Exploratory Tests of Crude Bacteriocins from Autochthonous Lactic Acid Bacteria against Food-Borne Pathogens and Spoilage Bacteria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Exploratory Tests of Crude Bacteriocins from Autochthonous Lactic Acid Bacteria against Food-Borne Pathogens and Spoilage Bacteria

Authors: M. Naimi, M. B. Khaled

Abstract:

The aim of the present work was to test in vitro inhibition of food pathogens and spoilage bacteria by crude bacteriocins from autochthonous lactic acid bacteria. Thirty autochthonous lactic acid bacteria isolated previously, belonging to the genera: Lactobacillus, Carnobacterium, Lactococcus, Vagococcus, Streptococcus, and Pediococcus, have been screened by an agar spot test and a well diffusion assay against Gram-positive and Gram-negative harmful bacteria: Bacillus cereus, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 6538, and Pseudomonas aeruginosa under conditions means to reduce lactic acid and hydrogen peroxide effect to select bacteria with high bacteriocinogenic potential. Furthermore, crude bacteriocins semiquantification and heat sensitivity to different temperatures (80, 95, 110°C, and 121°C) were performed. Another exploratory test concerning the response of St. aureus ATCC 6538 to the presence of crude bacteriocins was realized. It has been observed by the agar spot test that fifteen candidates were active toward Gram-positive targets strains. The secondary screening demonstrated an antagonistic activity oriented only against St. aureus ATCC 6538, leading to the selection of five isolates: Lm14, Lm21, Lm23, Lm24, and Lm25 with a larger inhibition zone compared to the others. The ANOVA statistical analysis reveals a small variation of repeatability: Lm21: 0.56%, Lm23: 0%, Lm25: 1.67%, Lm14: 1.88%, Lm24: 2.14%. Conversely, slight variation was reported in terms of inhibition diameters: 9.58± 0.40, 9.83± 0.46 and 10.16± 0.24 8.5 ± 0.40 10 mm for, Lm21, Lm23, Lm25, Lm14and Lm24, indicating that the observed potential showed a heterogeneous distribution (BMS = 0.383, WMS = 0.117). The repeatability coefficient calculated displayed 7.35%. As for the bacteriocins semiquantification, the five samples exhibited production amounts about 4.16 for Lm21, Lm23, Lm25 and 2.08 AU/ml for Lm14, Lm24. Concerning the sensitivity the crude bacteriocins were fully insensitive to heat inactivation, until 121°C, they preserved the same inhibition diameter. As to, kinetic of growth , the µmax showed reductions in pathogens load for Lm21, Lm23, Lm25, Lm14, Lm24 of about 42.92%, 84.12%, 88.55%, 54.95%, 29.97% in the second trails. Inversely, this pathogen growth after five hours displayed differences of 79.45%, 12.64%, 11.82%, 87.88%, 85.66% in the second trails, compared to the control. This study showed potential inhibition to the growth of this food pathogen, suggesting the possibility to improve the hygienic food quality.

Keywords: Exploratory test, lactic acid bacteria, crude bacteriocins, spoilage, pathogens.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091106

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352

References:


[1] F.J. Carr, D. Chill, and M. Nino, "The Lactic Acid Bacteria: A Literature Survey”, Critical Reviews in Microbiology, Vol. 28, 2002.
[2] L. Axelsson, "Lactic Acid Bacteria, Classification and Physiology”, in: S. Salminen, W. A. Von, and A. Ouwehand, Lactic Acid Bacteria, Edition. 3, Marcel Dekker, New York, 2004.
[3] M. P. Doyle, and J. Meng, "Bacteria in Food and Beverage Production”, in: M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, and E. Stackebrandt, The Prokaryotes, Edition. 3, Springer, 2006.
[4] T.R. Klaenhammer, T. R. Barrangou, R. Buck, B. L. Azcarate-Peril, and M. A. Altermann, "Genomic Features of Lactic Acid Bacteria Effecting Bioprocessing and Health”, FEMS Microbiol Rev, Vol. 29, 2005.
[5] P. Castellano, C. Belfiore, S. Fadda, and G. Vignolo, "A Review of Bacteriocinogenic Lactic Acid Bacteria Used as Bioprotective Cultures in Fresh Meat Produced in Argentina”, Meat Science, Vol. 79, 2008.
[6] C. Dortu, and P. Thonart, "Les Bactériocines des Bactéries Lactiques: Caractéristiques et Intérêts Pour la Bioconservation des Produits Alimentaires”, Biotechnol. Agron. Soc. Environ. 13, 2009.
[7] C. Charlier, M. Cretenet, S. Even, and Y. Le Loir, "Interactions between Staphylococcus aureus and Lactic Acid Bacteria: An Old Story with New Perspectives”, International Journal of Food Microbiology. 13, 2009 30–39.
[8] F. K Lucke, "Utilization of Microbes to Process and Preserve Meat”, Meat Science, Vol.56, 2000, 105–115.
[9] W. H. Holzapfel, R. Geisen, and U. Schillinger, "Biological Preservation of Foods with Reference to Protective Cultures, Bacteriocins and Food-Grade Enzymes”, International Journal of Food Microbiology. 24, 1995, 343–36.
[10] A. Gálvez, H. Abriouel, R. L. López, and N. Ben Omar, "Bacteriocin-Based Strategies for Food Biopreservation”, International Journal of Food Microbiology. 120, 2007, 51-70.
[11] L. H. Deegana, P. D. Cottera, and C. Hilla, "Bacteriocine Biological Tools for Biopreservation”, International Dairy Journal, Vol.16, 2006, 1058–1071.
[12] M. Hugas, "Bacteriocinogenic Lactic Acid Bacteria for the Biopreservation of Meat and Meat Products”, Meat Science. Vol 49, 1998, 139-150
[13] T.R. Klaenhammer, "Bacteriocins of Lactic Acid Bacteria”, Biochimie, Vol. 70, 1988.
[14] T.R Klaenhammer, "Genetics of Bacteriocins Produced by Lactic Acid Bacteria”, Federation of European Microbiological Societies, Microbiology Reviews, Vol. 12 1993.
[15] T. Abee, L. Krockel, and C. Hill, "Bacteriocins: Modes of Action and Potentials in Food Preservation and Control of Food Poisoning”, International Journal of Food Microbiology, Vol. 28, 1995.
[16] R. Bromberg, I. Moreno, C.L. Zaganini, R.R. Delboni, and J. De Oliveira, "Isolation of Bacteriocin-Producing Lactic Acid Bacteria from Meat and Meat Products and Its Spectrum of Inhibitory Activity”, Brazilian Journal of Microbiology, Vol.35, 2004.
[17] K. Jeevaratnam., M. Jamuna, and A.S. Bawa, "Biological Preservation of Foods–Bacteriocins of Lactic Acid Bacteria”, Indian journal of biotechnology, Vol. 4, 2005.
[18] M. Papagianni, N. Avramidis, G. Filioussis, D. Dasiou, and I. Ambrosiadis, "Determination of Bacteriocin Activity with Bioassays Carried out on Solid and Liquid Substrates: Assessing the Factor "Indicator Microorganism”, Microbial Cell Factories, 2006.
[19] P. M. Moraes, L. M. Perin., M. B. T. Ortolani, A. K. Yamazi, G.N. Viçosa, and L. A. Nero, "Protocols for the Isolation and Detection of Lactic Acid Bacteria with Bacteriocinogenic Potential”, LWT - Food Science and Technology. 43, 2010, 1320-1324.
[20] H. P. Fleming, J. L. Etchells, and R. N. Costilow, "Microbial Inhibition by an Isolate of Pediococcus from Cucumber Brines”, Applied Microbiology. Vol 30 N°6, 1975, 1040-1042.
[21] J. R. Tagg, A. R. Mcgiven, "Assay System for Bacteriocins”, Applied Microbiology. 21, 5, 1971, 943.
[22] V. A. López-Malo, P. Enrique, P. E. Mickey, and M. P. Davidson, "Methods for Activity Assay and Evaluation of Results”, in: M. P. Davidson, J. N. Sofos, and A. L. Branen, Antimicrobials in food, 2005, Third Edition, CRC Press : 659- 680.
[23] G. F. De-valdez, Maintenance of Lactic Acid Bacteria, in: J.F.T. Spencer, and A.L.R. Spencer. Food Microbiology protocols, Humana Press, 2001.
