Search results for: decision regions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2140

Search results for: decision regions

190 Developing a Model for the Relation between Heritage and Place Identity

Authors: A. Arjomand Kermani, N. Charbgoo, M. Alalhesabi

Abstract:

In the situation of great acceleration of changes and the need for new developments in the cities on one hand and conservation and regeneration approaches on the other hand, place identity and its relation with heritage context have taken on new importance. This relation is generally mutual and complex one. The significant point in this relation is that the process of identifying something as heritage rather than just historical  phenomena, brings that which may be inherited into the realm of identity. In planning and urban design as well as environmental psychology and phenomenology domain, place identity and its attributes and components were studied and discussed. However, the relation between physical environment (especially heritage) and identity has been neglected in the planning literature. This article aims to review the knowledge on this field and develop a model on the influence and relation of these two major concepts (heritage and identity). To build this conceptual model, we draw on available literature in environmental psychology as well as planning on place identity and heritage environment using a descriptive-analytical methodology to understand how they can inform the planning strategies and governance policies. A cross-disciplinary analysis is essential to understand the nature of place identity and heritage context and develop a more holistic model of their relationship in order to be employed in planning process and decision making. Moreover, this broader and more holistic perspective would enable both social scientists and planners to learn from one another’s expertise for a fuller understanding of community dynamics. The result indicates that a combination of these perspectives can provide a richer understanding—not only of how planning impacts our experience of place, but also how place identity can impact community planning and development.

Keywords: heritage, Inter-disciplinary study, Place identity, planning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
189 Development of Entrepreneurship in Industry on the Basis of Regulation of Transnational Production Chains in the Russian Arctic

Authors: E. N. Vetrova, L.V. Lapochkina, N. V. Nikulina

Abstract:

In the national economy, entrepreneurship plays the role of a buffer between economy and policy for it contributes to improving budget effectiveness and decreasing dependence of economy on the state. Entrepreneurship in industry makes it possible to increase the added value that is formed in production chains and to decrease dependence on import. Under the current circumstances, when sanctions are being imposed, this is especially relevant for Russia and for the realization of projects in the Russian Arctic. However, development of entrepreneurship in industry requires an enlightened state policy. The purpose of the research is elaboration of recommendations for improving economic effectiveness of the realization of the Arctic projects on the basis of conceptual proposals for the development of entrepreneurship in industry. The paper presents the studies of the extractive industry role in the Russian economy and proves its raw material character. The analysis of production chains in industry on the basis of the conception of the added value global chains demonstrated a low added value formed by Russian companies. The study of changes in the structure of economy based on systemic, statistical and comparative analyses revealed no positive changes in the structure of economy over the period under consideration. This is a manifestation of ineffectiveness of the Russian industrial policy in general and within the Arctic region in particular. The authors identified the problems information and implementation of the state industrial policy in the Arctic region and in the development of national entrepreneurship, analyzed the shortcomings of the current state policy in the sphere of the Russian industry. On the basis of the conducted studies, the authors formulated conceptual approaches to change the state policy in the Arctic. The basic idea of the authors is to substantiate the focus of the state regulation on the development of entrepreneurship in industry in the process of the Russian Arctic exploration. At the same time another problem is solved–that of the development of the manufacturing industry in the southern regions of the northwestern part of Russia. The criterion of effectiveness in this case is the economic effectiveness.

Keywords: Entrepreneurship in industry, global chains of the added value, government regulation, industrial policies, production chains in the Arctic region, economic effectiveness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
188 Electricity Load Modeling: An Application to Italian Market

Authors: Giovanni Masala, Stefania Marica

Abstract:

Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.

Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
187 Sustainable Building Technologies for Post-Disaster Temporary Housing: Integrated Sustainability Assessment and Life Cycle Assessment

Authors: S. M. Amin Hosseini, Oriol Pons, Albert de la Fuente

Abstract:

After natural disasters, displaced people (DP) require important numbers of housing units, which have to be erected quickly due to emergency pressures. These tight timeframes can cause the multiplication of the environmental construction impacts. These negative impacts worsen the already high energy consumption and pollution caused by the building sector. Indeed, post-disaster housing, which is often carried out without pre-planning, usually causes high negative environmental impacts, besides other economic and social impacts. Therefore, it is necessary to establish a suitable strategy to deal with this problem which also takes into account the instability of its causes, like changing ratio between rural and urban population. To this end, this study aims to present a model that assists decision-makers to choose the most suitable building technology for post-disaster housing units. This model focuses on the alternatives sustainability and fulfillment of the stakeholders’ satisfactions. Four building technologies have been analyzed to determine the most sustainability technology and to validate the presented model. In 2003, Bam earthquake DP had their temporary housing units (THUs) built using these four technologies: autoclaved aerated concrete blocks (AAC), concrete masonry unit (CMU), pressed reeds panel (PR), and 3D sandwich panel (3D). The results of this analysis confirm that PR and CMU obtain the highest sustainability indexes. However, the second life scenario of THUs could have considerable impacts on the results.

Keywords: Sustainability, post-disaster temporary housing, integrated value model for sustainability assessment (MIVES), life cycle assessment (LCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
186 An Exploration of the Dimensions of Place-Making: A South African Case Study

Authors: W. J. Strydom, K. Puren

Abstract:

Place-making is viewed here as an empowering process in which people represent, improve and maintain their spatial (natural or built) environment. With the above-mentioned in mind, place-making is multi-dimensional and include a spatial dimension (including visual properties or the end product/plan), a procedural dimension during which (negotiation/discussion of ideas with all relevant stakeholders in terms of end product/plan) and a psychological dimension (inclusion of intrinsic values and meanings related to a place in the end product/plan). These three represent dimensions of place-making. The purpose of this paper is to explore these dimensions of place-making in a case study of a local community in Ikageng, Potchefstroom, North-West Province, South Africa. This case study represents an inclusive process that strives to empower a local community (forcefully relocated due to Apartheid legislation in South Africa). This case study focussed on the inclusion of participants in the decision-making process regarding their daily environment. By means of focus group discussions and a collaborative design workshop, data is generated and ultimately creates a linkage with the theoretical dimensions of place-making. This paper contributes to the field of spatial planning due to the exploration of the dimensions of place-making and the relevancy of this process on spatial planning (especially in a South African setting).

Keywords: Case study, place-making, spatial planning, spatial dimension, procedural dimension, psychological dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
185 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period

Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider

Abstract:

This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.

Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
184 Remittances and the Changing Roles of Women in Laos

Authors: N. Southiseng, J. Walsh

Abstract:

Prior to 1975, women in Laos suffered from having reduced levels of power over decision-making in their families and in their communities. This has had a negative impact on their ability to develop their own identities. Their roles were identified as being responsible for household activities and making preparations for their marriage. Many women lost opportunities to get educated and access the outdoor work that might have empowered them to improve their situations. So far, no accurate figures of either emigrants or return migrants have been compiled but it appears that most of them were women, and it was women who most and more frequently remitted money home. However, very few recent studies have addressed the relationship between remittances and the roles of women in Laos. This study, therefore, aims at redressing to some extent the deficiencies in knowledge. Qualitative techniques were used to gather data, including individual in-depth interviews and direct observation in combination with the content analysis method. Forty women in Vientiane Municipality and Savannakhet province were individually interviewed. It was found that the monetary remittance was typically used for family security and well-being; on fungible activities; on economic and business activities; and on community development, especially concerning hospitality and providing daily household necessities. Remittances played important roles in improving many respondents- livelihoods and positively changed their identities in families and communities. Women became empowered as they were able to start commercial businesses, rather than taking care of (just) housework, children and elders. Interviews indicated that 92.5% of the respondents their quality of lives improved, 90% felt happier in their families and 82.5% felt conflicts in their families were reduced.

