Search results for: generalized relative coefficient
21 Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece
Authors: K. Vallianou, T. Alexopoulos, V. Plaka, M. K. Seleventi, V. Skanavis, C. Skanavis
Abstract:
The present research addresses the role of place attachment and emotions in community resiliency and recovery within the context of a disaster. Natural disasters represent a disruption in the normal functioning of a community, leading to a general feeling of disorientation. This study draws on the trauma caused by a natural hazard such as a forest fire. The changes of the sense of togetherness are being assessed. Finally this research determines how the place attachment of the inhabitants was affected during the reorientation process of the community. The case study area is Mati, a small coastal town in eastern Attica, Greece. The fire broke out on July 23rd, 2018. A quantitative research was conducted through questionnaires via phone interviews, one year after the disaster, to address community resiliency in the long-run. The sample was composed of 159 participants from the rural community of Mati plus 120 coming from Skyros Island that was used as a control group. Inhabitants were prompted to answer items gauging their emotions related to the event, group identification and emotional significance of their community, and place attachment before and a year after the fire took place. Importantly, the community recovery and reorientation were examined within the context of a relative absence of government backing and official support. Emotions related to the event were aggregated into 4 clusters related to: activation/vigilance, distress/disorientation, indignation, and helplessness. The findings revealed a decrease in the level of place attachment in the impacted area of Mati as compared to the control group of Skyros Island. Importantly, initial distress caused by the fire prompted the residents to identify more with their community and to report more positive feelings toward their community. Moreover, a mediation analysis indicated that the positive effect of community cohesion on place attachment one year after the disaster was mediated by the positive feelings toward the community. Finally, place attachment contributes to enhanced optimism and a more positive perspective concerning Mati’s future prospects. Despite an insufficient state support to this affected area, the findings suggest an important role of emotions and place attachment during the process of recovery. Implications concerning the role of emotions and social dynamics in meshing place attachment during the disaster recovery process as well as community resiliency are discussed.
Keywords: Community resilience, natural disasters, place attachment, wildfire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80720 A Geographical Spatial Analysis on the Benefits of Using Wind Energy in Kuwait
Authors: Obaid AlOtaibi, Salman Hussain
Abstract:
Wind energy is associated with many geographical factors including wind speed, climate change, surface topography, environmental impacts, and several economic factors, most notably the advancement of wind technology and energy prices. It is the fastest-growing and least economically expensive method for generating electricity. Wind energy generation is directly related to the characteristics of spatial wind. Therefore, the feasibility study for the wind energy conversion system is based on the value of the energy obtained relative to the initial investment and the cost of operation and maintenance. In Kuwait, wind energy is an appropriate choice as a source of energy generation. It can be used in groundwater extraction in agricultural areas such as Al-Abdali in the north and Al-Wafra in the south, or in fresh and brackish groundwater fields or remote and isolated locations such as border areas and projects away from conventional power electricity services, to take advantage of alternative energy, reduce pollutants, and reduce energy production costs. The study covers the State of Kuwait with an exception of metropolitan area. Climatic data were attained through the readings of eight distributed monitoring stations affiliated with Kuwait Institute for Scientific Research (KISR). The data were used to assess the daily, monthly, quarterly, and annual available wind energy accessible for utilization. The researchers applied the Suitability Model to analyze the study by using the ArcGIS program. It is a model of spatial analysis that compares more than one location based on grading weights to choose the most suitable one. The study criteria are: the average annual wind speed, land use, topography of land, distance from the main road networks, urban areas. According to the previous criteria, the four proposed locations to establish wind farm projects are selected based on the weights of the degree of suitability (excellent, good, average, and poor). The percentage of areas that represents the most suitable locations with an excellent rank (4) is 8% of Kuwait’s area. It is relatively distributed as follows: Al-Shqaya, Al-Dabdeba, Al-Salmi (5.22%), Al-Abdali (1.22%), Umm al-Hayman (0.70%), North Wafra and Al-Shaqeeq (0.86%). The study recommends to decision-makers to consider the proposed location (No.1), (Al-Shqaya, Al-Dabdaba, and Al-Salmi) as the most suitable location for future development of wind farms in Kuwait, this location is economically feasible.Keywords: Kuwait, renewable energy, spatial analysis, wind energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90419 The Requirements of Developing a Framework for Successful Adoption of Quality Management Systems in the Construction Industry
Authors: Mohammed Ali Ahmed, Vaughan Coffey, Bo Xia
Abstract:
