Search results for: Learning Theories
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2249

Search results for: Learning Theories

239 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
238 Multivariate Assessment of Mathematics Test Scores of Students in Qatar

Authors: Ali Rashash Alzahrani, Elizabeth Stojanovski

Abstract:

Data on various aspects of education are collected at the institutional and government level regularly. In Australia, for example, students at various levels of schooling undertake examinations in numeracy and literacy as part of NAPLAN testing, enabling longitudinal assessment of such data as well as comparisons between schools and states within Australia. Another source of educational data collected internationally is via the PISA study which collects data from several countries when students are approximately 15 years of age and enables comparisons in the performance of science, mathematics and English between countries as well as ranking of countries based on performance in these standardised tests. As well as student and school outcomes based on the tests taken as part of the PISA study, there is a wealth of other data collected in the study including parental demographics data and data related to teaching strategies used by educators. Overall, an abundance of educational data is available which has the potential to be used to help improve educational attainment and teaching of content in order to improve learning outcomes. A multivariate assessment of such data enables multiple variables to be considered simultaneously and will be used in the present study to help develop profiles of students based on performance in mathematics using data obtained from the PISA study.

Keywords: Cluster analysis, education, mathematics, profiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
237 The Effects of Applying Linguistic Principles and Teaching Techniques in Teaching English at Secondary School in Thailand

Authors: Wannakarn Likitrattanaporn

Abstract:

The ultimate purpose of this investigation was to determine the teachers’ opinions as well as students’ opinions towards the Adapted English Lessons. The subjects of the study were 5 Thai teachers, who teach English, and 85 Grade 10 mixed-ability students at Triamudom Suksa Pattanakarn Ratchada School, Bangkok, Thailand. The research instruments included questionnaires and the informal interview. The data from the research instruments was collected and analyzed concerning linguistic principles of minimal pair and articulatory phonetics as well as teaching techniques of mimicry-memorization; vocabulary substitution drills, language pattern drills, reading comprehension exercise, practicing listening, speaking and writing skill and communicative activities; informal talk and free writing. The data was statistically compiled according to an arithmetic percentage. The results showed that the teachers and students have very highly positive opinions towards adapting linguistic principles for teaching and learning phonological accuracy. Teaching techniques provided in the Adapted English Lessons can be used efficiently in the classroom. The teachers and students have positive opinions towards them too.

Keywords: Applying linguistic principles and teaching techniques, teachers’ and students’ opinions, teaching English, the Adapted English Lessons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
236 Methodology Issues and Design Approach of VLE on Mathematical Concepts Acquisition within Secondary Education in England

Authors: Aaron A. R. Nwabude

Abstract:

This study used positivist quantitative approach to examine the mathematical concepts acquisition of- KS4 (14-16) Special Education Needs (SENs) students within the school sector education in England. The research is based on a pilot study and the design is completely holistic in its approach with mixing methodologies. The study combines the qualitative and quantitative methods of approach in gathering formative data for the design process. Although, the approach could best be described as a mix method, fundamentally with a strong positivist paradigm, hence my earlier understanding of the differentiation of the students, student – teacher body and the various elements of indicators that is being measured which will require an attenuated description of individual research subjects. The design process involves four phases with five key stages which are; literature review and document analysis, the survey, interview, and observation; then finally the analysis of data set. The research identified the need for triangulation with Reid-s phases of data management providing scaffold for the study. The study clearly identified the ideological and philosophical aspects of educational research design for the study of mathematics by the special education needs (SENs) students in England using the virtual learning environment (VLE) platform.

Keywords: VLE, Special Education Needs, Key stage4, School, Mathematics, Concepts Acquisition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
235 3D Multi-User Virtual Environment in Language Teaching

Authors: Hana Maresova, Daniel Ecler, Miroslava Mensikova

Abstract:

This article focuses on the use of 3D multi-user virtual environment in language teaching and presents the results of a four-year research at the Palacky University Olomouc Faculty of Education (Czech Republic). Language teaching was conducted in an experimental form in the 3D virtual worlds of Second Life and Kitely (experimental group) and, in parallel to this, there was also traditional teaching conducted on identical topics in the form of lectures using a textbook (control group). The didactic test, which was presented to both of the groups in an identical form before the start of teaching and after its implementation, verified the effect of teaching in the experimental group by comparing the achieved results of both groups. Out of the three components of mother tongue teaching (grammar, literature, composition and communication education) students achieved partial better results (in the case of points focused on the visualization of the subject matter, these were statistically significant) in literature. Students from the control group performed better in grammar and composition. Based on the achieved results, we can state that the most appropriate use of multi-user virtual environment (MUVE) can be seen in teaching those topics that have the possibility of dramatization, experiential learning and group cooperation.

