCMM thanks QOP algorithm. Besides, the EQCMM algorithm has a lot of additional fields of applications, e.g.: Steganography, as a replacement Hopfield Networks, Bilevel image processing, etc. Finally, it is important to mention that the EQCMM is an extremely easy to implement in any firmware.

Keywords: Quantum Algebra, correlation matrix memory, Dirac notation, orthogonalisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
408 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
407 Frequent and Systematic Timing Enhancement of Congestion Window in Typical Transmission Control Protocol

Authors: Ghassan A. Abed, Akbal O. Salman, Bayan M. Sabbar

Abstract:

Transmission Control Protocol (TCP) among the wired and wireless networks, it still has a practical problem; where the congestion control mechanism does not permit the data stream to get complete bandwidth over the existing network links. To solve this problem, many TCP protocols have been introduced with high speed performance. Therefore, an enhanced congestion window (cwnd) for the congestion control mechanism is proposed in this article to improve the performance of TCP by increasing the number of cycles of the new window to improve the transmitted packet number. The proposed algorithm used a new mechanism based on the available bandwidth of the connection to detect the capacity of network path in order to improve the regular clocking of congestion avoidance mechanism. The work in this paper based on using Network Simulator 2 (NS-2) to simulate the proposed algorithm.

Keywords: TCP, cwnd, Congestion Control, NS-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
406 Quality and Quantity in the Strategic Network of Higher Education Institutions

Authors: Juha Kettunen

Abstract:

This study analyzes the quality and the size of the strategic network of higher education institutions. The study analyses the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented of the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.

Keywords: Higher education, network, research and development, strategic management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
405 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System

Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek

Abstract:

Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.

Keywords: Mesh network, RFID, wireless sensor network, zigbee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
404 Types of Epilepsies and Findings EEG- LORETA about Epilepsy

Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi

Abstract:

Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review the findings EEG- LORETA about epilepsy.

Keywords: Epilepsy, EEG, EEG- Loreta, loreta analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094
403 Experimental Evaluation of Mobility Anchor Point Selection Scheme in Hierarchical Mobile IPv6

Authors: Zulkeflee Kusin, Mohamad Shanudin Zakaria

Abstract:

Hierarchical Mobile IPv6 (HMIPv6) was designed to support IP micro-mobility management in the Next Generation Networks (NGN) framework. The main design behind this protocol is the usage of Mobility Anchor Point (MAP) located at any level router of network to support hierarchical mobility management. However, the distance MAP selection in HMIPv6 causes MAP overloaded and increase frequent binding update as the network grows. Therefore, to address the issue in designing MAP selection scheme, we propose a dynamic load control mechanism integrates with a speed detection mechanism (DMS-DLC). From the experimental results we obtain that the proposed scheme gives better distribution in MAP load and increase handover speed.

Keywords: Dynamic load control, HMIPv6, Mobility AnchorPoint, MAP selection scheme

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
402 A New Cut–Through Mechanism in IEEE 802.16 Mesh Networks

Authors: Yi-Ting Mai, Chun-Chuan Yang, Cheng-Jung Wen

Abstract:

IEEE 802.16 is a new wireless technology standard, it has some advantages, including wider coverage, higher bandwidth, and QoS support. As the new wireless technology for last mile solution, there are designed two models in IEEE 802.16 standard. One is PMP (point to multipoint) and the other is Mesh. In this paper we only focus on IEEE 802.16 Mesh model. According to the IEEE 802.16 standard description, Mesh model has two scheduling modes, centralized and distributed. Considering the pros and cons of the two scheduling, we present the combined scheduling QoS framework that the BS (Base Station) controls time frame scheduling and selects the shortest path from source to destination directly. On the other hand, we propose the Expedited Queue mechanism to cut down the transmission time. The EQ mechanism can reduce a lot of end-to-end delay in our QoS framework. Simulation study has shown that the average delay is smaller than contrasts. Furthermore, our proposed scheme can also achieve higher performance.

