Search results for: motion detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2168

Search results for: motion detection

278 General Purpose Graphic Processing Units Based Real Time Video Tracking System

Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai

Abstract:

Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.

Keywords: Connected components, Embrace threads, Local weighted kernel, Structuring element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
277 Thermoelastic Waves in Anisotropic Platesusing Normal Mode Expansion Method with Thermal Relaxation Time

Authors: K.L. Verma

Abstract:

Analysis for the generalized thermoelastic Lamb waves, which propagates in anisotropic thin plates in generalized thermoelasticity, is presented employing normal mode expansion method. The displacement and temperature fields are expressed by a summation of the symmetric and antisymmetric thermoelastic modes in the surface thermal stresses and thermal gradient free orthotropic plate, therefore the theory is particularly appropriate for waveform analyses of Lamb waves in thin anisotropic plates. The transient waveforms excited by the thermoelastic expansion are analyzed for an orthotropic thin plate. The obtained results show that the theory provides a quantitative analysis to characterize anisotropic thermoelastic stiffness properties of plates by wave detection. Finally numerical calculations have been presented for a NaF crystal, and the dispersion curves for the lowest modes of the symmetric and antisymmetric vibrations are represented graphically at different values of thermal relaxation time. However, the methods can be used for other materials as well

Keywords: Anisotropic, dispersion, frequency, normal, thermoelasticity, wave modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
276 Material Defects Identification in Metal Ceramic Fixed Partial Dentures by En-Face Polarization Sensitive Optical Coherence Tomography

Authors: C. Sinescu, M. Negrutiu, R. Negru, M. Romînu, A.G. Podoleanu

Abstract:

The fixed partial dentures are mainly used in the frontal part of the dental arch because of their great esthetics. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The purpose of this study is to evaluate the capability of Polarization Sensitive Optical Coherence Tomography (PSOCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

Keywords: Ceramic Fixed Partial Dentures, Material Defects, Polarization Sensitive Optical Coherence Tomography, Numerical Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
275 A Novel Prostate Segmentation Algorithm in TRUS Images

Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta

Abstract:

Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.

Keywords: Prostate segmentation, stick filter, neural network, active contour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
274 Smart Cane Assisted Mobility for the Visually Impaired

Authors: Jayant Sakhardande, Pratik Pattanayak, Mita Bhowmick

Abstract:

An efficient reintegration of the disabled people in the family and society should be fulfilled; hence it is strongly needful to assist their diminished functions or to replace the totally lost functions. Assistive technology helps in neutralizing the impairment. Recent advancements in embedded systems have opened up a vast area of research and development for affordable and portable assistive devices for the visually impaired. Granted there are many assistive devices on the market that are able to detect obstacles, and numerous research and development currently in process to alleviate the cause, unfortunately the cost of devices, size of devices, intrusiveness and higher learning curve prevents the visually impaired from taking advantage of available devices. This project aims at the design and implementation of a detachable unit which is robust, low cost and user friendly, thus, trying to aggrandize the functionality of the existing white cane, to concede above-knee obstacle detection. The designed obstruction detector uses ultrasound sensors for detecting the obstructions before direct contact. It bestows haptic feedback to the user in accordance with the position of the obstacle.

Keywords: Visually impaired, Ultrasonic sensors, Obstruction detector, Mobility aid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6074
273 Secure Power Systems Against Malicious Cyber-Physical Data Attacks: Protection and Identification

Authors: Morteza Talebi, Jianan Wang, Zhihua Qu

Abstract:

The security of power systems against malicious cyberphysical data attacks becomes an important issue. The adversary always attempts to manipulate the information structure of the power system and inject malicious data to deviate state variables while evading the existing detection techniques based on residual test. The solutions proposed in the literature are capable of immunizing the power system against false data injection but they might be too costly and physically not practical in the expansive distribution network. To this end, we define an algebraic condition for trustworthy power system to evade malicious data injection. The proposed protection scheme secures the power system by deterministically reconfiguring the information structure and corresponding residual test. More importantly, it does not require any physical effort in either microgrid or network level. The identification scheme of finding meters being attacked is proposed as well. Eventually, a well-known IEEE 30-bus system is adopted to demonstrate the effectiveness of the proposed schemes.

