Search results for: Data Centric Approach
9154 A Cuckoo Search with Differential Evolution for Clustering Microarray Gene Expression Data
Authors: M. Pandi, K. Premalatha
Abstract:
A DNA microarray technology is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. It is handled by clustering which reveals the natural structures and identifying the interesting patterns in the underlying data. In this paper, gene based clustering in gene expression data is proposed using Cuckoo Search with Differential Evolution (CS-DE). The experiment results are analyzed with gene expression benchmark datasets. The results show that CS-DE outperforms CS in benchmark datasets. To find the validation of the clustering results, this work is tested with one internal and one external cluster validation indexes.
Keywords: DNA, Microarray, genomics, Cuckoo Search, Differential Evolution, Gene expression data, Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14839153 Physiological Action of Anthraquinone-Containing Preparations
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina, Evgenii N. Kojaev
Abstract:
In review the generalized data about biological activity of anthraquinone-containing plants and specimens on their basis is presented. Data of traditional medicine, results of bioscreening and clinical researches of specimens are analyzed.
Keywords: Anthraquinones, physiologically active substances, phytopreparation, Ramon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20709152 Kaikaku - Radical Improvement in Production
Authors: D. Gåsvaer, J. von Axelson
Abstract:
Considering today-s increasing speed of change, radical and innovative improvement - Kaikaku, is a necessity parallel to continuous incremental improvement - Kaizen, especially for SME-s in order to attain the competitive edge needed to be profitable. During 2011, a qualitative single case study with the objective of realizing a kaikaku in production has been conducted. The case study was run as a one year project using a collaborative approach including both researchers and company representatives. The case study was conducted with the purpose of gaining further knowledge about kaikaku realization as well as its implications. The empirical results provide insights about the great productivity results achieved by applying a specific kaikaku realization approach. However, it also sheds light on the difficulty and contradiction of combining innovation management and production system development.Keywords: Kaikaku, Radical improvement, manufacturing, innovation capability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25279151 Dynamical Analysis of Circadian Gene Expression
Authors: Carla Layana Luis Diambra
Abstract:
Microarrays technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining this data one can identify the dynamics of the gene expression time series. By recourse of principal component analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis. We applied PCA to reduce the dimensionality of the data set. Examination of the components also provides insight into the underlying factors measured in the experiments. Our results suggest that all rhythmic content of data can be reduced to three main components.
Keywords: circadian rhythms, clustering, gene expression, PCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15929150 Information Needs and Information Usage of the Older Person Club’s Members in Bangkok
Authors: Siriporn Poolsuwan
Abstract:
This research aims to explore the information needs, information usages, and problems of information usage of the older people club’s members in Dusit district, Bangkok. There are 12 clubs and 746 club’s members in this district. The research results use for older person service in this district. Data is gathered from 252 club’s members by using questionnaires. The quantitative approach uses in research by percentage, means and standard deviation. The results are as follows (1) The older people need Information for entertainment, occupation and academic in the field of short story, computer work, and religion and morality. (2) The participants use Information from various sources. (3) The Problem of information usage is their language skills because of the older people’s literacy problem.
Keywords: Information Behavior, Older Person, Information Seeking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17699149 Authentication and Data Hiding Using a Reversible ROI-based Watermarking Scheme for DICOM Images
Authors: Osamah M. Al-Qershi, Khoo Bee Ee
Abstract:
In recent years image watermarking has become an important research area in data security, confidentiality and image integrity. Many watermarking techniques were proposed for medical images. However, medical images, unlike most of images, require extreme care when embedding additional data within them because the additional information must not affect the image quality and readability. Also the medical records, electronic or not, are linked to the medical secrecy, for that reason, the records must be confidential. To fulfill those requirements, this paper presents a lossless watermarking scheme for DICOM images. The proposed a fragile scheme combines two reversible techniques based on difference expansion for patient's data hiding and protecting the region of interest (ROI) with tamper detection and recovery capability. Patient's data are embedded into ROI, while recovery data are embedded into region of non-interest (RONI). The experimental results show that the original image can be exactly extracted from the watermarked one in case of no tampering. In case of tampered ROI, tampered area can be localized and recovered with a high quality version of the original area.Keywords: DICOM, reversible, ROI-based, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17199148 Owner/Managers’ External Financing Used and Preference towards Islamic Banking
Authors: Khalid Hassan Abdesamed, Kalsom Abd Wahab
Abstract:
Economic development and growth are significantly linked to the consistent and sustainable sector of small and medium enterprises (SMEs). Banks are the frontrunners in financing and advising SMEs. The main objective of the study is to assess the tendency of SMEs to use the Islamic bank. Model was developed using quantitative method with a hypothetical-deductive testing approach. Model (N = 364) used primary data on the tendency of SMEs to use Islamic banks gathered from questionnaire. It is found by Mann-Whitney test that the tendency to use Islamic bank varies between those firms which consider formal financing with the ones relying on informal financing with the latter tends more to use Islamic bank. This study can serve academic researchers, policy makers, and developing countries as a model of SMEs’ desirability to Islamic banking.Keywords: Formal financing, informal financing, Islamic bank, SMEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16669147 Problem-based Learning Approach to Human Computer Interaction
Authors: Oon-Seng Tan
Abstract:
Human Computer Interaction (HCI) has been an emerging field that draws in the experts from various fields to enhance the application of computer programs and the ease of computer users. HCI has much to do with learning and cognition and an emerging approach to learning and problem-solving is problembased learning (PBL). The processes of PBL involve important cognitive functions in the various stages. This paper will illustrate how closely related fields to HCI, PBL and cognitive psychology can benefit from informing each other through analysing various cognitive functions. Several cognitive functions from cognitive function disc (CFD) would be presented and discussed in relation to human-computer interface. This paper concludes with the implications of bridging the gaps amongst these disciplines.Keywords: problem-based learning, human computerinteraction, cognitive psychology, Cognitive Function Disc (CFD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25149146 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.
Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329145 Automated Java Testing: JUnit versus AspectJ
Authors: Manish Jain, Dinesh Gopalani
Abstract:
Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.Keywords: Aspect oriented programming, AspectJ, Aspects, JUnit, software testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19079144 Stego Machine – Video Steganography using Modified LSB Algorithm
Authors: Mritha Ramalingam
Abstract:
Computer technology and the Internet have made a breakthrough in the existence of data communication. This has opened a whole new way of implementing steganography to ensure secure data transfer. Steganography is the fine art of hiding the information. Hiding the message in the carrier file enables the deniability of the existence of any message at all. This paper designs a stego machine to develop a steganographic application to hide data containing text in a computer video file and to retrieve the hidden information. This can be designed by embedding text file in a video file in such away that the video does not loose its functionality using Least Significant Bit (LSB) modification method. This method applies imperceptible modifications. This proposed method strives for high security to an eavesdropper-s inability to detect hidden information.Keywords: Data hiding, LSB, Stego machine, VideoSteganography
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42689143 Seismic Analysis of URM Buildings in S. Africa
Authors: Trevor N. Haas, Thomas van der Kolf
Abstract:
South Africa has some regions which are susceptible to moderate seismic activity. A peak ground acceleration of between 0.1g and 0.15g can be expected in the southern parts of the Western Cape. Unreinforced Masonry (URM) is commonly used as a construction material for 2 to 5 storey buildings in underprivileged areas in and around Cape Town. URM is typically regarded as the material most vulnerable to damage when subjected to earthquake excitation. In this study, a three-storey URM building was analysed by applying seven earthquake time-histories, which can be expected to occur in South Africa using a finite element approach. Experimental data was used to calibrate the in- and out-of-plane stiffness of the URM. The results indicated that tensile cracking of the in-plane piers was the dominant failure mode. It is concluded that URM buildings of this type are at risk of failure especially if sufficient ductility is not provided. The results also showed that connection failure must be investigated further.
Keywords: URM, Seismic Analysis, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30029142 A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)
Authors: E. Assareh, M.A. Behrang, M. Ghalambaz, A.R. Noghrehabadi, A. Ghanbarzadeh
Abstract:
In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.Keywords: Bees Algorithm (BA); Approximate Solutions; Blasius Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18019141 An Automated Approach to the Nozzle Configuration of Polycrystalline Diamond Compact Drill Bits for Effective Cuttings Removal
Authors: R. Suresh, Pavan Kumar Nimmagadda, Ming Zo Tan, Shane Hart, Sharp Ugwuocha
Abstract:
Polycrystalline diamond compact (PDC) drill bits are extensively used in the oil and gas industry as well as the mining industry. Industry engineers continually improve upon PDC drill bit designs and hydraulic conditions. Optimized injection nozzles play a key role in improving the drilling performance and efficiency of these ever changing PDC drill bits. In the first part of this study, computational fluid dynamics (CFD) modelling is performed to investigate the hydrodynamic characteristics of drilling fluid flow around the PDC drill bit. An Open-source CFD software – OpenFOAM simulates the flow around the drill bit, based on the field input data. A specifically developed console application integrates the entire CFD process including, domain extraction, meshing, and solving governing equations and post-processing. The results from the OpenFOAM solver are then compared with that of the ANSYS Fluent software. The data from both software programs agree. The second part of the paper describes the parametric study of the PDC drill bit nozzle to determine the effect of parameters such as number of nozzles, nozzle velocity, nozzle radial position and orientations on the flow field characteristics and bit washing patterns. After analyzing a series of nozzle configurations, the best configuration is identified and recommendations are made for modifying the PDC bit design.