Quality management systems (QMSs) in the construction industry are often implemented to ensure that sufficient effort is made by companies to achieve the required levels of quality for clients. Attainment of these quality levels can result in greater customer satisfaction, which is fundamental to ensure long-term competitiveness for construction companies. However, the construction sector is still lagging behind other industries in terms of its successful adoption of QMSs, due to the relative lack of acceptance of the benefits of these systems among industry stakeholders, as well as from other barriers related to implementing them. Thus, there is a critical need to undertake a detailed and comprehensive exploration of adoption of QMSs in the construction sector. This paper comprehensively investigates in the construction sector setting, the impacts of all the salient factors surrounding successful implementation of QMSs in building organizations, especially those of external factors. This study is part of an ongoing PhD project, which aims to develop a new framework that integrates both internal and external factors affecting QMS implementation. To achieve the paper aim and objectives, interviews will be conducted to define the external factors influencing the adoption of QMSs, and to obtain holistic critical success factors (CSFs) for implementing these systems. In the next stage of data collection, a questionnaire survey will be developed to investigate the prime barriers facing the adoption of QMSs, the CSFs for their implementation, and the external factors affecting the adoption of these systems. Following the survey, case studies will be undertaken to validate and explain in greater detail the real effects of these factors on QMSs adoption. Specifically, this paper evaluates the effects of the external factors in terms of their impact on implementation success within the selected case studies. Using findings drawn from analyzing the data obtained from these various approaches, specific recommendations for the successful implementation of QMSs will be presented, and an operational framework will be developed. Finally, through a focus group, the findings of the study and the new developed framework will be validated. Ultimately, this framework will be made available to the construction industry to facilitate the greater adoption and implementation of QMSs. In addition, deployment of the applicable recommendations suggested by the study will be shared with the construction industry to more effectively help construction companies to implement QMSs, and overcome the barriers experienced by businesses, thus promoting the achievement of higher levels of quality and customer satisfaction.Keywords: Barriers, critical success factors, external factors, internal factors, quality management systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207118 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.
Keywords: Sustainability, constructions ecology, composite structure model, design structure matrix, environmental impact assessment, life cycle analysis, climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143917 Exploratory Tests of Crude Bacteriocins from Autochthonous Lactic Acid Bacteria against Food-Borne Pathogens and Spoilage Bacteria
Authors: M. Naimi, M. B. Khaled
Abstract:
The aim of the present work was to test in vitro inhibition of food pathogens and spoilage bacteria by crude bacteriocins from autochthonous lactic acid bacteria. Thirty autochthonous lactic acid bacteria isolated previously, belonging to the genera: Lactobacillus, Carnobacterium, Lactococcus, Vagococcus, Streptococcus, and Pediococcus, have been screened by an agar spot test and a well diffusion assay against Gram-positive and Gram-negative harmful bacteria: Bacillus cereus, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 6538, and Pseudomonas aeruginosa under conditions means to reduce lactic acid and hydrogen peroxide effect to select bacteria with high bacteriocinogenic potential. Furthermore, crude bacteriocins semiquantification and heat sensitivity to different temperatures (80, 95, 110°C, and 121°C) were performed. Another exploratory test concerning the response of St. aureus ATCC 6538 to the presence of crude bacteriocins was realized. It has been observed by the agar spot test that fifteen candidates were active toward Gram-positive targets strains. The secondary screening demonstrated an antagonistic activity oriented only against St. aureus ATCC 6538, leading to the selection of five isolates: Lm14, Lm21, Lm23, Lm24, and Lm25 with a larger inhibition zone compared to the others. The ANOVA statistical analysis reveals a small variation of repeatability: Lm21: 0.56%, Lm23: 0%, Lm25: 1.67%, Lm14: 1.88%, Lm24: 2.14%. Conversely, slight variation was reported in terms of inhibition diameters: 9.58± 0.40, 9.83± 0.46 and 10.16± 0.24 8.5 ± 0.40 10 mm for, Lm21, Lm23, Lm25, Lm14and Lm24, indicating that the observed potential showed a heterogeneous distribution (BMS = 0.383, WMS = 0.117). The repeatability coefficient calculated displayed 7.35%. As for the bacteriocins semiquantification, the five samples exhibited production amounts about 4.16 for Lm21, Lm23, Lm25 and 2.08 AU/ml for Lm14, Lm24. Concerning the sensitivity the crude bacteriocins were fully insensitive to heat inactivation, until 121°C, they preserved the same inhibition diameter. As to, kinetic of growth , the µmax showed reductions in pathogens load for Lm21, Lm23, Lm25, Lm14, Lm24 of about 42.92%, 84.12%, 88.55%, 54.95%, 29.97% in the second trails. Inversely, this pathogen growth after five hours displayed differences of 79.45%, 12.64%, 11.82%, 87.88%, 85.66% in the second trails, compared to the control. This study showed potential inhibition to the growth of this food pathogen, suggesting the possibility to improve the hygienic food quality.