Keywords: 3D virtual reality, multiuser environments, online education, language education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
234 Active Islanding Detection Method Using Intelligent Controller

Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang

Abstract:

An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.

Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
233 Automatic Music Score Recognition System Using Digital Image Processing

Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng

Abstract:

Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.

Keywords: Connected component labeling, image processing, morphological processing, optical musical recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
232 Semantic Preference across Research Articles: A Corpus-Based Study of Adjectives in English

Authors: Valdênia Carvalho e Almeida

Abstract:

The goal of the present study is to investigate the semantic preference of the most frequent adjectives in research articles through a corpus-based analysis of texts published in journals in Applied Linguistics (AL). The corpus used in this study contains texts published in the period from 2014 to 2018 in the three journals: Language Learning and Technology; English for Academic Purposes, and TESOL Quaterly, totaling more than one million words. A corpus-based analysis was carried out on the corpus to identify the most frequent adjectives that co-occurred in the three journals. By observing the concordance lines of the adjectives and analyzing the words they associated with, the semantic preferences of each adjective were determined. Later, the AL corpus analysis was compared to the investigation of the same adjectives in a corpus of Chemistry. This second part of the study aimed to identify possible differences and similarities between the two corpora in relation to the use of the adjectives in research articles from both areas. The results show that there are some preferences which seem to be closely related not only to the academic genre of the texts but also to the specific domain of the discipline and, to a lesser extent, to the context of research in each journal. This research illustrates a possible contribution of Corpus Linguistics to explore the concept of semantic preference in more detail, considering the complex nature of the phenomenon.

Keywords: Applied linguistics, corpus linguistics, chemistry, research article, semantic preference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
231 Development of Fuzzy Logic Control Ontology for E-Learning

Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof

Abstract:

Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.

Keywords: Engineering knowledge, fuzzy logic control ontology, ontology development, table of contents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
230 Improving the Elder-s Quality of Life with Smart Television Based Services

Authors: Van-Quang Trinh, Gi-Soo Chung, Hee-Cheol Kim

Abstract:

The increasing number of senior population gradually causes to demand the use of information and communication technology for their satisfactory lives. This paper presents the development of an integrated TV based system which offers an opportunity to provide value added services to a large number of elderly citizens, and thus helps improve their quality of life. The design philosophy underlying this paper is to fulfill both technological and human aspects. The balance between these two dimensions has been currently stressed as a crucial element for the design of usable systems in real use, particularly to the elderly who have physical and mental decline. As the first step to achieve it, we have identified human and social factors that affect the elder-s quality of life by a literature review, and based on them, build four fundamental services: information, healthcare, learning and social network services. Secondly, the system architecture, employed technologies and the elderly-friendly system design considerations are presented. This reflects technological and human perspectives in terms of the system design. Finally, we describe some scenarios that illustrate the potentiality of the proposed system to improve elderly people-s quality of life.

Keywords: Elderly people, human computer interaction, quality of life, smart television, user-centered system design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
229 Corporate Credit Rating using Multiclass Classification Models with order Information

Authors: Hyunchul Ahn, Kyoung-Jae Kim

Abstract:

Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.