Keywords: IEEE 802.16 Mesh, Scheduling, Expedited Queue, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
401 Comparative study of the Genetic Algorithms and Hessians Method for Minimization of the Electric Power Production Cost

Authors: L. Abdelmalek, M. Zerikat, M. Rahli

Abstract:

In this paper, we present a comparative study of the genetic algorithms and Hessian-s methods for optimal research of the active powers in an electric network of power. The objective function which is the performance index of production of electrical energy is minimized by satisfying the constraints of the equality type and inequality type initially by the Hessian-s methods and in the second time by the genetic Algorithms. The results found by the application of AG for the minimization of the electric production costs of power are very encouraging. The algorithms seem to be an effective technique to solve a great number of problems and which are in constant evolution. Nevertheless it should be specified that the traditional binary representation used for the genetic algorithms creates problems of optimization of management of the large-sized networks with high numerical precision.

Keywords: Genetic algorithm, Flow of optimum loadimpedances, Hessians method, Optimal distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
400 Error Correction Codes in Wireless Sensor Network: An Energy Aware Approach

Authors: Mohammad Rakibul Islam

Abstract:

Link reliability and transmitted power are two important design constraints in wireless network design. Error control coding (ECC) is a classic approach used to increase link reliability and to lower the required transmitted power. It provides coding gain, resulting in transmitter energy savings at the cost of added decoder power consumption. But the choice of ECC is very critical in the case of wireless sensor network (WSN). Since the WSNs are energy constraint in nature, both the BER and power consumption has to be taken into count. This paper develops a step by step approach in finding suitable error control codes for WSNs. Several simulations are taken considering different error control codes and the result shows that the RS(31,21) fits both in BER and power consumption criteria.

Keywords: Error correcting code, RS, BCH, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3233
399 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467
398 Dynamic Load Balancing Strategy for Grid Computing

Authors: Belabbas Yagoubi, Yahya Slimani

Abstract:

Workload and resource management are two essential functions provided at the service level of the grid software infrastructure. To improve the global throughput of these software environments, workloads have to be evenly scheduled among the available resources. To realize this goal several load balancing strategies and algorithms have been proposed. Most strategies were developed in mind, assuming homogeneous set of sites linked with homogeneous and fast networks. However for computational grids we must address main new issues, namely: heterogeneity, scalability and adaptability. In this paper, we propose a layered algorithm which achieve dynamic load balancing in grid computing. Based on a tree model, our algorithm presents the following main features: (i) it is layered; (ii) it supports heterogeneity and scalability; and, (iii) it is totally independent from any physical architecture of a grid.

Keywords: Grid computing, load balancing, workload, tree based model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3138
397 Spike Sorting Method Using Exponential Autoregressive Modeling of Action Potentials

Authors: Sajjad Farashi

Abstract:

Neurons in the nervous system communicate with each other by producing electrical signals called spikes. To investigate the physiological function of nervous system it is essential to study the activity of neurons by detecting and sorting spikes in the recorded signal. In this paper a method is proposed for considering the spike sorting problem which is based on the nonlinear modeling of spikes using exponential autoregressive model. The genetic algorithm is utilized for model parameter estimation. In this regard some selected model coefficients are used as features for sorting purposes. For optimal selection of model coefficients, self-organizing feature map is used. The results show that modeling of spikes with nonlinear autoregressive model outperforms its linear counterpart. Also the extracted features based on the coefficients of exponential autoregressive model are better than wavelet based extracted features and get more compact and well-separated clusters. In the case of spikes different in small-scale structures where principal component analysis fails to get separated clouds in the feature space, the proposed method can obtain well-separated cluster which removes the necessity of applying complex classifiers.

Keywords: Exponential autoregressive model, Neural data, spike sorting, time series modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
396 Performance Analysis of Learning Automata-Based Routing Algorithms in Sparse Graphs

Authors: Z.Farhadpour, Mohammad.R.Meybodi

Abstract:

A number of routing algorithms based on learning automata technique have been proposed for communication networks. How ever, there has been little work on the effects of variation of graph scarcity on the performance of these algorithms. In this paper, a comprehensive study is launched to investigate the performance of LASPA, the first learning automata based solution to the dynamic shortest path routing, across different graph structures with varying scarcities. The sensitivity of three main performance parameters of the algorithm, being average number of processed nodes, scanned edges and average time per update, to variation in graph scarcity is reported. Simulation results indicate that the LASPA algorithm can adapt well to the scarcity variation in graph structure and gives much better outputs than the existing dynamic and fixed algorithms in terms of performance criteria.