Keywords: Exploratory test, lactic acid bacteria, crude bacteriocins, spoilage, pathogens.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235416 Use of Cellulosic Fibres in Double Layer Porous Asphalt
Authors: Márcia Afonso, Marisa Dinis-Almeida, Cristina Fael
Abstract:
Climate change, namely precipitation patterns alteration, has led to extreme conditions such as floods and droughts. In turn, excessive construction has led to the waterproofing of the soil, increasing the surface runoff and decreasing the groundwater recharge capacity. The permeable pavements used in areas with low traffic lead to a decrease in the probability of floods peaks occurrence and the sediments reduction and pollutants transport, ensuring rainwater quality improvement. This study aims to evaluate the porous asphalt performance, developed in the laboratory, with addition of cellulosic fibres. One of the main objectives of cellulosic fibres use is to stop binder drainage, preventing its loss during storage and transport. Comparing to the conventional porous asphalt the cellulosic fibres addition improved the porous asphalt performance. The cellulosic fibres allowed the bitumen content increase, enabling retention and better aggregates coating and, consequently, a greater mixture durability. With this solution, it is intended to develop better practices of resilience and adaptation to the extreme climate changes and respond to the sustainability current demands, through the eco-friendly materials use. The mix design was performed for different size aggregates (with fine aggregates – PA1 and with coarse aggregates – PA2). The percentage influence of the fibres to be used was studied. It was observed that overall, the binder drainage decreases as the cellulose fibres percentage increases. It was found that the PA2 mixture obtained most binder drainage relative to PA1 mixture, irrespective of the fibres percentage used. Subsequently, the performance was evaluated through laboratory tests of indirect tensile stiffness modulus, water sensitivity, permeability and permanent deformation. The stiffness modulus for the two mixtures groups (with and without cellulosic fibres) presented very similar values between them. For the water sensitivity test it was observed that porous asphalt containing more fine aggregates are more susceptible to the water presence than mixtures with coarse aggregates. The porous asphalt with coarse aggregates have more air voids which allow water to pass easily leading to ITSR higher values. In the permeability test was observed that asphalt porous without cellulosic fibres presented had lower permeability than asphalt porous with cellulosic fibres. The resistance to permanent deformation results indicates better behaviour of porous asphalt with cellulosic fibres, verifying a bigger rut depth in porous asphalt without cellulosic fibres. In this study, it was observed that porous asphalt with bitumen higher percentages improve the performance to permanent deformation. This fact was only possible due to the bitumen retention by the cellulosic fibres.
Keywords: Binder drainage, cellulosic fibres, permanent deformation, porous asphalt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74715 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.
