Search results for: Renewal function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2178

Search results for: Renewal function

198 A Perceptually Optimized Wavelet Embedded Zero Tree Image Coder

Authors: A. Bajit, M. Nahid, A. Tamtaoui, E. H. Bouyakhf

Abstract:

In this paper, we propose a Perceptually Optimized Embedded ZeroTree Image Coder (POEZIC) that introduces a perceptual weighting to wavelet transform coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to the coding quality obtained using the SPIHT algorithm only. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEZIC quality assessment. Our POEZIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) luminance masking and Contrast masking, 2) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting, 3) the Wavelet Error Sensitivity WES used to reduce the perceptual quantization errors. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.

Keywords: DWT, linear-phase 9/7 filter, 9/7 Wavelets Error Sensitivity WES, CSF implementation approaches, JND Just Noticeable Difference, Luminance masking, Contrast masking, standard SPIHT, Objective Quality Measure, Probability Score PS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
197 Time Effective Structural Frequency Response Testing with Oblique Impact

Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi

Abstract:

Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.

Keywords: Frequency response function, impact testing, modal analysis, oblique angle, oblique impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932
196 Compressed Adobe Technology Analyses as Local Sustainable Materials for Retrofitting against Earthquake Approaching India Experiences

Authors: Leila Kazemi, Akram Pourmohammad, Zargham OstadiAsl, Maryam Jahandideh, Ahadollah Azami

Abstract:

Due to its geographical location, Iran is considered one of the earthquake-prone areas where the best way to decrease earthquake effects is supposed to be strengthening the buildings. Even though, one idea suggests that the use of adobe in constructing buildings be prohibited for its weak function especially in earthquake-prone areas, however, regarding ecological considerations, sustainability and other local skills, another idea pays special attention to adobe as one of the construction technologies which is popular among people. From the architectural and technological point of view, as strong sustainable building construction materials, compressed adobe construction materials make most of the construction in urban or rural areas ranging from small to big industrial buildings used to replace common earth blocks in traditional systems and strengthen traditional adobe buildings especially against earthquake. Mentioning efficient construction using compressed adobe system as a reliable replacement for traditional soil construction materials , this article focuses on the experiences of India in the fields of sustainable development of compressed adobe systems in the form of system in which the compressed soil is combined with cement, load bearing building with brick/solid concrete block system, brick system using rat trap bond, metal system with adobe infill and finally emphasizes on the use of these systems in the earthquake-struck city of Bam in Iran.

Keywords: Local Materials, Compressed Earth Blocks, Sustainable Construction, Retrofitting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
195 Investigations of Metals and Metal-Antibrowning Agents Effects on Polyphenol Oxidase Activity from Red Poppy Leaf

Authors: G. Arabaci

Abstract:

Heavy metals are one of the major groups of contaminants in the environment and many of them are toxic even at very low concentration in plants and animals. However, some metals play important roles in the biological function of many enzymes in living organisms. Metals such as zinc, iron, and cooper are important for survival and activity of enzymes in plants, however heavy metals can inhibit enzyme which is responsible for defense system of plants. Polyphenol oxidase (PPO) is a copper-containing metalloenzyme which is responsible for enzymatic browning reaction of plants. Enzymatic browning is a major problem for the handling of vegetables and fruits in food industry. It can be increased and effected with many different futures such as metals in the nature and ground. In the present work, PPO was isolated and characterized from green leaves of red poppy plant (Papaverr hoeas). Then, the effect of some known antibrowning agents which can form complexes with metals and metals were investigated on the red poppy PPO activity. The results showed that glutathione was the most potent inhibitory effect on PPO activity. Cu(II) and Fe(II) metals increased the enzyme activities however, Sn(II) had the maximum inhibitory effect and Zn(II) and Pb(II) had no significant effect on the enzyme activity. In order to reduce the effect of heavy metals, the effects of metal-antibrowning agent complexes on the PPO activity were determined. EDTA and metal complexes had no significant effect on the enzyme. L-ascorbic acid and metal complexes decreased but L-ascorbic acid-Cu(II)-complex had no effect. Glutathione–metal complexes had the best inhibitory effect on Red poppy leaf PPO activity.

Keywords: Inhibition, metal, red poppy, Polyphenol oxidase (PPO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3463
194 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies

Authors: Sambit Prasad Kar, P.Palanisamy

Abstract:

In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.

Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
193 Effect of Architecture and Operating Conditions of Vehicle on Bulb Lifetime in Automotive

Authors: Hatice Özbek, Caner Çil, Ahmet Rodoplu

Abstract:

Automotive lighting is the leading function in the configuration of vehicle architecture. Especially headlights and taillights from external lighting functions are among the structures that determine the stylistic character of the vehicle. At the same time, the fact that lighting functions are related to many other functions brings along difficulties in design. Customers expect maximum quality from the vehicle. In these circumstances, it is necessary to make designs that aim to keep the performance of bulbs with limited working lives at the highest level. With this study, the factors that influence the working lives of filament lamps were examined and bulb explosions that can occur sooner than anticipated in the future were prevented while the vehicle was still in the design phase by determining the relations with electrical, dynamical and static variables. Especially the filaments of the bulbs used in the front lighting of the vehicle are deformed in a shorter time due to the high voltage requirement. In addition to this, rear lighting lamps vibrate as a result of the tailgate opening and closing and cause the filaments to be exposed to high stress. With this study, the findings that cause bulb explosions were evaluated. Among the most important findings: 1. The structure of the cables to the lighting functions of the vehicle and the effect of the voltage values are drawn; 2. The effect of the vibration to bulb throughout the life of the vehicle; 3 The effect of the loads carried to bulb while the vehicle doors are opened and closed. At the end of the study, the maximum performance was established in the bulb lifetimes with the optimum changes made in the vehicle architecture based on the findings obtained.

Keywords: Vehicle architecture, automotive lighting functions, filament lamps, bulb lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
192 Roundabout Optimal Entry and Circulating Flow Induced by Road Hump

Authors: Amir Hossein Pakshir, A. Hossein Pour, N. Jahandar, Ali Paydar

Abstract:

Roundabout work on the principle of circulation and entry flows, where the maximum entry flow rates depend largely on circulating flow bearing in mind that entry flows must give away to circulating flows. Where an existing roundabout has a road hump installed at the entry arm, it can be hypothesized that the kinematics of vehicles may prevent the entry arm from achieving optimum performance. Road humps are traffic calming devices placed across road width solely as speed reduction mechanism. They are the preferred traffic calming option in Malaysia and often used on single and dual carriageway local routes. The speed limit on local routes is 30mph (50 km/hr). Road humps in their various forms achieved the biggest mean speed reduction (based on a mean speed before traffic calming of 30mph) of up to 10mph or 16 km/hr according to the UK Department of Transport. The underlying aim of reduced speed should be to achieve a 'safe' distribution of speeds which reflects the function of the road and the impacts on the local community. Constraining safe distribution of speeds may lead to poor drivers timing and delayed reflex reaction that can probably cause accident. Previous studies on road hump impact have focused mainly on speed reduction, traffic volume, noise and vibrations, discomfort and delay from the use of road humps. The paper is aimed at optimal entry and circulating flow induced by road humps. Results show that roundabout entry and circulating flow perform better in circumstances where there is no road hump at entrance.

Keywords: Road hump, Roundabout, Speed Reduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3017
191 Comparison of Different Gas Turbine Inlet Air Cooling Methods

Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli

Abstract:

Gas turbine air inlet cooling is a useful method for increasing output for regions where significant power demand and highest electricity prices occur during the warm months. Inlet air cooling increases the power output by taking advantage of the gas turbine-s feature of higher mass flow rate when the compressor inlet temperature decreases. Different methods are available for reducing gas turbine inlet temperature. There are two basic systems currently available for inlet cooling. The first and most cost-effective system is evaporative cooling. Evaporative coolers make use of the evaporation of water to reduce the gas turbine-s inlet air temperature. The second system employs various ways to chill the inlet air. In this method, the cooling medium flows through a heat exchanger located in the inlet duct to remove heat from the inlet air. However, the evaporative cooling is limited by wet-bulb temperature while the chilling can cool the inlet air to temperatures that are lower than the wet bulb temperature. In the present work, a thermodynamic model of a gas turbine is built to calculate heat rate, power output and thermal efficiency at different inlet air temperature conditions. Computational results are compared with ISO conditions herein called "base-case". Therefore, the two cooling methods are implemented and solved for different inlet conditions (inlet temperature and relative humidity). Evaporative cooler and absorption chiller systems results show that when the ambient temperature is extremely high with low relative humidity (requiring a large temperature reduction) the chiller is the more suitable cooling solution. The net increment in the power output as a function of the temperature decrease for each cooling method is also obtained.