Keywords: Learning automata, routing, algorithm, sparse graph

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
395 From Customer Innovations to Manufactured Products: A Project Outlook

Authors: M. Holle, M. Roth, M. R. Gürtler, U. Lindemann

Abstract:

This paper gives insights into the research project “InnoCyFer” (in the form of an outlook) which is funded by the German Federal Ministry of Economics and Technology. Enabling the integrated customer individual product design as well as flexible manufacturing of these products are the main objectives of the project. To achieve this, a web-based Open Innovation-Platform containing an integrated Toolkit will be developed. This toolkit enables the active integration of the customer’s creativity and potentials of innovation in the product development process. Furthermore, the project will show the chances and possibilities of customer individualized products by building and examining the continuous process from innovation through the customers to the flexible manufacturing of individual products.

Keywords: Customer Individual Product Design, Innovation Networks, Open Innovation, Open Innovation Platform and Toolkit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
394 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: Deep-learning, image classification, image identification, industrial engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
393 Cross Layer Optimization for Fairness Balancing Based on Adaptively Weighted Utility Functions in OFDMA Systems

Authors: Jianwei Wang, Timo Korhonen, Yuping Zhao

Abstract:

Cross layer optimization based on utility functions has been recently studied extensively, meanwhile, numerous types of utility functions have been examined in the corresponding literature. However, a major drawback is that most utility functions take a fixed mathematical form or are based on simple combining, which can not fully exploit available information. In this paper, we formulate a framework of cross layer optimization based on Adaptively Weighted Utility Functions (AWUF) for fairness balancing in OFDMA networks. Under this framework, a two-step allocation algorithm is provided as a sub-optimal solution, whose control parameters can be updated in real-time to accommodate instantaneous QoS constrains. The simulation results show that the proposed algorithm achieves high throughput while balancing the fairness among multiple users.

Keywords: OFDMA, Fairness, AWUF, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
392 A Reusability Evaluation Model for OO-Based Software Components

Authors: Parvinder S. Sandhu, Hardeep Singh

Abstract:

The requirement to improve software productivity has promoted the research on software metric technology. There are metrics for identifying the quality of reusable components but the function that makes use of these metrics to find reusability of software components is still not clear. These metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the component and hence improve the productivity due to probabilistic increase in the reuse level. CK metric suit is most widely used metrics for the objectoriented (OO) software; we critically analyzed the CK metrics, tried to remove the inconsistencies and devised the framework of metrics to obtain the structural analysis of OO-based software components. Neural network can learn new relationships with new input data and can be used to refine fuzzy rules to create fuzzy adaptive system. Hence, Neuro-fuzzy inference engine can be used to evaluate the reusability of OO-based component using its structural attributes as inputs. In this paper, an algorithm has been proposed in which the inputs can be given to Neuro-fuzzy system in form of tuned WMC, DIT, NOC, CBO , LCOM values of the OO software component and output can be obtained in terms of reusability. The developed reusability model has produced high precision results as expected by the human experts.

Keywords: CK-Metric, ID3, Neuro-fuzzy, Reusability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
391 A Decision Support System Based on Leprosy Scales

Authors: Dennys Robson Girardi, Hugo Bulegon, Claudia Maria Moro Barra

Abstract:

Leprosy is an infectious disease caused by Mycobacterium Leprae, this disease, generally, compromises the neural fibers, leading to the development of disability. Disabilities are changes that limit daily activities or social life of a normal individual. When comes to leprosy, the study of disability considered the functional limitation (physical disabilities), the limitation of activity and social participation, which are measured respectively by the scales: EHF, SALSA and PARTICIPATION SCALE. The objective of this work is to propose an on-line monitoring of leprosy patients, which is based on information scales EHF, SALSA and PARTICIPATION SCALE. It is expected that the proposed system is applied in monitoring the patient during treatment and after healing therapy of the disease. The correlations that the system is between the scales create a variety of information, presented the state of the patient and full of changes or reductions in disability. The system provides reports with information from each of the scales and the relationships that exist between them. This way, health professionals, with access to patient information, can intervene with techniques for the Prevention of Disability. Through the automated scale, the system shows the level of the patient and allows the patient, or the responsible, to take a preventive measure. With an online system, it is possible take the assessments and monitor patients from anywhere.