Keywords: Artificial neural network, Corporate credit rating, Support vector machines, Ordinal pairwise partitioning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3440
228 Medical Knowledge Management in Healthcare Industry

Authors: B. Stroetmann, A. Aisenbrey

Abstract:

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging and therapy, laboratory diagnostics, medical information technology, and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better, and more cost effective. The optimization of clinical workflows requires a multidisciplinary focus and a collaborative approach of e.g. medical advisors, researchers and scientists as well as healthcare economists. This new form of collaboration brings together experts with deep technical experience, physicians with specialized medical knowledge as well as people with comprehensive knowledge about health economics. As Charles Darwin is often quoted as saying, “It is neither the strongest of the species that survive, nor the most intelligent, but the one most responsive to change," We believe that those who can successfully manage this change will emerge as winners, with valuable competitive advantage. Current medical information and knowledge are some of the core assets in the healthcare industry. The main issue is to connect knowledge holders and knowledge recipients from various disciplines efficiently in order to spread and distribute knowledge.

Keywords: Business Excellence, Clinical Knowledge, Knowledge Management, Knowledge Services, Learning Organizations, Trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167
227 Detection of Cyberattacks on the Metaverse Based on First-Order Logic

Authors: Sulaiman Al Amro

Abstract:

There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies, and therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and thus the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.

Keywords: Cyberattacks, detection, first-order logic, Metaverse, privacy, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
226 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet

Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu

Abstract:

In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.

Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
225 Sex Education: A Need for Students with Disabilities in India

Authors: Gaurav

Abstract:

Sexuality remains a personal or a private matter of discussion in the Indian society and generally discussed among the same age group or gender. Complete absence of the sex education has caused serious implications for the students with disabilities in Indian society. There are widespread perceptions that student with disabilities are ‘asexual’, ‘unattractive’ and therefore cannot be considered sexually desirable. Such perceptions continue to reinforce the other perceptions that student with disabilities are somehow incapable of being in an intimate relationship in the life and therefore they do not need any learning related to the sex education. We need to understand that if a student has a disability, it does not mean that student have no emotional feelings, hormones and sexual desires like any other student without disability. Sexuality is an integral part of every human life and should not be seen as matter of shame and guilt. Unfortunately, the concept of the sex education is misunderstood in itself. Instead of realizing the crucial importance of sex education for the students with disabilities or non-disabilities, it is often considered mainly as an education about ‘how to have sexual intercourse’. One needs to understand that it is not just about sexual conduct but also about the gender and sexual identity, self-esteem, self protection and acceptance of self. This research paper examined issues and debates around the sex education, particularly in context of the students with disabilities in India and focuses on how students with disabilities themselves see the need of sex (health) education. To understand their perceptions, descriptive survey method was used. It was found that most of the students among respondent were comfortable and felt it as a strong need for such orientation during their schooling. The paper emphasizes that sex education is a need of the time and further a necessity. Hence it is important for our education system to implement it for the complete well being of the students with disabilities.

Keywords: Disabilities, identity, sexuality, sex education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808
224 Predicting Application Layer DDoS Attacks Using Machine Learning Algorithms

Authors: S. Umarani, D. Sharmila

Abstract:

A Distributed Denial of Service (DDoS) attack is a major threat to cyber security. It originates from the network layer or the application layer of compromised/attacker systems which are connected to the network. The impact of this attack ranges from the simple inconvenience to use a particular service to causing major failures at the targeted server. When there is heavy traffic flow to a target server, it is necessary to classify the legitimate access and attacks. In this paper, a novel method is proposed to detect DDoS attacks from the traces of traffic flow. An access matrix is created from the traces. As the access matrix is multi dimensional, Principle Component Analysis (PCA) is used to reduce the attributes used for detection. Two classifiers Naive Bayes and K-Nearest neighborhood are used to classify the traffic as normal or abnormal. The performance of the classifier with PCA selected attributes and actual attributes of access matrix is compared by the detection rate and False Positive Rate (FPR).

Keywords: Distributed Denial of Service (DDoS) attack, Application layer DDoS, DDoS Detection, K- Nearest neighborhood classifier, Naive Bayes Classifier, Principle Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5279
223 A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan mCaD

Authors: Kjersti Engan, Thor Ole Gulsrud, Karl Fredrik Fretheim, Barbro Furebotten Iversen, Liv Eriksen

Abstract:

Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan μCaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction, VarMet, and adaptive thresholding. This will also give a number of false detections. The goal of the second step, Classifier level 1, is to remove everything but microcalcifications. The last step, Classifier level 2, uses learned dictionaries and sparse representations as a texture classification technique to distinguish single, benign microcalcifications from clustered microcalcifications, in addition to remove some remaining false detections. The system is trained and tested on true digital data from Stavanger University Hospital, and the results are evaluated by radiologists. The overall results are promising, with a sensitivity > 90 % and a low false detection rate (approx 1 unwanted pr. image, or 0.3 false pr. image).

