Search results for: Data Centric Approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11074

Search results for: Data Centric Approach

9184 Statistical Estimation of Spring-back Degree Using Texture Database

Authors: Takashi Sakai, Shinsaku Kikuta, Jun-ichi Koyama

Abstract:

Using a texture database, a statistical estimation of spring-back was conducted in this study on the basis of statistical analysis. Both spring-back in bending deformation and experimental data related to the crystal orientation show significant dispersion. Therefore, a probabilistic statistical approach was established for the proper quantification of these values. Correlation was examined among the parameters F(x) of spring-back, F(x) of the buildup fraction to three orientations after 92° bending, and F(x) at an as-received part on the basis of the three-parameter Weibull distribution. Consequent spring-back estimation using a texture database yielded excellent estimates compared with experimental values.

Keywords: Bending, Spring-back, Database, Crystallographic Orientation, Texture, SEM-EBSD, Weibull distribution, Statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
9183 Utilizing Innovative Techniques to Improve Email Security

Authors: Amany M. Alshawi, Khaled Alduhaiman

Abstract:

This paper proposes a technique to protect against email bombing. The technique employs a statistical approach, Naïve Bayes (NB), and Neural Networks to show that it is possible to differentiate between good and bad traffic to protect against email bombing attacks. Neural networks and Naïve Bayes can be trained by utilizing many email messages that include both input and output data for legitimate and non-legitimate emails. The input to the model includes the contents of the body of the messages, the subject, and the headers. This information will be used to determine if the email is normal or an attack email. Preliminary tests suggest that Naïve Bayes can be trained to produce an accurate response to confirm which email represents an attack.

Keywords: Email bombing, Legitimate email, Naïve Bayes, Neural networks, Non-legitimate email.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
9182 Comparison of Hough Transform and Mean Shift Algorithm for Estimation of the Orientation Angle of Industrial Data Matrix Codes

Authors: Ion-Cosmin Dita, Vasile Gui, Franz Quint, Marius Otesteanu

Abstract:

In automatic manufacturing and assembling of mechanical, electrical and electronic parts one needs to reliably identify the position of components and to extract the information of these components. Data Matrix Codes (DMC) are established by these days in many areas of industrial manufacturing thanks to their concentration of information on small spaces. In today’s usually order-related industry, where increased tracing requirements prevail, they offer further advantages over other identification systems. This underlines in an impressive way the necessity of a robust code reading system for detecting DMC on the components in factories. This paper compares two methods for estimating the angle of orientation of Data Matrix Codes: one method based on the Hough Transform and the other based on the Mean Shift Algorithm. We concentrate on Data Matrix Codes in industrial environment, punched, milled, lasered or etched on different materials in arbitrary orientation.

Keywords: Industrial data matrix code, Hough transform, mean shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
9181 Ideal Disinfectant Characteristics According Data in Published Literature

Authors: Saimir Heta, Ilma Robo, Rialda Xhizdari, Kers Kapaj

Abstract:

The stability of an ideal disinfectant should be constant regardless of the change in the atmospheric conditions of the environment where it is kept. If the conditions such as temperature or humidity change, it is understood that it will also be necessary to approach possible changes in the holding materials such as plastic or glass bottles with the aim of protecting the disinfectant, for example, from the excessive lighting of the environment, which can also be translated as an increase in the temperature of disinfectant as a fluid. In this study, an attempt was made to find the most recent published data about the best possible combination of disinfectants indicated for use after dental procedures. This purpose of the study was realized by comparing the basic literature that is studied in the field of dentistry by students with the most published data in the literature of recent years about this topic. Each disinfectant is represented by a number called the disinfectant count, in which different factors can influence the increase or reduction of variables whose production remains a specific statistic for a specific disinfectant. The changes in the atmospheric conditions where the disinfectant is deposited and stored in the environment are known to affect the stability of the disinfectant as a fluid; this fact is known and even cited in the leaflets accompanying the manufactured boxes of disinfectants. It is these cares, in the form of advice, which are based not only on the preservation of the disinfectant but also on the application in order to have the desired clinical result. Aldehydes have the highest constant among the types of disinfectants, followed by acids. The lowest value of the constant belongs to the class of glycols, the predecessors of which were the halogens, in which class there are some representatives with disinfection applications. The class of phenols and acids have almost the same intervals of constants. If the goal were to find the ideal disinfectant among the large variety of disinfectants produced, a good starting point would be to find something unchanging or a fixed, unchanging element on the basis of which the comparison can be made properties of different disinfectants. Precisely based on the results of this study, the role of the specific constant according to the specific disinfectant is highlighted. Finding an ideal disinfectant, like finding a medication or the ideal antibiotic, is an ongoing but unattainable goal.

Keywords: Different disinfectants, phenols, aldehydes, specific constant, dental procedures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42
9180 Integrated Waste-to-Energy Approach: An Overview

Authors: Tsietsi J. Pilusa, Tumisang G. Seodigeng

Abstract:

This study evaluates the benefits of advanced waste management practices in unlocking waste-to-energy opportunities within the solid waste industry. The key drivers of sustainable waste management practices, specifically with respect to packaging waste-to-energy technology options are discussed. The success of a waste-to-energy system depends significantly on the appropriateness of available technologies, including those that are well established as well as those that are less so. There are hard and soft interventions to be considered when packaging an integrated waste treatment solution. Technology compatibility with variation in feedstock (waste) quality and quantities remains a key factor. These factors influence the technology reliability in terms of production efficiencies and product consistency, which in turn, drives the supply and demand network. Waste treatment technologies rely on the waste material as feedstock; the feedstock varies in quality and quantities depending on several factors; hence, the technology fails, as a result. It is critical to design an advanced waste treatment technology in an integrated approach to minimize the possibility of technology failure due to unpredictable feedstock quality, quantities, conversion efficiencies, and inconsistent product yield or quality. An integrated waste-to-energy approach offers a secure system design that considers sustainable waste management practices.