Keywords: Laos, Monetary Remittances, Social Remittance, Women's Empowerment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
183 Phelipanche ramosa (L. - Pomel) Control in Field Tomato Crop

Authors: Disciglio G., Lops F., Carlucci A., Gatta G., Tarantino A., Frabboni L., Carriero F., Cibelli F., Raimondo M. L., Tarantino E.

Abstract:

The tomato is a very important crop, whose cultivation in the Mediterranean basin is severely affected by the phytoparasitic weed Phelipanche ramosa. The semiarid regions of the world are considered the main areas where this parasitic weed is established causing heavy infestation as it is able to produce high numbers of seeds (up to 500,000 per plant), which remain viable for extended period (more than 20 years). In this paper the results obtained from eleven treatments in order to control this parasitic weed including chemical, agronomic, biological and biotechnological methods compared with the untreated test under two plowing depths (30 and 50 cm) are reported. The split-plot design with 3 replicates was adopted. In 2014 a trial was performed in Foggia province (southern Italy) on processing tomato (cv Docet) grown in the field infested by Phelipanche ramosa. Tomato seedlings were transplant on May 5, on a clay-loam soil. During the growing cycle of the tomato crop, at 56-78 and 92 days after transplantation, the number of parasitic shoots emerged in each plot was detected. At tomato harvesting, on August 18, the major quantity-quality yield parameters were determined (marketable yield, mean weight, dry matter, pH, soluble solids and color of fruits). All data were subjected to analysis of variance (ANOVA) and the means were compared by Tukey's test. Each treatment studied did not provide complete control against Phelipanche ramosa. However, among the different methods tested, some of them which Fusarium, gliphosate, radicon biostimulant and Red Setter tomato cv (improved genotypes obtained by Tilling technology) under deeper plowing (50 cm depth) proved to mitigate the virulence of the Phelipanche ramose attacks. It is assumed that these effects can be improved combining some of these treatments each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.

Keywords: Control methods, Phelipanche ramosa, tomato crop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
182 Endeavor in Management Process by Executive Dashboards: The Case of the Financial Directorship in Brazilian Navy

Authors: R. S. Quintal, J. L. Tesch Santos, M. D. Davis, E. C. de Santana, M. de F. Bandeira dos Santos

Abstract:

The objective is to identify the contributions from the introduction of the computerized system deal within the Accounting Department of Brazilian Navy Financial Directorship and its possible effects on the budgetary and financial harvest of Brazilian Navy. The relevance lies in the fact that the management process is responsible for the continuous improvement of organizational performance through higher levels of quality in their activities. Improvements in organizational processes have direct effects on crops cost, quality, reliability, flexibility and speed. The method of study of this research is the case study. The choice of case study attended, among other demands, a need for greater flexibility to study processes related to a computerized system. The sources of evidence were used literature, documentary and direct observation. Direct observation was made by monitoring the implementation of the computerized system in the Division of Management Analysis. The main findings of the study point to the fact that the computerized system may contribute significantly to the standardization of information. There was improvement of internal processes in the division of management analysis, made possible the consolidation of a standard management and performance analysis that contribute to global homogeneity in the treatment of information essential to the process of decision making. This study has limitations related to the fact the search result be subject exclusively to the case studied, and it is impossible to generalize to other organs of government.

Keywords: Process Management, Management Control, Business Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
181 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
180 The Impact of ISO 9001 Certification on Brazilian Firms’ Performance: Insights from Multiple Case Studies

Authors: Matheus Borges Carneiro, Fabiane Letícia Lizarelli, José Carlos de Toledo

Abstract:

The evolution of quality management by companies was strongly enabled by, among others, ISO 9001 certification, which is considered a crucial requirement for several customers. Likewise, performance measurement provides useful insights for companies to identify the reflection of their decision-making process on their improvement. One of the most used performance measurement models is the balanced scorecard (BSC), which uses four perspectives to address a firm’s performance: financial, internal process, customer satisfaction, and learning and growth. Since ISO 9001 certified firms are likely to measure their performance through BSC approach, it is important to verify whether the certificate influences the firm performance or not. Therefore, this paper aims to verify the impact of ISO 9001:2015 on Brazilian firms’ performance based on the BSC perspective. Hence, nine certified companies located in the Southeast region of Brazil were studied through a multiple case study approach. Within this study, it was possible to identify the positive impact of ISO 9001 on firms’ overall performance, and four Critical Success Factors (CSFs) were identified as relevant on the linkage among ISO 9001 and firms’ performance: employee involvement, top management, process management, and customer focus. Due to the COVID-19 pandemic, the number of interviews was limited to the quality manager specialist, and the sample was limited since several companies were closed during the period of the study. This study presents an in-depth analysis of how the relationship between ISO 9001 certification and firms’ performance in a developing country is.

Keywords: Balanced scorecard, Brazilian firms’ performance, critical success factors, ISO 9001 certification, performance measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580
179 Choosing R-tree or Quadtree Spatial DataIndexing in One Oracle Spatial Database System to Make Faster Showing Geographical Map in Mobile Geographical Information System Technology

Authors: Maruto Masserie Sardadi, Mohd Shafry bin Mohd Rahim, Zahabidin Jupri, Daut bin Daman

Abstract:

The latest Geographic Information System (GIS) technology makes it possible to administer the spatial components of daily “business object," in the corporate database, and apply suitable geographic analysis efficiently in a desktop-focused application. We can use wireless internet technology for transfer process in spatial data from server to client or vice versa. However, the problem in wireless Internet is system bottlenecks that can make the process of transferring data not efficient. The reason is large amount of spatial data. Optimization in the process of transferring and retrieving data, however, is an essential issue that must be considered. Appropriate decision to choose between R-tree and Quadtree spatial data indexing method can optimize the process. With the rapid proliferation of these databases in the past decade, extensive research has been conducted on the design of efficient data structures to enable fast spatial searching. Commercial database vendors like Oracle have also started implementing these spatial indexing to cater to the large and diverse GIS. This paper focuses on the decisions to choose R-tree and quadtree spatial indexing using Oracle spatial database in mobile GIS application. From our research condition, the result of using Quadtree and R-tree spatial data indexing method in one single spatial database can save the time until 42.5%.

Keywords: Indexing, Mobile GIS, MapViewer, Oracle SpatialDatabase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4035
178 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: Communication signal, feature extraction, holder coefficient, improved cloud model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
177 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: Bridge Management Systems (BMS), cost optimization condition assessment, fund allocation, Markov chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
176 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)

Authors: Kamal K.Bharadwaj, Rekha Kandwal

Abstract:

An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. In this paper, a set of related HPRs is called a cluster and is represented by a HPR-tree. This paper discusses an algorithm based on cumulative learning scenario for dynamic structuring of clusters. The proposed scheme incrementally incorporates new knowledge into the set of clusters from the previous episodes and also maintains summary of clusters as Synopsis to be used in the future episodes. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested incremental structuring of clusters would be useful in mining data streams.

Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
175 Capability Investigation of Carbon Sequestration in Two Species (Artemisia sieberi Besser and Stipabarbata Desf) Under Different Treatments of Vegetation Management (Saveh, Iran)

Authors: M. Alizadeh, M. Mahdavi, M.H. Jouri

Abstract:

The rangelands, as one of the largest dynamic biomes in the world, have very capabilities. Regulation of greenhouse gases in the Earth's atmosphere, particularly carbon dioxide as the main these gases, is one of these cases. The attention to rangeland, as cheep and reachable resources to sequestrate the carbon dioxide, increases after the Industrial Revolution. Rangelands comprise the large parts of Iran as a steppic area. Rudshur (Saveh), as area index of steppic area, was selected under three sites include long-term exclosure, medium-term exclosure, and grazable area in order to the capable of carbon dioxide’s sequestration of dominated species. Canopy cover’s percentage of two dominated species (Artemisia sieberi Besser & Stipa barbata Desf) was determined via establishing of random 1 square meter plot. The sampling of above and below ground biomass style was obtained by complete random. After determination of ash percentage in the laboratory; conversion ratio of plant biomass to organic carbon was calculated by ignition method. Results of the paired t-test showed that the amount of carbon sequestration in above ground and underground biomass of Artemisia sieberi Besser & Stipa barbata Desf is different in three regions. It, of course, hasn’t any difference between under and surface ground’s biomass of Artemisia sieberi Besser in long-term exclosure. The independent t-test results indicate differences between underground biomass corresponding each other in the studied sites. Carbon sequestration in the Stipa barbata Desf was totally more than Artemisia sieberi Besser. Altogether, the average sequestration of the long-term exclosure was 5.842gr/m², the medium-term exclosure was 4.115gr/m², and grazable area was 5.975gr/m² so that there isn’t valuable statistical difference in term of total amount of carbon sequestration to three sites.

Keywords: Carbon sequestration, the Industrial Revolution, greenhouse gases, Artemisia sieberi Besser, Stipa barbata Desf, steppic rangelands

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
174 A Multi-Agent Smart E-Market Design at Work for Shariah Compliant Islamic Banking

Authors: Wafa Ghonaim

Abstract:

Though quite fast on growth, Islamic financing at large, and its diverse instruments, is a controversial matter among scholars. This is evident from the ongoing debates on its Shariah compliance. Arguments, however, are inciting doubts and concerns among clients about its credibility, which is harming this lucrative sector. The work here investigates, particularly, some issues related to the Tawarruq instrument. The work examines the issues of linking Murabaha and Wakala contracts, the reselling of commodities to same traders, and the transfer of ownerships. The work affirms that a multi-agent smart electronic market design would facilitate Shariah compliance. The smart market exploits the rational decision-making capabilities of autonomous proxy agents that enable the clients, traders, brokers, and the bank buy and sell commodities, and manage transactions and cash flow. The smart electronic market design delivers desirable qualities that terminate the need for Wakala contracts and the reselling of commodities to the same traders. It also resolves the ownership transfer issues by allowing stakeholders to trade independently. The bank administers the smart electronic market and assures reliability of trades, transactions and cash flow. A multi-agent simulation is presented to validate the concept and processes. We anticipate that the multi-agent smart electronic market design would deliver Shariah compliance of personal financing to the aspiration of scholars, banks, traders and potential clients.

Keywords: Islamic finance, Shariah compliance, smart electronic markets design, multi-agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
173 ARCS for Critical Information Retrieval Development

Authors: Suttipong Boonphadung

Abstract:

The research on ARCS for critical information retrieval development aimed to (1) investigate conditions of critical information retrieval skill of the Mathematics pre-service teachers before applying ARCS model in learning activities, (2) study and analyze the development of critical information retrieval skill of the Mathematics pre-service teachers after utilizing ARCS model in learning activities, and (3) evaluate the Mathematics pre-service teachers’ satisfaction on using ARCS model in learning activities as a tool to development critical information retrieval skill. Forty-one of 4th year Mathematics pre-service teachers who have enrolled in the subject of Research for Learning Development of semester 2 in 2012 were purposively selected as the research cohort. The research tools were self-report and interview questionnaire that was approved as content validity and reliability (IOC=.66-1.00, α =.834). The research found that critical information retrieval skill of the research samples before using ARCS model in learning activities was in the normal high level. According to the in-depth interview and focus group, the result however showed that the pre-service teachers still lack inadequate and effective knowledge in information retrieval. Additionally, critical information retrieval skill of the research cohort after applying ARCS model in learning activities appeared to be high level. The result revealed that the pre-service teachers are able to explain the method of searching, extraction, and selecting information as well as evaluating quality of information, and effectively making decision in accepting information. Moreover, the research discovered that the pre-service teachers showed normal high to highest level of satisfaction on using ARCS model in learning activities as a tool to development their critical information retrieval skill.