Keywords: mammogram, microcalcifications, detection, CAD, MammoScan μCaD, VarMet, dictionary learning, texture, FTCM, classification, adaptive thresholding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
222 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks

Authors: Siddhant Rao

Abstract:

Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.

Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
221 Innovation and Technologies Synthesis of Various Components: A Contribution to the Precision Irrigation Development for Open-Field Fruit Orchards

Authors: P. Chatrabhuti, S. Visessri, T. Charinpanitkul

Abstract:

Precision irrigation (PI) technology has emerged as a solution to optimize water usage in agriculture, aiming to maximize crop yields while minimizing water waste. Developing a PI for commercialization requires developers to research, synthesize, evaluate, and select appropriate technologies and make use of such information to produce innovative products. The objective of this review is to facilitate innovators by providing them with a summary of existing knowledge and the identification of gaps in research linking to the innovative development of PI. This paper reviews and synthesizes technologies and components relevant to precision irrigation, highlighting its potential benefits and challenges. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework is used for the review. As a result of this review, the different technologies have limitations and may only be suitable for specific orchards or spatial settings. The current technologies are readily available in a range of options, from affordable controllers to high-performance systems that are both reliable and precise. Furthermore, the future prospects for incorporating artificial intelligence and machine learning techniques hold promise for advancing autonomous irrigation systems.

Keywords: Innovation synthesis, technology assessment, precision irrigation technologies, precision irrigation components, new product development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25
220 A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, M. Sharmila

Abstract:

Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.

Keywords: Clustering, Cluster Ensemble methods, Co-association matrix, Consensus function, Median partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
219 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach

Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian

Abstract:

The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.

Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
218 The Innovation of English Materials to Communicate the Identity of Bangpoo, Samut Prakan Province, for Ecotourism

Authors: Kitda Praraththajariya

Abstract:

The main purpose of this research was to study how to communicate the identity of the Bangpoo, Samu tPrakan province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows:

  1. The identity of Bangpoo, Samut Prakan province. This establishment was near the Mouth of the Gulf of Thailand for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Banpoo seaside resort and mangrove trees. Bangpoo seaside resort is characterized by muddy beacheswhere the greatest number of seagulls can be seen from March to May each year.
  2. The communication of the identity of Bangpoo, Samut Prakan province which the researcher could find and design to present in English materials can be summed up in 3 items: 1) The history of Bangpoo, Samut Prakan province 2) The Learning center of Ecotourism: Seagulls and Mangrove forest 3) How to keep Banpoo, Samut Prakran province for ecotourism.

Keywords: Foreigner tourists, signified, semiotics, ecotourism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
217 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen

Abstract:

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Keywords: Big data analytics, Industry 4.0, SPI threshold setting, surface mount technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
216 In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease

Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin

Abstract:

Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.

Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
215 Teaching Attentive Literature Reading in Higher Education French as a Foreign Language: A Pilot Study of a Flipped Classroom Teaching Model

Authors: Malin Isaksson

Abstract:

Teaching French as a foreign language usually implies teaching French literature, especially in higher education. Training university students in literary reading in a foreign language requires addressing several aspects at the same time: the (foreign) language, the poetic language, the aesthetic aspects of the studied works, and various interpretations of them. A pilot study sought to test a teaching model that would support students in learning to perform competent readings and short analyses of French literary works, in a rather independent manner. This shared practice paper describes the use of a flipped classroom method in two French literature courses, a campus course and an online course, and suggests that the teaching model may provide efficient tools for teaching literary reading and analysis in a foreign language. The teaching model builds on a high level of student activity and focuses on attentive reading, meta-perspectives such as theoretical concepts, individual analyses by students where said concepts are applied, and group discussions of the studied texts and of possible interpretations.