Keywords: Algebraic Criterion, Malicious Cyber-Physical Data Injection, Protection and Identification, Trustworthy Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
272 A New Digital Transceiver Circuit for Asynchronous Communication

Authors: Aakash Subramanian, Vansh Pal Singh Makh, Abhijit Mitra

Abstract:

A new digital transceiver circuit for asynchronous frame detection is proposed where both the transmitter and receiver contain all digital components, thereby avoiding possible use of conventional devices like monostable multivibrators with unstable external components such as resistances and capacitances. The proposed receiver circuit, in particular, uses a combinational logic block yielding an output which changes its state as soon as the start bit of a new frame is detected. This, in turn, helps in generating an efficient receiver sampling clock. A data latching circuit is also used in the receiver to latch the recovered data bits in any new frame. The proposed receiver structure is also extended from 4- bit information to any general n data bits within a frame with a common expression for the output of the combinational logic block. Performance of the proposed hardware design is evaluated in terms of time delay, reliability and robustness in comparison with the standard schemes using monostable multivibrators. It is observed from hardware implementation that the proposed circuit achieves almost 33 percent speed up over any conventional circuit.

Keywords: Asynchronous Communication, Digital Detector, Combinational logic output, Sampling clock generator, Hardwareimplementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
271 Preconcentration and Determination of Cyproheptadine in Biological Samples by Hollow Fiber Liquid Phase Microextraction Coupled with High Performance Liquid Chromatography

Authors: Najari Moghadam Sh., Qomi M., Raofie F., Khadiv J.

Abstract:

In this study, a liquid phase microextraction by hollow fiber (HF-LPME) combined with high performance liquid chromatography-UV detector was applied to preconcentrate and determine trace levels of Cyproheptadine in human urine and plasma samples. Cyproheptadine was extracted from 10 mL alkaline aqueous solution (pH: 9.81) into an organic solvent (n-octnol) which was immobilized in the wall pores of a hollow fiber. Then was back-extracted into an acidified aqueous solution (pH: 2.59) located inside the lumen of the hollow fiber. This method is simple, efficient and cost-effective. It is based on pH gradient and differences between two aqueous phases. In order to optimize the HF-LPME some affecting parameters including the pH of donor and acceptor phases, the type of organic solvent, ionic strength, stirring rate, extraction time and temperature were studied and optimized. Under optimal conditions enrichment factor, limit of detection (LOD) and relative standard deviation (RSD(%), n=3) were up to 112, 15 μg.L−1 and 2.7, respectively.

Keywords: Biological samples, Cyproheptadine, hollow fiber, liquid phase microextraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234
270 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: Biometric characters, facial recognition, neural network, OpenCV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
269 Developing Vision-Based Digital Public Display as an Interactive Media

Authors: Adrian Samuel Limanto, Yunli Lee

Abstract:

Interactive public displays give access as an innovative media to promote enhanced communication between people and information. However, digital public displays are subject to a few constraints, such as content presentation. Content presentation needs to be developed to be more interesting to attract people’s attention and motivate people to interact with the display. In this paper, we proposed idea to implement contents with interaction elements for vision-based digital public display. Vision-based techniques are applied as a sensor to detect passers-by and theme contents are suggested to attract their attention for encouraging them to interact with the announcement content. Virtual object, gesture detection and projection installation are applied for attracting attention from passers-by. Preliminary study showed positive feedback of interactive content designing towards the public display. This new trend would be a valuable innovation as delivery of announcement content and information communication through this media is proven to be more engaging.