[24] A. Badis, N. Laouabdia-Sellami, D. Guetarni, M. Kihal, and R. Ouzrout, "Caracterisation Phenotypique des Bacteries Lactiques Isolees à Partir de lait cru de Chèvre de deux Populations Caprines locales "arabia et kabyle”, Sciences et Technologie, Vol. 23, 2005.
[25] S. Chaskes, "Stains for Light Microscopy”, in: E. Goldman, L. H. Green, Pratical Handbook of Microbiology, 2009, Second Edition, CRC Press: 37-51.
[26] J. P. Larpent, "Microbiologie des viandes”, in: J. P.K. Larpent, Microbiologie Alimentaire, Technique de Laboratoire, Lavoisier, Paris, 1997, 860-870.
[27] J. R. Tagg, A. S. Dajani, and L. W. Wannamaker, "Bacteriocins of Gram-Positive Bacteria”, Bacteuological reviews. Vol 40 N°3, 1976, 722-756.
[28] M. D. E. Roe-Carpenter, "Anaerobe Antimicrobial Susceptibility Testing”, in: R. Schwalbe, S. M. Lynn, and C. G. Avery, Antimicrobial Susceptibility Testing Protocols, CRC Press, 2007. M. C. Domínguez, M. De-La-Rosa, and M. V. Borobioa, "Application of a Spectrophotometric Method for the Determination of Post-Antibiotic Effect and Comparison with Viable Counts Agar”, Journal of Antimicrobial Chemotherapy, Vol. 47, 2001.
[29] U. Schillinger, and F. K. Lücke, "Antibacterial Activity of Lactobacillus sake Isolated from Meat”, applied and environmental Microbiology, Vol. 55, 1989.
[30] R. J. Jones, H. M. Hussein, M. Zagorec, G. Brightwell, and J. R Tagg, "Isolation of Lactic Acid Bacteria with Inhibitory Activity against Pathogens and Spoilage Organisms Associated with Fresh Meat”, Food Microbiology, Vol. 25, 2008.
[31] L .J. Harris, M. A. Daeschel, M. E. Stiles, and T. R. Klaenhammer, "Antimicrobial Activity of Lactic Acid Bacteria against Listeria monocytogenes”, Journal of food protection, Vol. 52, 1989.
[32] A. Ayr-Hartinag, A. J. Hedges, and R. C. W. Berkeley, "Methods for Studying Bacteriocins”, in: J. R. Norris, and D. W. Ribbons, Methods in Microbiology, Vol. 7A, Academic Press, London, 1972.
[33] S. A. Cuozzo, J. M. Sesma Fernando, A. A. Holgado, R. Pesce, and R. R. Raya, "Methods for the Detection and Concentration of Bacteriocins Produced by Lactic Acid Bacteria”, in: F. T. S. John, and L. R. S. Alicia, Food Microbiology Protocols, Humana Press, 2001.
[34] A. Delgado, D. Brito, P. Fevereiro, R. Tenreiro, and C. Peres, "Bioactivity Quantification of Crude Bacteriocin Solutions”, Journal of Microbiological Methods, Vol. 62, 2005.
[35] P. Dalgaard, T. R. B. L. Kamperman, K. Neumeyer, and T. A. Mcmeekin, "Estimation of Bacterial Growth Rates from Turbidimetric and Viable Count Data”, International Journal of Food Microbiology. 23, 1994, 391-404.
[36] OriginLab© Pro 8 SRO V. 8.0724 (B724).
[37] A.L.M. Vigil, E. Palou, M.E. Parish, and D.P. Michael, "Methods for Activity Assay and Evaluation of Results”, in: D.P. Michael, J.N. Sofos, and A.L. Branen, Antimicrobials in Food, Edition. 3, CRC Press, 2005.
[38] E. C. P. De-Martinis, and F .Z. Freitas, "Screening of Lactic Acid Bacteria from Brazilian Meats for Bacteriocin Formation”, Food Control, Vol. 14, 2003.
[39] L. Topisirovic, M. Kojic, D. Fira, N. Golic, I. Strahinic, and J. Lozo, "Potential of Lactic Acid Bacteria Isolated from Specific Natural Niches in Food Production and Preservation”, International Journal of Food Microbiology, Vol. 112, 2006.
[40] M. E. Stiles, "Potential for Biological Control of Agents of Foodborne Disease”, Food Research International, Vol. 27, 1994.
[41] S. Aly, C. A. T. Ouattara, I.H. N. Bassole, and S. A. Ttraore, "Bacteriocins and Lactic Acid Bacteria”, African Journal of Biotechnology, Vol. 5, 2006.
[42] J. Monod, "The Growth of Bacterial Cultures”. Annual Reviews. Institutpasteur, Paris, France
[43] S. Brown, "Tow Implication of Common Model of Microbial Growth”, Anziam J. 49, 2007, 230-242.
[44] M. Sanaa, "Microbiologie Previsionnelle: Principaux Modeles de Croissance utilises en Appreciation Quantitative des risques”, Epidémiol. et santé anim. 41, 2002, 169-177.
[45] E. Skytta, W. Hereijgers, and T. Mattila-Sandholm, "Broad Spectrum Antibacterial Activity of Pediococcus damnosus and Pediococcus pentosaceus in Ground Meat”, Food Microb, 8, 1991, 231–237.