Keywords: Critical information retrieval skill, ARCS model, Satisfaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
172 International Comparative Study of International Financial Reporting Standards Adoption and Earnings Quality: Effects of Differences in Accounting Standards, Industry Category, and Country Characteristics

Authors: Ichiro Mukai

Abstract:

The purpose of this study is to investigate whether firms applying International Financial Reporting Standards (IFRS), provide high-quality and comparable earnings information that is useful for decision making of information users relative to firms applying local Generally Accepted Accounting Principles (GAAP). Focus is placed on the earnings quality of listed firms in several developed countries: Australia, Canada, France, Germany, Japan, the United Kingdom (UK), and the United States (US). Except for Japan and the US, the adoption of IFRS is mandatory for listed firms in these countries. In Japan, the application of IFRS is allowed for specific listed firms. In the US, the foreign firms listed on the US securities market are permitted to apply IFRS but the listed domestic firms are prohibited from doing so. In this paper, the differences in earnings quality are compared between firms applying local GAAP and those applying IFRS in each country and industry category, and the reasons of differences in earnings quality are analyzed using various factors. The results show that, although the earnings quality of firms applying IFRS is higher than that of firms applying local GAAP, this varies with country and industry category. Thus, even if a single set of global accounting standards is used for all listed firms worldwide, it is difficult to establish comparability of financial information among global firms. These findings imply that various circumstances surrounding firms, industries, and countries etc. influence business operations and affect the differences in earnings quality.

Keywords: Accruals, earnings quality, IFRS, information comparability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
171 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling. The research proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling. The paper concludes the challenges and improvement directions for Deep Reinforcement Learning-based resource scheduling algorithms.

Keywords: Resource scheduling, deep reinforcement learning, distributed system, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
170 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere

Authors: Moustafa Osman Mohammed

Abstract:

This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.

Keywords: Air dispersion model, landfill management, spatial analysis, environmental impact and risk assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
169 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
168 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
167 A Review on Cloud Computing and Internet of Things

Authors: Sahar S. Tabrizi, Dogan Ibrahim

Abstract:

Cloud Computing is a convenient model for on-demand networks that uses shared pools of virtual configurable computing resources, such as servers, networks, storage devices, applications, etc. The cloud serves as an environment for companies and organizations to use infrastructure resources without making any purchases and they can access such resources wherever and whenever they need. Cloud computing is useful to overcome a number of problems in various Information Technology (IT) domains such as Geographical Information Systems (GIS), Scientific Research, e-Governance Systems, Decision Support Systems, ERP, Web Application Development, Mobile Technology, etc. Companies can use Cloud Computing services to store large amounts of data that can be accessed from anywhere on Earth and also at any time. Such services are rented by the client companies where the actual rent depends upon the amount of data stored on the cloud and also the amount of processing power used in a given time period. The resources offered by the cloud service companies are flexible in the sense that the user companies can increase or decrease their storage requirements or the processing power requirements at any time, thus minimizing the overall rental cost of the service they receive. In addition, the Cloud Computing service providers offer fast processors and applications software that can be shared by their clients. This is especially important for small companies with limited budgets which cannot afford to purchase their own expensive hardware and software. This paper is an overview of the Cloud Computing, giving its types, principles, advantages, and disadvantages. In addition, the paper gives some example engineering applications of Cloud Computing and makes suggestions for possible future applications in the field of engineering.