Keywords: Digital announcement, digital public display, human-information interaction, interactive media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
268 Study of Fire Propagation and Soot Flow in a Pantry Car of Railway Locomotive

Authors: Juhi Kaushik, Abhishek Agarwal, Manoj Sarda, Vatsal Sanjay, Arup Kumar Das

Abstract:

Fire accidents in trains bring huge disaster to human life and property. Evacuation becomes a major challenge in such incidents owing to confined spaces, large passenger density and trains moving at high speeds. The pantry car in Indian Railways trains carry inflammable materials like cooking fuel and LPG and electrical fittings. The pantry car is therefore highly susceptible to fire accidents. Numerical simulations have been done in a pantry car of Indian locomotive train using computational fluid dynamics based software. Different scenarios of a fire outbreak have been explored by varying Heat Release Rate per Unit Area (HRRPUA) of the fire source, introduction of exhaust in the cooking area, and taking a case of an air conditioned pantry car. Temporal statures of flame and soot have been obtained for each scenario and differences have been studied and reported. Inputs from this study can be used to assess casualties in fire accidents in locomotive trains and development of smoke control/detection systems in Indian trains.

Keywords: Fire propagation, flame contour, pantry fire, soot flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
267 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy

Abstract:

This paper aims to provide an interpretation of artificial neural networks (ANNs) and explore some of its implications. The interpretation views ANNs as a memory which encodes instances of experience. An experiment explores the behavior of encoding and retrieval of instances from memory. A localised representation ANN is created that allows control over encoding and retrieved memory sample size and is experimented with using the MNIST digits dataset. The relationship between input familiarity, conflict within retrieved samples, and error rates is described and demonstrated to be an effective driver for memory encoding. Results indicate that selective encoding and retrieval samples that allow detection of memory conflicts produce optimal performance, and that error rates are normally distributed with input familiarity and conflict. By using input familiarity and sample consistency to guide memory encoding, the number of encoding trials on the dataset were reduced to 18.33% of the training data while maintaining good recognition performance on the test data.

Keywords: Artificial Neural Networks, ANNs, representation, memory, conflict monitoring, confidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 508
266 A Real-Time Specific Weed Recognition System Using Statistical Methods

Authors: Imran Ahmed, Muhammad Islam, Syed Inayat Ali Shah, Awais Adnan

Abstract:

The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic system is developed to identify and locate outdoor plants using machine vision technology and pattern recognition. The algorithm is developed to classify images into broad and narrow class for real-time selective herbicide application. The developed algorithm has been tested on weeds at various locations, which have shown that the algorithm to be very effectiveness in weed identification. Further the results show a very reliable performance on weeds under varying field conditions. The analysis of the results shows over 90 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Keywords: Weed detection, Image Processing, real-timerecognition, Standard Deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
265 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an ‘optimal’ value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: Cross Validation, Parameter Averaging, Parameter Selection, Regularization Parameter Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
264 Development of Perez-Du Mortier Calibration Algorithm for Ground-Based Aerosol Optical Depth Measurement with Validation using SMARTS Model

Authors: Jedol Dayou, Jackson Hian Wui Chang, Rubena Yusoff, Ag. Sufiyan Abd. Hamid, Fauziah Sulaiman, Justin Sentian

Abstract:

Aerosols are small particles suspended in air that have wide varying spatial and temporal distributions. The concentration of aerosol in total columnar atmosphere is normally measured using aerosol optical depth (AOD). In long-term monitoring stations, accurate AOD retrieval is often difficult due to the lack of frequent calibration. To overcome this problem, a near-sea-level Langley calibration algorithm is developed using the combination of clear-sky detection model and statistical filter. It attempts to produce a dataset that consists of only homogenous and stable atmospheric condition for the Langley calibration purposes. In this paper, a radiance-based validation method is performed to further investigate the feasibility and consistency of the proposed algorithm at different location, day, and time. The algorithm is validated using SMARTS model based n DNI value. The overall results confirmed that the proposed calibration algorithm feasible and consistent for measurements taken at different sites and weather conditions.