Keywords: Absorption chiller, evaporative cooling, gas turbine, turbine inlet cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7552
190 A Study on Architectural Characteristics‎ of Traditional Iranian Ordinary Houses in Mashhad, Iran

Authors: Rana Daneshvar Salehi

Abstract:

In many Iranian cities including ‎‎Mashhad‎, the capital of ‎‎‎‎Razavi Khorasan Province‎, ‎ordinary samples of domestic architecture ‎on a ‎small scale is not ‎‎‎considered as ‎heritage. ‎While the ‎principals of house formation are ‎‎respected in all ‎‎traditional Iranian ‎‎‎‎houses‎; ‎from moderate to great ones. During the past decade, Mashhad has lost its identity, and has become a modern city. Identifying it as the capital of the Islamic Culture in 2017 by ISESCO and consequently looking for new developments and transfiguration caused to demolish a large ‎number ‎of ‎traditional modest habitation. ‎For this ‎reason, the present paper aims to introduce ‎the three ‎undiscovered houses with the ‎historical and monumental values located in the ‎oldest ‎neighborhoods of Mashhad which have been neglected in the cultural ‎heritage field. The preliminary phase of this approach will be a measured survey to identify the significant characteristics ‎of ‎selected dwellings and understand the challenges through focusing on building ‎form, orientation, ‎‎room function, space proportion and ornamental elements’ details. A comparison between the ‎‎case studies and the wealthy domestically buildings ‎presents that a house belongs to inhabitants ‎with an average income could introduce the same accurate, regular, harmonic and proportionate ‎design which can be found in the great mansions. It reveals that an ordinary traditional house can ‎be regarded as valuable construction not only for its historical characteristics but also ‎for its ‎aesthetical and architectural features that could avoid further destructions in the future.

Keywords: Traditional ordinary house, architectural characteristic, proportion, heritage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
189 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: Dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
188 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates

Authors: Qiong He, S. Thomas Ng

Abstract:

Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.

Keywords: Overhang, energy analysis, computer-based simulation, high-rise residential building, mutual shading, climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
187 Evaluation of Residual Stresses in Human Face as a Function of Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Keywords: Finite element method, growth, residual stress, soft tissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
186 Fast Factored DCT-LMS Speech Enhancement for Performance Enhancement of Digital Hearing Aid

Authors: Sunitha. S.L., V. Udayashankara

Abstract:

Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Cosine Transform Power Normalized Least Mean Square algorithm to improve the SNR and to reduce the convergence rate of the LMS for Sensory neural loss patients. Since it requires only real arithmetic, it establishes the faster convergence rate as compare to time domain LMS and also this transformation improves the eigenvalue distribution of the input autocorrelation matrix of the LMS filter. The DCT has good ortho-normal, separable, and energy compaction property. Although the DCT does not separate frequencies, it is a powerful signal decorrelator. It is a real valued function and thus can be effectively used in real-time operation. The advantages of DCT-LMS as compared to standard LMS algorithm are shown via SNR and eigenvalue ratio computations. . Exploiting the symmetry of the basis functions, the DCT transform matrix [AN] can be factored into a series of ±1 butterflies and rotation angles. This factorization results in one of the fastest DCT implementation. There are different ways to obtain factorizations. This work uses the fast factored DCT algorithm developed by Chen and company. The computer simulations results show superior convergence characteristics of the proposed algorithm by improving the SNR at least 10 dB for input SNR less than and equal to 0 dB, faster convergence speed and better time and frequency characteristics.

Keywords: Hearing Impairment, DCT Adaptive filter, Sensorineural loss patients, Convergence rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
185 The Effect of Deformation Activation Volume, Strain Rate Sensitivity and Processing Temperature of Grain Size Variants

Authors: P. B. Sob, A. A. Alugongo, T. B. Tengen

Abstract:

The activation volume of 6082T6 aluminum is investigated at different temperatures for grain size variants. The deformation activation volume was computed on the basis of the relationship between the Boltzmann’s constant k, the testing temperatures, the material strain rate sensitivity and the material yield stress grain size variants. The material strain rate sensitivity is computed as a function of yield stress and strain rate grain size variants. The effect of the material strain rate sensitivity and the deformation activation volume of 6082T6 aluminum at different temperatures of 3-D grain are discussed. It is shown that the strain rate sensitivities and activation volume are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the activation volume vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results it is shown that the variation of activation volume increase and decrease with the testing temperature. It was revealed that, increase in strain rate sensitivity led to decrease in activation volume whereas increase in activation volume led to decrease in strain rate sensitivity.