Keywords: Hardness, powder metallurgy, Spark plasma sintering, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158314 Compliance Modelling and Optimization of Kerf during WEDM of Al7075/SiCP Metal Matrix Composite
Authors: Thella Babu Rao, A. Gopala Krishna
Abstract:
This investigation presents the formulation of kerf (width of slit) and optimal control parameter settings of wire electrochemical discharge machining which results minimum possible kerf while machining Al7075/SiCp MMCs. WEDM is proved its efficiency and effectiveness to cut the hard ceramic reinforced MMCs within the permissible budget. Among the distinct performance measures of WEDM process, kerf is an important performance characteristic which determines the dimensional accuracy of the machined component while producing high precision components. The lack of available of the machinability information such advanced MMCs result the more experimentation in the manufacturing industries. Therefore, extensive experimental investigations are essential to provide the database of effect of various control parameters on the kerf while machining such advanced MMCs in WEDM. Literature reviled the significance some of the electrical parameters which are prominent on kerf for machining distinct conventional materials. However, the significance of reinforced particulate size and volume fraction on kerf is highlighted in this work while machining MMCs along with the machining parameters of pulse-on time, pulse-off time and wire tension. Usually, the dimensional tolerances of machined components are decided at the design stage and a machinist pay attention to produce the required dimensional tolerances by setting appropriate machining control variables. However, it is highly difficult to determine the optimal machining settings for such advanced materials on the shop floor. Therefore, in the view of precision of cut, kerf (cutting width) is considered as the measure of performance for the model. It was found from the literature that, the machining conditions of higher fractions of large size SiCp resulting less kerf where as high values of pulse-on time result in a high kerf. A response surface model is used to predict the relative significance of various control variables on kerf. Consequently, a powerful artificial intelligence called genetic algorithms (GA) is used to determine the best combination of the control variable settings. In the next step the conformation test was conducted for the optimal parameter settings and found good agreement between the GA kerf and measured kerf. Hence, it is clearly reveal that the effectiveness and accuracy of the developed model and program to analyze the kerf and to determine its optimal process parameters. The results obtained in this work states that, the resulted optimized parameters are capable of machining the Al7075/SiCp MMCs more efficiently and with better dimensional accuracy.
Keywords: Al7075SiCP MMC, kerf, WEDM, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202013 Innovative Fabric Integrated Thermal Storage Systems and Applications
Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison
Abstract:
In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.
Keywords: Fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169212 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites
Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li
Abstract:
Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.
Keywords: Sustainable development, fly ash cenosphere, aerogel, lightweight, cement, composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221411 Streamflow Modeling for a Small Watershed Using Limited Hydrological Data
Authors: S. Chuenchooklin
Abstract:
This research was conducted in the Pua Watershed whereas located in the Upper Nan River Basin in Nan province, Thailand. Nan River basin originated in Nan province that comprises of many tributary streams to produce as inflow to the Sirikit dam provided huge reservoir with the storage capacity of 9510 million cubic meters. The common problems of most watersheds were found i.e. shortage water supply for consumption and agriculture utilizations, deteriorate of water quality, flood and landslide including debris flow, and unstable of riverbank. The Pua Watershed is one of several small river basins that flow through the Nan River Basin. The watershed includes 404 km2 representing the Pua District, the Upper Nan Basin, or the whole Nan River Basin, of 61.5%, 18.2% or 1.2% respectively. The Pua River is a main stream producing all year streamflow supplying the Pua District and an inflow to the Upper Nan Basin. Its length approximately 56.3 kilometers with an average slope of the channel by 1.9% measured. A diversion weir namely Pua weir bound the plain and mountainous areas with a very steep slope of the riverbed to 2.9% and drainage area of 149 km2 as upstream watershed while a mild slope of the riverbed to 0.2% found in a river reach of 20.3 km downstream of this weir, which considered as a gauged basin. However, the major branch streams of the Pua River are ungauged catchments namely: Nam Kwang and Nam Koon with the drainage area of 86 and 35 km2 respectively. These upstream watersheds produce runoff through the 3-streams downstream of Pua weir, Jao weir, and Kang weir, with an averaged annual runoff of 578 million cubic meters. They were analyzed using both statistical data at Pua weir and simulated data resulted from the hydrologic modeling system (HEC–HMS) which applied for the remaining ungauged basins. Since the Kwang and Koon catchments were limited with lack of hydrological data included streamflow and rainfall. Therefore, the mathematical modeling: HEC-HMS with the Snyder-s hydrograph synthesized and transposed methods were applied for those areas using calibrated hydrological parameters from the upstream of Pua weir with continuously daily recorded of streamflow and rainfall data during 2008-2011. The results showed that the simulated daily streamflow and sum up as annual runoff in 2008, 2010, and 2011 were fitted with observed annual runoff at Pua weir using the simple linear regression with the satisfied correlation R2 of 0.64, 062, and 0.59, respectively. The sensitivity of simulation results were come from difficulty using calibrated parameters i.e. lag-time, coefficient of peak flow, initial losses, uniform loss rates, and missing some daily observed data. These calibrated parameters were used to apply for the other 2-ungauged catchments and downstream catchments simulated.