Keywords: Aerosol optical depth, direct normal irradiance, Langley calibration, radiance-based validation, SMARTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
263 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data

Authors: Hyun-Woo Cho

Abstract:

Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
262 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
261 Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces

Authors: Ángel de J. López-Pérez, Sonia E. Ruiz, Vanessa A. Segovia

Abstract:

Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.

Keywords: Best combination of design parameters, BRB, buildings with energy dissipating devices, buckling-restrained braces, initial costs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186
260 Revival of the Modern Wing Sails for the Propulsion of Commercial Ships

Authors: Pravesh Chandra Shukla, Kunal Ghosh

Abstract:

Over 90% of the world trade is carried by the international shipping industry. As most of the countries are developing, seaborne trade continues to expand to bring benefits for consumers across the world. Studies show that world trade will increase 70-80% through shipping in the next 15-20 years. Present global fleet of 70000 commercial ships consumes approximately 200 million tonnes of diesel fuel a year and it is expected that it will be around 350 million tonnes a year by 2020. It will increase the demand for fuel and also increase the concentration of CO2 in the atmosphere. So, it-s essential to control this massive fuel consumption and CO2 emission. The idea is to utilize a diesel-wind hybrid system for ship propulsion. Use of wind energy by installing modern wing-sails in ships can drastically reduce the consumption of diesel fuel. A huge amount of wind energy is available in oceans. Whenever wind is available the wing-sails would be deployed and the diesel engine would be throttled down and still the same forward speed would be maintained. Wind direction in a particular shipping route is not same throughout; it changes depending upon the global wind pattern which depends on the latitude. So, the wing-sail orientation should be such that it optimizes the use of wind energy. We have made a computer programme in which by feeding the data regarding wind velocity, wind direction, ship-motion direction; we can find out the best wing-sail position and fuel saving for commercial ships. We have calculated net fuel saving in certain international shipping routes, for instance, from Mumbai in India to Durban in South Africa. Our estimates show that about 8.3% diesel fuel can be saved by utilizing the wind. We are also developing an experimental model of the ship employing airfoils (small scale wingsail) and going to test it in National Wind Tunnel Facility in IIT Kanpur in order to develop a control mechanism for a system of airfoils.

Keywords: Commercial ships, Wind diesel hybrid system, Wing-sail, Wind direction, Wind velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3968
259 OCR for Script Identification of Hindi (Devnagari) Numerals using Error Diffusion Halftoning Algorithm with Neural Classifier

Authors: Banashree N. P., Andhe Dharani, R. Vasanta, P. S. Satyanarayana

Abstract:

The applications on numbers are across-the-board that there is much scope for study. The chic of writing numbers is diverse and comes in a variety of form, size and fonts. Identification of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], machine printed or handwritten characters/numerals are recognized. There are plentiful approaches that deal with problem of detection of numerals/character depending on the sort of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent our work focused on a technique in feature extraction i.e. Local-based approach, a method using 16-segment display concept, which is extracted from halftoned images & Binary images of isolated numerals. These feature vectors are fed to neural classifier model that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. Experimentation result shows that recognition rate of halftoned images is 98 % compared to binary images (95%).

Keywords: OCR, Halftoning, Neural classifier, 16-segmentdisplay concept.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
258 Efficient DTW-Based Speech Recognition System for Isolated Words of Arabic Language

Authors: Khalid A. Darabkh, Ala F. Khalifeh, Baraa A. Bathech, Saed W. Sabah

Abstract:

Despite the fact that Arabic language is currently one of the most common languages worldwide, there has been only a little research on Arabic speech recognition relative to other languages such as English and Japanese. Generally, digital speech processing and voice recognition algorithms are of special importance for designing efficient, accurate, as well as fast automatic speech recognition systems. However, the speech recognition process carried out in this paper is divided into three stages as follows: firstly, the signal is preprocessed to reduce noise effects. After that, the signal is digitized and hearingized. Consequently, the voice activity regions are segmented using voice activity detection (VAD) algorithm. Secondly, features are extracted from the speech signal using Mel-frequency cepstral coefficients (MFCC) algorithm. Moreover, delta and acceleration (delta-delta) coefficients have been added for the reason of improving the recognition accuracy. Finally, each test word-s features are compared to the training database using dynamic time warping (DTW) algorithm. Utilizing the best set up made for all affected parameters to the aforementioned techniques, the proposed system achieved a recognition rate of about 98.5% which outperformed other HMM and ANN-based approaches available in the literature.

Keywords: Arabic speech recognition, MFCC, DTW, VAD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4075
257 Network Based Intrusion Detection and Prevention Systems in IP-Level Security Protocols

Authors: R. Kabila

Abstract:

IPsec has now become a standard information security technology throughout the Internet society. It provides a well-defined architecture that takes into account confidentiality, authentication, integrity, secure key exchange and protection mechanism against replay attack also. For the connectionless security services on packet basis, IETF IPsec Working Group has standardized two extension headers (AH&ESP), key exchange and authentication protocols. It is also working on lightweight key exchange protocol and MIB's for security management. IPsec technology has been implemented on various platforms in IPv4 and IPv6, gradually replacing old application-specific security mechanisms. IPv4 and IPv6 are not directly compatible, so programs and systems designed to one standard can not communicate with those designed to the other. We propose the design and implementation of controlled Internet security system, which is IPsec-based Internet information security system in IPv4/IPv6 network and also we show the data of performance measurement. With the features like improved scalability and routing, security, ease-of-configuration, and higher performance of IPv6, the controlled Internet security system provides consistent security policy and integrated security management on IPsec-based Internet security system.

Keywords: IDS, IPS, IP-Sec, IPv6, IPv4, VPN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4542
256 Perceptual JPEG Compliant Coding by Using DCT-Based Visibility Thresholds of Color Images

Authors: Kuo-Cheng Liu

Abstract:

Effective estimation of just noticeable distortion (JND) for images is helpful to increase the efficiency of a compression algorithm in which both the statistical redundancy and the perceptual redundancy should be accurately removed. In this paper, we design a DCT-based model for estimating JND profiles of color images. Based on a mathematical model of measuring the base detection threshold for each DCT coefficient in the color component of color images, the luminance masking adjustment, the contrast masking adjustment, and the cross masking adjustment are utilized for luminance component, and the variance-based masking adjustment based on the coefficient variation in the block is proposed for chrominance components. In order to verify the proposed model, the JND estimator is incorporated into the conventional JPEG coder to improve the compression performance. A subjective and fair viewing test is designed to evaluate the visual quality of the coding image under the specified viewing condition. The simulation results show that the JPEG coder integrated with the proposed DCT-based JND model gives better coding bit rates at visually lossless quality for a variety of color images.

Keywords: Just-noticeable distortion (JND), discrete cosine transform (DCT), JPEG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
255 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.

Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536
254 Health Assessment and Disorders of External Respiration Function among Physicians

Authors: A. G. Margaryan

Abstract:

Aims and Objectives: Assessment of health status and detection disorders of external respiration functions (ERF) during preventative medical examination among physicians of Armenia. Subjects and Methods: Overall, fifty-nine physicians (17 men and 42 women) were examined and spirometry was carried out. The average age of the physicians was 50 years old. The studies were conducted on the Micromedical MicroLab 3500 Spirometer. Results: 25.4% among 59 examined physicians are overweight; 22.0% of them suffer from obesity. Two physicians are currently smokers. About half of the examined physicians (50.8%) at the time of examination were diagnosed with some diseases and had different health-related problems (excluding the problems related to vision and hearing). FVC was 2.94±0.1, FEV1 – 2.64±0.1, PEF – 329.7±19.9, and FEV1%/FVC – 89.7±1.3. Pathological changes of ERF are identified in 23 (39.0%) cases. 28.8% of physicians had first degree of restrictive disorders, 3.4% – first degree of combined obstructive/ restrictive disorders, 6.8% – second degree of combined obstructive/ restrictive disorders. Only three physicians with disorders of the ERF were diagnosed with chronic bronchitis and bronchial asthma. There were no statistically significant changes in ERF depending on the severity of obesity (P> 0.05). Conclusion: The study showed the prevalence of ERF among physicians, observing mainly mild and moderate changes in ERF parameters.

Keywords: Armenia, external respiration function, health status, physicians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
253 A New Method in Detection of Ceramic Tiles Color Defects Using Genetic C-Means Algorithm

Authors: Mahkameh S. Mostafavi

Abstract:

In this paper an algorithm is used to detect the color defects of ceramic tiles. First the image of a normal tile is clustered using GCMA; Genetic C-means Clustering Algorithm; those results in best cluster centers. C-means is a common clustering algorithm which optimizes an objective function, based on a measure between data points and the cluster centers in the data space. Here the objective function describes the mean square error. After finding the best centers, each pixel of the image is assigned to the cluster with closest cluster center. Then, the maximum errors of clusters are computed. For each cluster, max error is the maximum distance between its center and all the pixels which belong to it. After computing errors all the pixels of defected tile image are clustered based on the centers obtained from normal tile image in previous stage. Pixels which their distance from their cluster center is more than the maximum error of that cluster are considered as defected pixels.

Keywords: C-Means algorithm, color spaces, Genetic Algorithm, image clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
252 Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes

Authors: Amira Shakila Razali, Faridah Lisa Supian, Muhammad Mat Salleh, Suraini Abu Bakar

Abstract:

Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These studies focus on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this modification for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).The nanocomposites MWCNTs-calixarene have potential for development of sensor for pollutant monitoring and nanoelectronics devices applications.

Keywords: Calixarene, Multiwalled Carbon Nanotubes, Cadmium, Surface Potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
251 Off-Line Detection of “Pannon Wheat” Milling Fractions by Near-Infrared Spectroscopic Methods

Authors: E. Izsó, M. Bartalné-Berceli, Sz. Gergely, A. Salgó

Abstract:

The aim of this investigation is to elaborate nearinfrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. These wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis [PCA], cluster analysis [CA]) and operation condition of milling technology. It is obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology.

Keywords: Allied wheat fractions, CA, milling process, nearinfrared spectroscopy, PCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
250 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
249 Development of a Real-Time Brain-Computer Interface for Interactive Robot Therapy: An Exploration of EEG and EMG Features during Hypnosis

Authors: Maryam Alimardani, Kazuo Hiraki

Abstract:

This study presents a framework for development of a new generation of therapy robots that can interact with users by monitoring their physiological and mental states. Here, we focused on one of the controversial methods of therapy, hypnotherapy. Hypnosis has shown to be useful in treatment of many clinical conditions. But, even for healthy people, it can be used as an effective technique for relaxation or enhancement of memory and concentration. Our aim is to develop a robot that collects information about user’s mental and physical states using electroencephalogram (EEG) and electromyography (EMG) signals and performs costeffective hypnosis at the comfort of user’s house. The presented framework consists of three main steps: (1) Find the EEG-correlates of mind state before, during, and after hypnosis and establish a cognitive model for state changes, (2) Develop a system that can track the changes in EEG and EMG activities in real time and determines if the user is ready for suggestion, and (3) Implement our system in a humanoid robot that will talk and conduct hypnosis on users based on their mental states. This paper presents a pilot study in regard to the first stage, detection of EEG and EMG features during hypnosis.

Keywords: Hypnosis, EEG, robotherapy, brain-computer interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571