Keywords: Leprosy, Medical Informatics, Decision SupportSystem, Disability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
390 On Pseudo-Random and Orthogonal Binary Spreading Sequences

Authors: Abhijit Mitra

Abstract:

Different pseudo-random or pseudo-noise (PN) as well as orthogonal sequences that can be used as spreading codes for code division multiple access (CDMA) cellular networks or can be used for encrypting speech signals to reduce the residual intelligence are investigated. We briefly review the theoretical background for direct sequence CDMA systems and describe the main characteristics of the maximal length, Gold, Barker, and Kasami sequences. We also discuss about variable- and fixed-length orthogonal codes like Walsh- Hadamard codes. The equivalence of PN and orthogonal codes are also derived. Finally, a new PN sequence is proposed which is shown to have certain better properties than the existing codes.

Keywords: Code division multiple access, pseudo-noise codes, maximal length, Gold, Barker, Kasami, Walsh-Hadamard, autocorrelation, crosscorrelation, figure of merit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6054
389 Analysing of Indoor Radio Wave Propagation on Ad-hoc Network by Using TP-LINK Router

Authors: Khine Phyu, Aung Myint Aye

Abstract:

This paper presents results of measurements campaign carried out at a carrier frequency of 24GHz with the help of TPLINK router in indoor line-of-sight (LOS) scenarios. Firstly, the radio wave propagation strategies are analyzed in some rooms with router of point to point Ad hoc network. Then floor attenuation is defined for 3 floors in experimental region. The free space model and dual slope models are modified by considering the influence of corridor conditions on each floor. Using these models, indoor signal attenuation can be estimated in modeling of indoor radio wave propagation. These results and modified models can also be used in planning the networks of future personal communications services.

Keywords: radio wave signal analyzing, LOS radio wavepropagation, indoor radio wave propagation, free space model, tworay model and indoor attenuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
388 Synthesis and Simulation of Enhanced Buffer Router vs. Virtual Channel Router in NOC ON Cadence

Authors: Bhavana Prakash Shrivastava, Kavita Khare

Abstract:

This paper presents a synthesis and simulation of proposed enhanced buffer. The design provides advantages of both buffer and bufferless network for that two cross bar switches are used. The concept of virtual channel (VC) is eliminated from the previous design by using an efficient flow-control scheme that uses the storage already present in pipelined channels in place of explicit input VCBs. This can be addressed by providing enhanced buffers on the bufferless link and creating two virtual networks. With this approach, VCBs act as distributed FIFO buffers. Without VCBs or VCs, deadlock prevention is achieved by duplicating physical channels. An enhanced buffer provides a function of hand shaking by providing a ready valid handshake signal and two bit storage. Through this design the power is reduced to 15.65% and delay is reduced to 97.88% with respect to virtual channel router.

Keywords: Enhanced buffer, Gate delay, NOC, VCs, VCB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
387 Avoiding Pin Ball Routing Problem in Network Mobility Hand-Off Management

Authors: M. Dinakaran, P. Balasubramanie

Abstract:

With the demand of mobility by users, wireless technologies have become the hotspot developing arena. Internet Engineering Task Force (IETF) working group has developed Mobile IP to support node mobility. The concept of node mobility indicates that in spite of the movement of the node, it is still connected to the internet and all the data transactions are preserved. It provides location-independent access to Internet. After the incorporation of host mobility, network mobility has undergone intense research. There are several intricacies faced in the real world implementation of network mobility significantly the problem of nested networks and their consequences. This article is concerned regarding a problem of nested network called pinball route problem and proposes a solution to eliminate the above problem. The proposed mechanism is implemented using NS2 simulation tool and it is found that the proposed mechanism efficiently reduces the overload caused by the pinball route problem.

Keywords: Mobile IP, Pinball routing problem, NEMO

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
386 Compensation of Power Quality Disturbances Using DVR

Authors: R. Rezaeipour

Abstract:

One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic Voltage Restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using Matlab software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.

Keywords: DVR, Power quality, Voltage sags, Voltage swells, Flicker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003