Keywords: Streamflow, hydrological model, ungauged catchments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199510 Coastal Vulnerability Index and Its Projection for Odisha Coast, East Coast of India
Authors: Bishnupriya Sahoo, Prasad K. Bhaskaran
Abstract:
Tropical cyclone is one among the worst natural hazards that results in a trail of destruction causing enormous damage to life, property, and coastal infrastructures. In a global perspective, the Indian Ocean is considered as one of the cyclone prone basins in the world. Specifically, the frequency of cyclogenesis in the Bay of Bengal is higher compared to the Arabian Sea. Out of the four maritime states in the East coast of India, Odisha is highly susceptible to tropical cyclone landfall. Historical records clearly decipher the fact that the frequency of cyclones have reduced in this basin. However, in the recent decades, the intensity and size of tropical cyclones have increased. This is a matter of concern as the risk and vulnerability level of Odisha coast exposed to high wind speed and gusts during cyclone landfall have increased. In this context, there is a need to assess and evaluate the severity of coastal risk, area of exposure under risk, and associated vulnerability with a higher dimension in a multi-risk perspective. Changing climate can result in the emergence of a new hazard and vulnerability over a region with differential spatial and socio-economic impact. Hence there is a need to have coastal vulnerability projections in a changing climate scenario. With this motivation, the present study attempts to estimate the destructiveness of tropical cyclones based on Power Dissipation Index (PDI) for those cyclones that made landfall along Odisha coast that exhibits an increasing trend based on historical data. The study also covers the futuristic scenarios of integral coastal vulnerability based on the trends in PDI for the Odisha coast. This study considers 11 essential and important parameters; the cyclone intensity, storm surge, onshore inundation, mean tidal range, continental shelf slope, topo-graphic elevation onshore, rate of shoreline change, maximum wave height, relative sea level rise, rainfall distribution, and coastal geomorphology. The study signifies that over a decadal scale, the coastal vulnerability index (CVI) depends largely on the incremental change in variables such as cyclone intensity, storm surge, and associated inundation. In addition, the study also performs a critical analysis on the modulation of PDI on storm surge and inundation characteristics for the entire coastal belt of Odisha State. Interestingly, the study brings to light that a linear correlation exists between the storm-tide with PDI. The trend analysis of PDI and its projection for coastal Odisha have direct practical applications in effective coastal zone management and vulnerability assessment.