Keywords: Nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity, activation volume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602
184 Regional Analysis of Streamflow Drought: A Case Study for Southwestern Iran

Authors: M. Byzedi, B. Saghafian

Abstract:

Droughts are complex, natural hazards that, to a varying degree, affect some parts of the world every year. The range of drought impacts is related to drought occurring in different stages of the hydrological cycle and usually different types of droughts, such as meteorological, agricultural, hydrological, and socioeconomical are distinguished. Streamflow drought was analyzed by the method of truncation level (at 70% level) on daily discharges measured in 54 hydrometric stations in southwestern Iran. Frequency analysis was carried out for annual maximum series (AMS) of drought deficit volume and duration series. Some factors including physiographic, climatic, geologic, and vegetation cover were studied as influential factors in the regional analysis. According to the results of factor analysis, six most effective factors were identified as area, rainfall from December to February, the percent of area with Normalized Difference Vegetation Index (NDVI) <0.1, the percent of convex area, drainage density and the minimum of watershed elevation that explained 90.9% of variance. The homogenous regions were determined by cluster analysis and discriminate function analysis. Suitable multivariate regression models were evaluated for streamflow drought deficit volume with 2 years return period. The significance level of regression models was 0.01. The results showed that the watershed area is the most effective factor with high correlation with deficit volume. Also, drought duration was not a suitable drought index for regional analysis.

Keywords: Iran, Streamflow drought, truncation level method, regional analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
183 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies  the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584
182 An Advanced Stereo Vision Based Obstacle Detection with a Robust Shadow Removal Technique

Authors: Saeid Fazli, Hajar Mohammadi D., Payman Moallem

Abstract:

This paper presents a robust method to detect obstacles in stereo images using shadow removal technique and color information. Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. The proposed advanced method is divided into three phases, the first phase is detecting obstacles and removing shadows, the second one is matching and the last phase is depth computing. We propose a robust method for detecting obstacles in stereo images using a shadow removal technique based on color information in HIS space, at the first phase. In this paper we use Normalized Cross Correlation (NCC) function matching with a 5 × 5 window and prepare an empty matching table τ and start growing disparity components by drawing a seed s from S which is computed using canny edge detector, and adding it to τ. In this way we achieve higher performance than the previous works [2,17]. A fast stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. The obstacle identified in phase one which appears in the disparity map of phase two enters to the third phase of depth computing. Finally, experimental results are presented to show the effectiveness of the proposed method.

Keywords: obstacle detection, stereo vision, shadowremoval, color, stereo matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
181 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri

Abstract:

This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.

Keywords: Wind turbines, aeroelasticity, repetitive control, periodic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
180 On the Design of Shape Memory Alloy Locking Mechanism: A Novel Solution for Laparoscopic Ligation Process

Authors: Reza Yousefian, Michael A. Kia, Mehrdad Hosseini Zadeh

Abstract:

The blood ducts must be occluded to avoid loss of blood from vessels in laparoscopic surgeries. This paper presents a locking mechanism to be used in a ligation laparoscopic procedure (LigLAP I), as an alternative solution for a stapling procedure. Currently, stapling devices are being used to occlude vessels. Using these devices may result in some problems, including injury of bile duct, taking up a great deal of space behind the vessel, and bile leak. In this new procedure, a two-layer suture occludes a vessel. A locking mechanism is also required to hold the suture. Since there is a limited space at the device tip, a Shape Memory Alloy (SMA) actuator is used in this mechanism. Suitability for cleanroom applications, small size, and silent performance are among the advantages of SMA actuators in biomedical applications. An experimental study is conducted to examine the function of the locking mechanism. To set up the experiment, a prototype of a locking mechanism is built using nitinol, which is a nickel-titanium shape memory alloy. The locking mechanism successfully locks a polymer suture for all runs of the experiment. In addition, the effects of various surface materials on the applied pulling forces are studied. Various materials are mounted at the mechanism tip to compare the maximum pulling forces applied to the suture for each material. The results show that the various surface materials on the device tip provide large differences in the applied pulling forces.