Keywords: ANSYS Fluent, computational fluid dynamics, nozzle configuration, OpenFOAM, PDC dill bit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9869140 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach
Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato
Abstract:
In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.Keywords: Constraint programming, Factors considered in scheduling, machine learning, scheduling system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14359139 Data Projects for “Social Good”: Challenges and Opportunities
Authors: Mikel Niño, Roberto V. Zicari, Todor Ivanov, Kim Hee, Naveed Mushtaq, Marten Rosselli, Concha Sánchez-Ocaña, Karsten Tolle, José Miguel Blanco, Arantza Illarramendi, Jörg Besier, Harry Underwood
Abstract:
One of the application fields for data analysis techniques and technologies gaining momentum is the area of social good or “common good”, covering cases related to humanitarian crises, global health care, or ecology and environmental issues, among others. The promotion of data-driven projects in this field aims at increasing the efficacy and efficiency of social initiatives, improving the way these actions help humanity in general and people in need in particular. This application field, however, poses its own barriers and challenges when developing data-driven projects, lagging behind in comparison with other scenarios. These challenges derive from aspects such as the scope and scale of the social issue to solve, cultural and political barriers, the skills of main stakeholders and the technological resources available, the motivation to be engaged in such projects, or the ethical and legal issues related to sensitive data. This paper analyzes the application of data projects in the field of social good, reviewing its current state and noteworthy initiatives, and presenting a framework covering the key aspects to analyze in such projects. The goal is to provide guidelines to understand the main challenges and opportunities for this type of data project, as well as identifying the main differential issues compared to “classical” data projects in general. A case study is presented on the initial steps and stakeholder analysis of a data project for the inclusion of refugees in the city of Frankfurt, Germany, in order to empirically confront the framework with a real example.Keywords: Data-Driven projects, humanitarian operations, personal and sensitive data, social good, stakeholders analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17939138 The Labeled Classification and its Application
Authors: M. Nemissi, H. Seridi, H. Akdag
Abstract:
This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14109137 Hydraulic Conductivity Prediction of Cement Stabilized Pavement Base Incorporating Recycled Plastics and Recycled Aggregates
Authors: Md. Shams Razi Shopnil, Tanvir Imtiaz, Sabrina Mahjabin, Md. Sahadat Hossain
Abstract:
Saturated hydraulic conductivity is one of the most significant attributes of pavement base course. Determination of hydraulic conductivity is a routine procedure for regular aggregate base courses. However, in many cases, a cement-stabilized base course is used with compromised drainage ability. Traditional hydraulic conductivity testing procedure is a readily available option which leads to two consequential drawbacks, i.e., the time required for the specimen to be saturated and extruding the sample after completion of the laboratory test. To overcome these complications, this study aims at formulating an empirical approach to predicting hydraulic conductivity based on Unconfined Compressive Strength test results. To do so, this study comprises two separate experiments (Constant Head Permeability test and Unconfined Compressive Strength test) conducted concurrently on a specimen having the same physical credentials. Data obtained from the two experiments were then used to devise a correlation between hydraulic conductivity and unconfined compressive strength. This correlation in the form of a polynomial equation helps to predict the hydraulic conductivity of cement-treated pavement base course, bypassing the cumbrous process of traditional permeability and less commonly used horizontal permeability tests. The correlation was further corroborated by a different set of data, and it has been found that the derived polynomial equation is deemed to be a viable tool to predict hydraulic conductivity.