Keywords: Bay of Bengal, coastal vulnerability index, power dissipation index, tropical cyclone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13099 Nature of Cities: Ontological Dimension of the Urban
Authors: Ana Cristina García-Luna Romero
Abstract:
This document seeks to reflect on the urban project from its conceptual identity root. In the first instance, a proposal is made on how the city project is sustained from the conceptual root, from the logos: it opens a way to assimilate the imagination; what we imagine becomes a reality. In this way, firstly, the need to use language as a vehicle for transmitting the stories that sustain us as humanity can be deemed as an important social factor that enables us to social behavior. Secondly, the need to attend to the written language as a mechanism of power, as a means to consolidate a dominant ideology or a political position, is raised; as it served to carry out the modernization project, it is therefore addressed differences between the real and the literate city. Thus, the consolidated urban-architectural project is based on logos, the project, and planning. Considering the importance of materiality and its relation to subjective well-being contextualized from a socio-urban approach, we question ourselves into how we can look at something that is doubtful. From a philosophy perspective, the truth is considered to be nothing more than a matter of correspondence between the observer and the observed. To understand beyond the relative of the gaze, it is necessary to expose different perspectives since it depends on the understanding of what is observed and how it is critically analyzed. Therefore, the analysis of materiality, as a political field, takes a proposal based on this research in the principles in transgenesis: principle of communication, representativeness, security, health, malleability, availability of potentiality or development, conservation, sustainability, economy, harmony, stability, accessibility, justice, legibility, significance, consistency, joint responsibility, connectivity, beauty, among others. The (urban) human being acts because he wants to live in a certain way: in a community, in a fair way, with opportunity for development, with the possibility of managing the environment according to their needs, etc. In order to comply with this principle, it is necessary to design strategies from the principles in transgenesis, which must be named, defined, understood, and socialized by the urban being, the companies, and from themselves. In this way, the technical status of the city in the neoliberal present determines extraordinary conditions for reflecting on an almost emergency scenario created by the impact of cities that, far from being limited to resilient proposals, must aim at the reflection of the urban process that the present social model has generated. Therefore, can we rethink the paradigm of the perception of life quality in the current neoliberal model in the production of the character of public space related to the practices of being urban. What we are trying to do within this document is to build a framework to study under what logic the practices of the social system that make sense of the public space are developed, what the implications of the phenomena of the inscription of action and materialization (and its results over political action between the social and the technical system) are and finally, how we can improve the quality of life of individuals from the urban space.
Keywords: Cities, nature, society, urban quality of life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5668 Poultry Manure and Its Derived Biochar as a Soil Amendment for Newly Reclaimed Sandy Soils under Arid and Semi-Arid Conditions
Authors: W. S. Mohamed, A. A. Hammam
Abstract:
Sandy soils under arid and semi-arid conditions are characterized by poor physical and biochemical properties such as low water retention, rapid organic matter decomposition, low nutrients use efficiency, and limited crop productivity. Addition of organic amendments is crucial to develop soil properties and consequently enhance nutrients use efficiency and lessen organic carbon decomposition. Two years field experiments were developed to investigate the feasibility of using poultry manure and its derived biochar integrated with different levels of N fertilizer as a soil amendment for newly reclaimed sandy soils in Western Desert of El-Minia Governorate, Egypt. Results of this research revealed that poultry manure and its derived biochar addition induced pronounced effects on soil moisture content at saturation point, field capacity (FC) and consequently available water. Data showed that application of poultry manure (PM) or PM-derived biochar (PMB) in combination with inorganic N levels had caused significant changes on a range of the investigated sandy soil biochemical properties including pH, EC, mineral N, dissolved organic carbon (DOC), dissolved organic N (DON) and quotient DOC/DON. Overall, the impact of PMB on soil physical properties was detected to be superior than the impact of PM, regardless the inorganic N levels. In addition, the obtained results showed that PM and PM application had the capacity to stimulate vigorous growth, nutritional status, production levels of wheat and sorghum, and to increase soil organic matter content and N uptake and recovery compared to control. By contrast, comparing between PM and PMB at different levels of inorganic N, the obtained results showed higher relative increases in both grain and straw yields of wheat in plots treated with PM than in those treated with PMB. The interesting feature of this research is that the biochar derived from PM increased treated sandy soil organic carbon (SOC) 1.75 times more than soil treated with PM itself at the end of cropping seasons albeit double-applied amount of PM. This was attributed to the higher carbon stability of biochar treated sandy soils increasing soil persistence for carbon decomposition in comparison with PM labile carbon. It could be concluded that organic manures applied to sandy soils under arid and semi-arid conditions are subjected to high decomposition and mineralization rates through crop seasons. Biochar derived from organic wastes considers as a source of stable carbon and could be very hopeful choice for substituting easily decomposable organic manures under arid conditions. Therefore, sustainable agriculture and productivity in newly reclaimed sandy soils desire one high rate addition of biochar derived from organic manures instead of frequent addition of such organic amendments.