Keywords: Laparoscopic surgery, ligation process, locking mechanism, Shape Memory Alloy (SMA) actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437
179 Ventilation Efficiency in the Subway Environment for the Indoor Air Quality

Authors: Kyung Jin Ryu, MakhsudaJuraeva, Sang-Hyun Jeongand Dong Joo Song

Abstract:

Clean air in subway station is important to passengers. The Platform Screen Doors (PSDs) can improve indoor air quality in the subway station; however the air quality in the subway tunnel is degraded. The subway tunnel has high CO2 concentration and indoor particulate matter (PM) value. The Indoor Air Quality (IAQ) level in subway environment degrades by increasing the frequency of the train operation and the number of the train. The ventilation systems of the subway tunnel need improvements to have better air-quality. Numerical analyses might be effective tools to analyze the performance of subway twin-track tunnel ventilation systems. An existing subway twin-track tunnel in the metropolitan Seoul subway system is chosen for the numerical simulations. The ANSYS CFX software is used for unsteady computations of the airflow inside the twin-track tunnel when the train moves. The airflow inside the tunnel is simulated when one train runs and two trains run at the same time in the tunnel. The piston-effect inside the tunnel is analyzed when all shafts function as the natural ventilation shaft. The supplied air through the shafts is mixed with the pollutant air in the tunnel. The pollutant air is exhausted by the mechanical ventilation shafts. The supplied and discharged airs are balanced when only one train runs in the twin-track tunnel. The pollutant air in the tunnel is high when two trains run simultaneously in opposite direction and all shafts functioned as the natural shaft cases when there are no electrical power supplies in the shafts. The remained pollutant air inside the tunnel enters into the station platform when the doors are opened.

Keywords: indoor air quality, subway twin-track tunnel, train-induced wind

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4343
178 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
177 Digital Automatic Gain Control Integrated on WLAN Platform

Authors: Emilija Miletic, Milos Krstic, Maxim Piz, Michael Methfessel

Abstract:

In this work we present a solution for DAGC (Digital Automatic Gain Control) in WLAN receivers compatible to IEEE 802.11a/g standard. Those standards define communication in 5/2.4 GHz band using Orthogonal Frequency Division Multiplexing OFDM modulation scheme. WLAN Transceiver that we have used enables gain control over Low Noise Amplifier (LNA) and a Variable Gain Amplifier (VGA). The control over those signals is performed in our digital baseband processor using dedicated hardware block DAGC. DAGC in this process is used to automatically control the VGA and LNA in order to achieve better signal-to-noise ratio, decrease FER (Frame Error Rate) and hold the average power of the baseband signal close to the desired set point. DAGC function in baseband processor is done in few steps: measuring power levels of baseband samples of an RF signal,accumulating the differences between the measured power level and actual gain setting, adjusting a gain factor of the accumulation, and applying the adjusted gain factor the baseband values. Based on the measurement results of RSSI signal dependence to input power we have concluded that this digital AGC can be implemented applying the simple linearization of the RSSI. This solution is very simple but also effective and reduces complexity and power consumption of the DAGC. This DAGC is implemented and tested both in FPGA and in ASIC as a part of our WLAN baseband processor. Finally, we have integrated this circuit in a compact WLAN PCMCIA board based on MAC and baseband ASIC chips designed from us.

Keywords: WLAN, AGC, RSSI, baseband processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3949
176 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations

Authors: A. Javed, K. Djidjeli, J. T. Xing

Abstract:

The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.

Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830
175 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
174 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: Composite material, crashworthiness, finite element analysis, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
173 Judicial Review of Indonesia's Position as the First Archipelagic State to implement the Traffic Separation Scheme to Establish Maritime Safety and Security

Authors: Rosmini Yanti, Safira Aviolita, Marsetio

Abstract:

Indonesia has several straits that are very important as a shipping lane, including the Sunda Strait and the Lombok Strait, which are the part of the Indonesian Archipelagic Sea Lane (IASL). An increase in traffic on the Marine Archipelago makes the task of monitoring sea routes increasingly difficult. Indonesia has proposed the establishment of a Traffic Separation Scheme (TSS) in the Sunda Strait and the Lombok Strait and the country now has the right to be able to conceptualize the TSS as well as the obligation to regulate it. Indonesia has the right to maintain national safety and sovereignty. In setting the TSS, Indonesia needs to issue national regulations that are in accordance with international law and the general provisions of the IMO (International Maritime Organization) can then be used as guidelines for maritime safety and security in the Sunda Strait and the Lombok Strait. The research method used is a qualitative method with the concept of linguistic and visual data collection. The source of the data is the analysis of documents and regulations. The results show that the determination of TSS was justified by International Law, in accordance with article 22, article 41, and article 53 of the United Nations Convention on the Law of the Sea (UNCLOS) 1982. The determination of TSS by the Indonesian government would be in accordance with COLREG (International Convention on Preventing Collisions at Sea) 10, which has been designed to follow IASL. Thus, TSS can provide a function as a safety and monitoring medium to minimize ship accidents or collisions, including the warship and aircraft of other countries that cross the IASL.

Keywords: Archipelago State, maritime law, maritime security, traffic separation scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
172 On the Mathematical Structure and Algorithmic Implementation of Biochemical Network Models

Authors: Paola Lecca

Abstract:

Modeling and simulation of biochemical reactions is of great interest in the context of system biology. The central dogma of this re-emerging area states that it is system dynamics and organizing principles of complex biological phenomena that give rise to functioning and function of cells. Cell functions, such as growth, division, differentiation and apoptosis are temporal processes, that can be understood if they are treated as dynamic systems. System biology focuses on an understanding of functional activity from a system-wide perspective and, consequently, it is defined by two hey questions: (i) how do the components within a cell interact, so as to bring about its structure and functioning? (ii) How do cells interact, so as to develop and maintain higher levels of organization and functions? In recent years, wet-lab biologists embraced mathematical modeling and simulation as two essential means toward answering the above questions. The credo of dynamics system theory is that the behavior of a biological system is given by the temporal evolution of its state. Our understanding of the time behavior of a biological system can be measured by the extent to which a simulation mimics the real behavior of that system. Deviations of a simulation indicate either limitations or errors in our knowledge. The aim of this paper is to summarize and review the main conceptual frameworks in which models of biochemical networks can be developed. In particular, we review the stochastic molecular modelling approaches, by reporting the principal conceptualizations suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D. T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O. Wolkenhauer, P. S. Jöberg and by the author.

Keywords: Mathematical structure, algorithmic implementation, biochemical network models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
171 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: Dam, failure, limit-state, Monte Carlo simulation, reliability, probability, simulation, sliding, Taylor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
170 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant Kumar Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986 and 0.9214 respectively at HHpolarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373 and 0.9428 respectively.

Keywords: Bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
169 Implication and Genetic Variations on Lipid Profile of the Fasting Respondent

Authors: Rohayu Izanwati M. R., Muhamad Ridhwan M. R., Abbe Maleyki M. J., Ahmad Zubaidi A. L., Zahri M. K.

Abstract:

PPARs function as regulators of lipid and lipoprotein metabolism. The aim of the study was to compare the lipid profile between two phases of fasting and to examine the frequency and relationship of peroxisome proliferator-activated receptor, PPARα gene polymorphisms to lipid profile in fasting respondents. We conducted a case-control study protocol, which included 21 healthy volunteers without gender discrimination at the age of 18 years old. 3 ml of blood sample was drawn before the fasting phase and during the fasting phase (in Ramadhan month). 1ml of serum for the lipid profile was analyzed by using the automated chemistry analyser (Olympus, AU 400) and the data were analysed using the Paired T-Test (SPSS ver.20). DNA was extracted and PCR was conducted utilising 6 sets of primer. Primers were designed within 6 exons of interest in PPARα gene. Genetic and metabolic characteristics of fasting respondents and controls were estimated and compared. Fasting respondents were significantly have lowered the LDL levels (p=0.03). There were no polymorphisms detected except in exon 1 with 5% of this population study respectively. The polymorphisms in exon 1 of the PPARα gene were found in low frequency. Regarding the 1375G/T and 1386G/T polymorphisms in the exon 1 of the PPARα gene, the T-allele in fasting phase had no association with the decreased LDL levels (Fisher Exact Test). However this association is more promising when the sample size is larger in order to elucidate the precise impact of the polymorphisms on lipid profile in the population. In conclusion, the PPARα gene polymorphisms do not appear to affect the LDL of fasting respondents.

Keywords: Fasting, LDL, Peroxisome proliferator activated receptor alpha (PPAR-α), Polymorphisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646