Keywords: Hydraulic conductivity, unconfined compressive strength, recycled plastics, recycled concrete aggregates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3309136 Target Detection with Improved Image Texture Feature Coding Method and Support Vector Machine
Authors: R. Xu, X. Zhao, X. Li, C. Kwan, C.-I Chang
Abstract:
An image texture analysis and target recognition approach of using an improved image texture feature coding method (TFCM) and Support Vector Machine (SVM) for target detection is presented. With our proposed target detection framework, targets of interest can be detected accurately. Cascade-Sliding-Window technique was also developed for automated target localization. Application to mammogram showed that over 88% of normal mammograms and 80% of abnormal mammograms can be correctly identified. The approach was also successfully applied to Synthetic Aperture Radar (SAR) and Ground Penetrating Radar (GPR) images for target detection.
Keywords: Image texture analysis, feature extraction, target detection, pattern classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17809135 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data
Authors: Rohan Putatunda, Aryya Gangopadhyay
Abstract:
Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).
Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4329134 Corporate Environmentalism: A Case Study in the Czech Republic
Authors: Pavel Adámek
Abstract:
This study examines perception of environmental approach in small and medium-sized enterprises (SMEs) – the process by which firms integrate environmental concern into business. Based on a review of the literature, the paper synthesizes focus on environmental issues with the reflection in a case study in the Czech Republic. Two themes of corporate environmentalism are discussed – corporate environmental orientation and corporate stances toward environmental concerns. It provides theoretical material on greening organizational culture that is helpful in understanding the response of contemporary business to environmental problems. We integrate theoretical predictions with empirical findings confronted with reality. Scales to measure these themes are tested in a survey of managers in 229 Czech firms. We used the process of in-depth questioning. The research question was derived and answered in the context of the corresponding literature and conducted research. A case study showed us that environmental approach is variety different (depending on the size of the firm) in SMEs sector. The results of the empirical mapping demonstrate Czech company’s approach to environment and define the problem areas and pinpoint the main limitation in the expansion of environmental aspects. We contribute to the debate for recognition of the particular role of environmental issues in business reality.
Keywords: Corporate environmentalism, Czech Republic, empirical mapping, environmental performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20859133 An Educational Data Mining System for Advising Higher Education Students
Authors: Heba Mohammed Nagy, Walid Mohamed Aly, Osama Fathy Hegazy
Abstract:
Educational data mining is a specific data mining field applied to data originating from educational environments, it relies on different approaches to discover hidden knowledge from the available data. Among these approaches are machine learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems.
In our research, we propose a “Student Advisory Framework” that utilizes classification and clustering to build an intelligent system. This system can be used to provide pieces of consultations to a first year university student to pursue a certain education track where he/she will likely succeed in, aiming to decrease the high rate of academic failure among these students. A real case study in Cairo Higher Institute for Engineering, Computer Science and Management is presented using real dataset collected from 2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.
Keywords: Classification, Clustering, Educational Data Mining (EDM), Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52139132 Prioritising the TQM Enablers and IT Resources in the ICT Industry: An AHP Approach
Authors: Suby Khanam, Jamshed Siddiqui, Faisal Talib
Abstract:
Total Quality Management (TQM) is a managerial approach that improves the competitiveness of the industry, meanwhile Information technology (IT) was introduced with TQM for handling the technical issues which is supported by quality experts for fulfilling the customers’ requirement. Present paper aims to utilise AHP (Analytic Hierarchy Process) methodology to priorities and rank the hierarchy levels of TQM enablers and IT resource together for its successful implementation in the Information and Communication Technology (ICT) industry. A total of 17 TQM enablers (nine) and IT resources (eight) were identified and partitioned into 3 categories and were prioritised by AHP approach. The finding indicates that the 17 sub-criteria can be grouped into three main categories namely organizing, tools and techniques, and culture and people. Further, out of 17 sub-criteria, three sub-criteria: top management commitment and support, total employee involvement, and continuous improvement got highest priority whereas three sub-criteria such as structural equation modelling, culture change, and customer satisfaction got lowest priority. The result suggests a hierarchy model for ICT industry to prioritise the enablers and resources as well as to improve the TQM and IT performance in the ICT industry. This paper has some managerial implication which suggests the managers of ICT industry to implement TQM and IT together in their organizations to get maximum benefits and how to utilize available resources. At the end, conclusions, limitation, future scope of the study are presented.Keywords: Analytic Hierarchy Process, Information Technology, Information and Communication Technology, Prioritization, Total Quality Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19569131 Composite Programming for Electric Passenger Car Selection in Multiple Criteria Decision Making
Authors: C. Ardil
Abstract:
This paper discusses the use of the composite programming method to identify the optimum electric passenger automobile in multiple criteria decision making. With the composite programming approach, a set of alternatives are compared using an optimality measure that gauges how far apart they are from the optimum solution. In this paper, some key factors (range, battery, engine, maximum speed, acceleration) that customers should consider while purchasing an electric passenger car for daily use are discussed. A numerical illustration is provided to demonstrate the validity and applicability of the proximity measure approach
Keywords: electric passenger car selection, multiple criteria decision making, proximity measure method, composite programming, entropic weight method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3319130 A Novel Approach of Route Choice in Stochastic Time-varying Networks
Authors: Siliang Wang, Minghui Wang
Abstract:
Many exist studies always use Markov decision processes (MDPs) in modeling optimal route choice in stochastic, time-varying networks. However, taking many variable traffic data and transforming them into optimal route decision is a computational challenge by employing MDPs in real transportation networks. In this paper we model finite horizon MDPs using directed hypergraphs. It is shown that the problem of route choice in stochastic, time-varying networks can be formulated as a minimum cost hyperpath problem, and it also can be solved in linear time. We finally demonstrate the significant computational advantages of the introduced methods.Keywords: Markov decision processes (MDPs), stochastictime-varying networks, hypergraphs, route choice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15559129 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) hold significant value for their capacity to undertake hazardous and labor-intensive operations over aquatic environments. Object detection tasks are significant in these applications. Nonetheless, the efficacy of USVs in object detection is impeded by several intrinsic challenges, including the intricate dispersal of obstacles, reflections emanating from coastal structures, and the presence of fog over water surfaces, among others. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. The MMW radar is a complementary tool to vision sensors, offering reliable environmental data. This approach involves the conversion of the radar’s 3D point cloud into a 2D radar pseudo-image, thereby standardizing the format for radar and vision data by leveraging a point transformer. Furthermore, this paper proposes the development of a multi-source object detection network, named RV-YOLOX, which leverages radar-vision integration specifically tailored for inland waterway environments. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.
Keywords: Inland waterways, object detection, YOLO, sensor fusion, self-attention, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2929128 Stability Analysis of Linear Fractional Order Neutral System with Multiple Delays by Algebraic Approach
Authors: Lianglin Xiong, Yun Zhao, Tao Jiang
Abstract:
In this paper, we study the stability of n-dimensional linear fractional neutral differential equation with time delays. By using the Laplace transform, we introduce a characteristic equation for the above system with multiple time delays. We discover that if all roots of the characteristic equation have negative parts, then the equilibrium of the above linear system with fractional order is Lyapunov globally asymptotical stable if the equilibrium exist that is almost the same as that of classical differential equations. An example is provided to show the effectiveness of the approach presented in this paper.
Keywords: Fractional neutral differential equation, Laplace transform, characteristic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22989127 Retrieval of Relevant Visual Data in Selected Machine Vision Tasks: Examples of Hardware-based and Software-based Solutions
Authors: Andrzej Śluzek
Abstract:
To illustrate diversity of methods used to extract relevant (where the concept of relevance can be differently defined for different applications) visual data, the paper discusses three groups of such methods. They have been selected from a range of alternatives to highlight how hardware and software tools can be complementarily used in order to achieve various functionalities in case of different specifications of “relevant data". First, principles of gated imaging are presented (where relevance is determined by the range). The second methodology is intended for intelligent intrusion detection, while the last one is used for content-based image matching and retrieval. All methods have been developed within projects supervised by the author.
Keywords: Relevant visual data, gated imaging, intrusion detection, image matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13959126 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Lexicon, sentiment analysis, stock movement prediction., computational finance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7799125 Towards Self-ware via Swarm-Array Computing
Authors: Blesson Varghese, Gerard McKee
Abstract:
The work reported in this paper proposes Swarm-Array computing, a novel technique inspired by swarm robotics, and built on the foundations of autonomic and parallel computing. The approach aims to apply autonomic computing constructs to parallel computing systems and in effect achieve the self-ware objectives that describe self-managing systems. The constitution of swarm-array computing comprising four constituents, namely the computing system, the problem/task, the swarm and the landscape is considered. Approaches that bind these constituents together are proposed. Space applications employing FPGAs are identified as a potential area for applying swarm-array computing for building reliable systems. The feasibility of a proposed approach is validated on the SeSAm multi-agent simulator and landscapes are generated using the MATLAB toolkit.Keywords: Swarm-Array computing, Autonomic computing, landscapes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583