Keywords: Biochar, dissolved organic carbon, N-uptake, poultry, sandy soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9357 Modelling of Groundwater Resources for Al-Najaf City, Iraq
Authors: Hayder H. Kareem, Shunqi Pan
Abstract:
Groundwater is a vital water resource in many areas in the world, particularly in the Middle-East region where the water resources become scarce and depleting. Sustainable management and planning of the groundwater resources become essential and urgent given the impact of the global climate change. In the recent years, numerical models have been widely used to predict the flow pattern and assess the water resources security, as well as the groundwater quality affected by the contaminants transported. In this study, MODFLOW is used to study the current status of groundwater resources and the risk of water resource security in the region centred at Al-Najaf City, which is located in the mid-west of Iraq and adjacent to the Euphrates River. In this study, a conceptual model is built using the geologic and hydrogeologic collected for the region, together with the Digital Elevation Model (DEM) data obtained from the "Global Land Cover Facility" (GLCF) and "United State Geological Survey" (USGS) for the study area. The computer model is also implemented with the distributions of 69 wells in the area with the steady pro-defined hydraulic head along its boundaries. The model is then applied with the recharge rate (from precipitation) of 7.55 mm/year, given from the analysis of the field data in the study area for the period of 1980-2014. The hydraulic conductivity from the measurements at the locations of wells is interpolated for model use. The model is calibrated with the measured hydraulic heads at the locations of 50 of 69 wells in the domain and results show a good agreement. The standard-error-of-estimate (SEE), root-mean-square errors (RMSE), Normalized RMSE and correlation coefficient are 0.297 m, 2.087 m, 6.899% and 0.971 respectively. Sensitivity analysis is also carried out, and it is found that the model is sensitive to recharge, particularly when the rate is greater than (15mm/year). Hydraulic conductivity is found to be another parameter which can affect the results significantly, therefore it requires high quality field data. The results show that there is a general flow pattern from the west to east of the study area, which agrees well with the observations and the gradient of the ground surface. It is found that with the current operational pumping rates of the wells in the area, a dry area is resulted in Al-Najaf City due to the large quantity of groundwater withdrawn. The computed water balance with the current operational pumping quantity shows that the Euphrates River supplies water into the groundwater of approximately 11759 m3/day, instead of gaining water of 11178 m3/day from the groundwater if no pumping from the wells. It is expected that the results obtained from the study can provide important information for the sustainable and effective planning and management of the regional groundwater resources for Al-Najaf City.Keywords: Al-Najaf city, conceptual modelling, groundwater, unconfined aquifer, visual MODFLOW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19246 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas
Authors: Michel Soto Chalhoub
Abstract:
Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.
Keywords: Seismic behavior, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27475 Serological IgG Testing to Diagnose Alimentary Induced Diseases and Monitoring Efficacy of an Individual Defined Diet in Dogs
Authors: Anne-Margré C. Vink
Abstract:
Background. Food-related allergies and intolerances are frequently occurring in dogs. Diagnosis and monitoring according ‘Golden Standard’ of elimination efficiency is, however, time consuming, expensive, and requires expert clinical setting. In order to facilitate rapid and robust, quantitative testing of intolerance, and determining the individual offending foods, a serological test is implicated for Alimentary Induced Diseases and manifestations. Method. As we developed Medisynx IgG Human Screening Test ELISA before and the dog’ immune system is most similar to humans, we were able to develop Medisynx IgG Dog Screening Test ELISA as well. In this randomized, double-blind, split-sample, retro perspective study 47 dogs suffering from Canine Atopic Dermatitis (CAD) and several secondary induced reactions were included to participate in serological Medisynx IgG Dog Screening Test ELISA (within < 0,02 % SD). Results were expressed as titers relative to the standard OD readings to diagnose alimentary induced diseases and monitoring efficacy of an individual eliminating diet in dogs. Split sample analysis was performed by independently sending 2 times 3 ml serum under two unique codes. Results. The veterinarian monitored these dogs to check dog’ results at least at 3, 7, 21, 49, 70 days and after period of 6 and 12 months on an individual negative diet and a positive challenge (retrospectively) at 6 months. Data of each dog were recorded in a screening form and reported that a complete recovery of all clinical manifestations was observed at or less than 70 days (between 50 and 70 days) in the majority of dogs (44 out of 47 dogs =93.6%). Conclusion. Challenge results showed a significant result of 100% in specificity as well as 100% positive predicted value. On the other hand, sensitivity was 95,7% and negative predictive value was 95,7%. In conclusion, an individual diet based on IgG ELISA in dogs provides a significant improvement of atopic dermatitis and pruritus including all other non-specific defined allergic skin reactions as erythema, itching, biting and gnawing at toes, as well as to several secondary manifestations like chronic diarrhoea, chronic constipation, otitis media, obesity, laziness or inactive behaviour, pain and muscular stiffness causing a movement disorders, excessive lacrimation, hyper behaviour, nervous behaviour and not possible to stay alone at home, anxiety, biting and aggressive behaviour and disobedience behaviour. Furthermore, we conclude that a relatively more severe systemic candidiasis, as shown by relatively higher titer (class 3 and 4 IgG reactions to Candida albicans), influence the duration of recovery from clinical manifestations in affected dogs. These findings are consistent with our preliminary human clinical studies.