Keywords: Shared practice, flipped classroom, literature in foreign language studies, teaching literature analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
214 An Advanced Approach Based on Artificial Neural Networks to Identify Environmental Bacteria

Authors: Mauro Giacomini, Stefania Bertone, Federico Caneva Soumetz, Carmelina Ruggiero

Abstract:

Environmental micro-organisms include a large number of taxa and some species that are generally considered nonpathogenic, but can represent a risk in certain conditions, especially for elderly people and immunocompromised individuals. Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, and cellular fatty acid methyl esters (FAME) content is a powerful fingerprinting identification technique. A system based on an unsupervised artificial neural network (ANN) was set up using the fatty acid profiles of standard bacterial strains, obtained by gas-chromatography, used as learning data. We analysed 45 certified strains belonging to Acinetobacter, Aeromonas, Alcaligenes, Aquaspirillum, Arthrobacter, Bacillus, Brevundimonas, Enterobacter, Flavobacterium, Micrococcus, Pseudomonas, Serratia, Shewanella and Vibrio genera. A set of 79 bacteria isolated from a drinking water line (AMGA, the major water supply system in Genoa) were used as an example for identification compared to standard MIDI method. The resulting ANN output map was found to be a very powerful tool to identify these fresh isolates.

Keywords: Cellular fatty acid methyl esters, environmental bacteria, gas-chromatography, unsupervised ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
213 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix-to-Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on Convolutional Neural Networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an Autoencoders-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the Pix-to-Pix GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: Low light image enhancement, deep learning, convolutional neural network, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33
212 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.

Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
211 Designing for Experience-Based Tourism: A Virtual Tour in Tehran

Authors: Maryam Khalili, Fateme Ghanei

Abstract:

As one of the most significant phenomena of industrialized societies, tourism plays a key role in encouraging regional developments and enhancing higher standards of living for local communities in particular. Traveling is a formative experience endowed with lessons on various aspects of life. It allows us learning how to enhance the social position as well as the social relationships. However, people forget the need to travel and gain first-hand experiences as they have to cope with the ever-increasing rate of stress created by the disorders and routines of the urban dwelling style. In this paper, various spaces of such experiences were explored through a virtual tour with two underlying aims: 1) encouraging, informing, and educating the community in terms of tourism development, and 2) introducing a temporary release from the routines. This study enjoyed a practical-qualitative research methodology, and the required data were collected through observation and using a multiple-response questionnaire. The participants (19-48 years old) included 41 citizens of both genders (63.4% male and 36.6% female) from two regions in Tehran, selected by cluster-probability sampling. The results led to development of a spatial design for a virtual tour experience in Tehran where different areas are explored to both raise people’s awareness and educate them on their cultural heritage.

Keywords: Ecotourism, education, gamification, social interaction, urban design, virtual tour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
210 Students- Perception of the Evaluation System in Architecture Studios

Authors: Badiossadat Hassanpour, Nangkula Utaberta, Azami Zaharim, Nurakmal Goh Abdullah

Abstract:

Architecture education was based on apprenticeship models and its nature has not changed much during long period but the Source of changes was its evaluation process and system. It is undeniable that art and architecture education is completely based on transmitting knowledge from instructor to students. In contrast to other majors this transmitting is by iteration and practice and studio masters try to control the design process and improving skills in the form of supervision and criticizing. Also the evaluation will end by giving marks to students- achievements. Therefore the importance of the evaluation and assessment role is obvious and it is not irrelevant to say that if we want to know about the architecture education system, we must first study its assessment procedures. The evolution of these changes in western countries has literate and documented well. However it seems that this procedure has unregarded in Malaysia and there is a severe lack of research and documentation in this area. Malaysia as an under developing and multicultural country which is involved different races and cultures is a proper origin for scrutinizing and understanding the evaluation systems and acceptability amount of current implemented models to keep the evaluation and assessment procedure abreast with needs of different generations, cultures and even genders. This paper attempts to answer the questions of how evaluation and assessments are performed and how students perceive this evaluation system in the context Malaysia. The main advantage of this work is that it contributes in international debate on evaluation model.

Keywords: Architecture, assessment, design studio, learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2878