Keywords: Cloud computing, cloud services, IaaS, PaaS, SaaS, IoT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
166 Q-Map: Clinical Concept Mining from Clinical Documents

Authors: Sheikh Shams Azam, Manoj Raju, Venkatesh Pagidimarri, Vamsi Kasivajjala

Abstract:

Over the past decade, there has been a steep rise in the data-driven analysis in major areas of medicine, such as clinical decision support system, survival analysis, patient similarity analysis, image analytics etc. Most of the data in the field are well-structured and available in numerical or categorical formats which can be used for experiments directly. But on the opposite end of the spectrum, there exists a wide expanse of data that is intractable for direct analysis owing to its unstructured nature which can be found in the form of discharge summaries, clinical notes, procedural notes which are in human written narrative format and neither have any relational model nor any standard grammatical structure. An important step in the utilization of these texts for such studies is to transform and process the data to retrieve structured information from the haystack of irrelevant data using information retrieval and data mining techniques. To address this problem, the authors present Q-Map in this paper, which is a simple yet robust system that can sift through massive datasets with unregulated formats to retrieve structured information aggressively and efficiently. It is backed by an effective mining technique which is based on a string matching algorithm that is indexed on curated knowledge sources, that is both fast and configurable. The authors also briefly examine its comparative performance with MetaMap, one of the most reputed tools for medical concepts retrieval and present the advantages the former displays over the latter.

Keywords: Information retrieval (IR), unified medical language system (UMLS), Syntax Based Analysis, natural language processing (NLP), medical informatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
165 Using Seismic Base Isolation Systems in High-Rise Hospital Buildings and a Hybrid Proposal

Authors: E. Bakkaloğlu, N. Torunbalcı

Abstract:

Earthquakes are inevitable natural disasters in Turkey. Therefore, buildings must be prepared for this natural hazard. Especially in hospital buildings, earthquake resistance is an essential point because hospitals are one of the first places where people come after earthquake. Although hospital buildings are more suitable for horizontal architecture, it is necessary to construct and expand multi-story hospital buildings due to difficulties in finding suitable places as a result of excessive urbanization, difficulties in obtaining appropriate size land and decrease in suitable places and increase in land values. In Turkey, using seismic isolators in public hospitals, which are placed in first degree earthquake zone and have more than 100 beds, is made obligatory by general instruction. As a result of this decision, it may sometimes be necessary to construct seismic isolated multi-story hospital buildings in cities where those problems are experienced. Although there is widespread use of seismic isolators in Japan, there are few multi-story buildings in which seismic isolators are used in Turkey. As it is known, base isolation systems are the most effective methods of earthquake resistance, as the number of floors increases, the center of gravity moves away from the base in multi-story buildings, increasing the overturning effect and limiting use of these systems. In this context, it is aimed to investigate structural systems of multi-story buildings which are built using seismic isolation methods in the world. In addition to this, a working principle is suggested for the disseminating seismic isolator used in multi-story hospital buildings. The results to be obtained from the study will guide architects who design multi-story hospital buildings in their architectural designs, and engineers in terms of structural system design.

Keywords: Earthquake, energy absorbing systems, hospital, seismic isolation systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24
164 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
163 Case Study of the Roma Tomato Distribution Chain: A Dynamic Interface for an Agricultural Enterprise in Mexico

Authors: Ernesto A. Lagarda-Leyva, Manuel A. Valenzuela L., José G. Oshima C., Arnulfo A. Naranjo-Flores

Abstract:

From August to December of 2016, a diagnostic and strategic planning study was carried out on the supply chain of the company Agropecuaria GABO S.A. de C.V. The final product of the study was the development of the strategic plan and a project portfolio to meet the demands of the three links in the supply chain of the Roma tomato exported annually to the United States of America. In this project, the strategic objective of ensuring the proper handling of the product was selected and one of the goals associated with this was the employment of quantitative methods to support decision making. Considering the antecedents, the objective of this case study was to develop a model to analyze the behavioral dynamics in the distribution chain, from the logistics of storage and shipment of Roma tomato in 81-case pallets (11.5 kg per case), to the two pre-cooling rooms and eventual loading onto transports, seeking to reduce the bottleneck and the associated costs by means of a dynamic interface. The methodology used was that of system dynamics, considering four phases that were adapted to the purpose of the study: 1) the conceptualization phase; 2) the formulation phase; 3) the evaluation phase; and 4) the communication phase. The main practical conclusions lead to the possibility of reducing both the bottlenecks in the cooling rooms and the costs by simulating scenarios and modifying certain policies. Furthermore, the creation of the dynamic interface between the model and the stakeholders was achieved by generating interaction with buttons and simple instructions that allow making modifications and observing diverse behaviors.