Keywords: Allergy, canine atopic dermatitis (CAD), food allergens, IgG-ELISA, food-incompatibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29204 Empirical Study on Causes of Project Delays
Authors: Khan Farhan Rafat, Riaz Ahmed
Abstract:
Renowned offshore organizations are drifting towards collaborative exertion to win and implement international projects for business gains. However, devoid of financial constraints, with the availability of skilled professionals, and despite improved project management practices through state-of-the-art tools and techniques, project delays have become a norm these days. This situation calls for exploring the factor(s) affecting the bonding between project management performance and project success. In the context of the well-known 3M’s of project management (that is, manpower, machinery, and materials), machinery and materials are dependent upon manpower. Because the body of knowledge inveterate on the influence of national culture on men, hence, the realization of the impact on the link between project management performance and project success need to be investigated in detail to arrive at the possible cause(s) of project delays. This research initiative was, therefore, undertaken to fill the research gap. The unit of analysis for the proposed research excretion was the individuals who had worked on skyscraper construction projects. In reverent studies, project management is best described using construction examples. It is due to this reason that the project oriented city of Dubai was chosen to reconnoiter on causes of project delays. A structured questionnaire survey was disseminated online with the courtesy of the Project Management Institute local chapter to carry out the cross-sectional study. The Construction Industry Institute, Austin, of the United States of America along with 23 high-rise builders in Dubai were also contacted by email requesting for their contribution to the study and providing them with the online link to the survey questionnaire. The reliability of the instrument was warranted using Cronbach’s alpha coefficient of 0.70. The appropriateness of sampling adequacy and homogeneity in variance was ensured by keeping Kaiser–Meyer–Olkin (KMO) and Bartlett’s test of sphericity in the range ≥ 0.60 and < 0.05, respectively. Factor analysis was used to verify construct validity. During exploratory factor analysis, all items were loaded using a threshold of 0.4. Four hundred and seventeen respondents, including members from top management, project managers, and project staff, contributed to the study. The link between project management performance and project success was significant at 0.01 level (2-tailed), and 0.05 level (2-tailed) for Pearson’s correlation. Before initiating the moderator analysis test for linearity, multicollinearity, outliers, leverage points and influential cases, test for homoscedasticity and normality were carried out which are prerequisites for conducting moderator review. The moderator analysis, using a macro named PROCESS, was performed to verify the hypothesis that national culture has an influence on the said link. The empirical findings, when compared with Hofstede's results, showed high power distance as the cause of construction project delays in Dubai. The research outcome calls for the project sponsors and top management to reshape their project management strategy and allow for low power distance between management and project personnel for timely completion of projects.Keywords: Causes of construction project delays, construction industry, construction management, power distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31243 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation
Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida
Abstract:
Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.
Keywords: Clogging, double layer porous asphalt, infiltration capacity, rainfall intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9672 Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics
Authors: A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones
Abstract:
Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.
Keywords: Auto Rickshaw, finite element analysis, injury risk level, LS-DYNA, pedestrian impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13241 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines
Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri
Abstract:
This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.Keywords: Wind turbines, aeroelasticity, repetitive control, periodic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302