Keywords: Agrilogistics, distribution, scenarios, system dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
162 On-Line Geometrical Identification of Reconfigurable Machine Tool using Virtual Machining

Authors: Alexandru Epureanu, Virgil Teodor

Abstract:

One of the main research directions in CAD/CAM machining area is the reducing of machining time. The feedrate scheduling is one of the advanced techniques that allows keeping constant the uncut chip area and as sequel to keep constant the main cutting force. They are two main ways for feedrate optimization. The first consists in the cutting force monitoring, which presumes to use complex equipment for the force measurement and after this, to set the feedrate regarding the cutting force variation. The second way is to optimize the feedrate by keeping constant the material removal rate regarding the cutting conditions. In this paper there is proposed a new approach using an extended database that replaces the system model. The feedrate scheduling is determined based on the identification of the reconfigurable machine tool, and the feed value determination regarding the uncut chip section area, the contact length between tool and blank and also regarding the geometrical roughness. The first stage consists in the blank and tool monitoring for the determination of actual profiles. The next stage is the determination of programmed tool path that allows obtaining the piece target profile. The graphic representation environment models the tool and blank regions and, after this, the tool model is positioned regarding the blank model according to the programmed tool path. For each of these positions the geometrical roughness value, the uncut chip area and the contact length between tool and blank are calculated. Each of these parameters are compared with the admissible values and according to the result the feed value is established. We can consider that this approach has the following advantages: in case of complex cutting processes the prediction of cutting force is possible; there is considered the real cutting profile which has deviations from the theoretical profile; the blank-tool contact length limitation is possible; it is possible to correct the programmed tool path so that the target profile can be obtained. Applying this method, there are obtained data sets which allow the feedrate scheduling so that the uncut chip area is constant and, as a result, the cutting force is constant, which allows to use more efficiently the machine tool and to obtain the reduction of machining time.

Keywords: Reconfigurable machine tool, system identification, uncut chip area, cutting conditions scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
161 Environmental and Technical Modeling of Industrial Solid Waste Management Using Analytical Network Process; A Case Study: Gilan-IRAN

Authors: D. Nouri, M.R. Sabour, M. Ghanbarzadeh Lak

Abstract:

Proper management of residues originated from industrial activities is considered as one of the serious challenges faced by industrial societies due to their potential hazards to the environment. Common disposal methods for industrial solid wastes (ISWs) encompass various combinations of solely management options, i.e. recycling, incineration, composting, and sanitary landfilling. Indeed, the procedure used to evaluate and nominate the best practical methods should be based on environmental, technical, economical, and social assessments. In this paper an environmentaltechnical assessment model is developed using analytical network process (ANP) to facilitate the decision making practice for ISWs generated at Gilan province, Iran. Using the results of performed surveys on industrial units located at Gilan, the various groups of solid wastes in the research area were characterized, and four different ISW management scenarios were studied. The evaluation process was conducted using the above-mentioned model in the Super Decisions software (version 2.0.8) environment. The results indicates that the best ISW management scenario for Gilan province is consist of recycling the metal industries residues, composting the putrescible portion of ISWs, combustion of paper, wood, fabric and polymeric wastes as well as energy extraction in the incineration plant, and finally landfilling the rest of the waste stream in addition with rejected materials from recycling and compost production plants and ashes from the incineration unit.

Keywords: Analytical Network Process, Disposal Scenario, Gilan Province, Industrial Waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953