Keywords: Emerging markets, evaluation tool, interventions, waste treatment technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
9179 Developing a Practice Guideline for Enhancing Communication in Hearing Families with Deaf Children

Authors: Nomataru P. Gontse, Lavanithum Joseph

Abstract:

Deafness coupled with a lack of support and resources in developing countries poses a serious threat to the well- being of children. The mismatch between the needs of persons with disabilities and the resources available to them is a key factor in service provision in resource constrained contexts. Furthermore, deafness in children is the most common childhood sensory disorder in developing countries, and as such seriously affected with regard to resource constraints. This paper discusses the issues and research protocol for a Ph.D. study that aims to develop a practice guideline that is contextually sensitive and includes an interdisciplinary approach that will improve the outcomes of learners and the relationships in hearing households with deaf learners in rural areas of the Eastern Cape, one of the poorest provinces in South Africa. The guideline developed will consider the lived experiences of deaf children and their hearing families on the impact deafness has on their relationships and communication at home. Ethical clearance for the study has been obtained. The methodology is a mixed-methods approach in the form of a survey using questionnaires and semi-structured interviews with deaf learners in primary and high school and their hearing parents to get their perspective on the impact deafness has on their relationships and communication at home. The study is conducted using adolescent learners from Grades 7 to 12 (excluding learners younger than 12 years and older than 21 years). An audiologist, teachers, and support staff will also give their views on how the intervention is currently done and possible suggestions on how management can be done differently. Data collection will be conducted in isiXhosa by the researcher, as isiXhosa is dominant in this region. The interviews will be conducted in South African Sign Language by the sign language interpreter for deaf learners and educational professionals. An expected outcome for this study is the development of recommendations and a practice guideline for deaf children diagnosed late from rural or under-resourced environments. To ensure the implementation of the findings, in the end, professionals will be given feedback on the outcomes of the study so that they can identify areas within their practices that require updated knowledge. The developed guideline is expected to have an impact on the Department of Education policies both regionally and nationally, providing recommendations for a strategic management plan and practice guidelines for this vulnerable and marginalized population. The IsiXhosa specific context could be generalized to other similar contexts.

Keywords: Deafness, family-centred approach, early identification, rural communities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382
9178 Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools

Authors: M. Johnson, R. Faggian, V. Sposito

Abstract:

A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria’s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria’s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity.

Keywords: Agriculture, decision-support management tools, GIS, sustainable intensification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
9177 Implementation of Security Algorithms for u-Health Monitoring System

Authors: Jiho Park, Yong-Gyu Lee, Gilwon Yoon

Abstract:

Data security in u-Health system can be an important issue because wireless network is vulnerable to hacking. However, it is not easy to implement a proper security algorithm in an embedded u-health monitoring because of hardware constraints such as low performance, power consumption and limited memory size and etc. To secure data that contain personal and biosignal information, we implemented several security algorithms such as Blowfish, data encryption standard (DES), advanced encryption standard (AES) and Rivest Cipher 4 (RC4) for our u-Health monitoring system and the results were successful. Under the same experimental conditions, we compared these algorithms. RC4 had the fastest execution time. Memory usage was the most efficient for DES. However, considering performance and safety capability, however, we concluded that AES was the most appropriate algorithm for a personal u-Health monitoring system.

Keywords: biosignal, data encryption, security measures, u-health

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
9176 A Symbol by Symbol Clustering Based Blind Equalizer

Authors: Kristina Georgoulakis

Abstract:

A new blind symbol by symbol equalizer is proposed. The operation of the proposed equalizer is based on the geometric properties of the two dimensional data constellation. An unsupervised clustering technique is used to locate the clusters formed by the received data. The symmetric properties of the clusters labels are subsequently utilized in order to label the clusters. Following this step, the received data are compared to clusters and decisions are made on a symbol by symbol basis, by assigning to each data the label of the nearest cluster. The operation of the equalizer is investigated both in linear and nonlinear channels. The performance of the proposed equalizer is compared to the performance of a CMAbased blind equalizer.

Keywords: Blind equalization, channel equalization, cluster based equalisers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
9175 New Approaches on Exponential Stability Analysis for Neural Networks with Time-Varying Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper, utilizing the Lyapunov functional method and combining linear matrix inequality (LMI) techniques and integral inequality approach (IIA) to study the exponential stability problem for neural networks with discrete and distributed time-varying delays.By constructing new Lyapunov-Krasovskii functional and dividing the discrete delay interval into multiple segments,some new delay-dependent exponential stability criteria are established in terms of LMIs and can be easily checked.In order to show the stability condition in this paper gives much less conservative results than those in the literature,numerical examples are considered.

Keywords: Neural networks, Exponential stability, LMI approach, Time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
9174 Analysis of Causality between Defect Causes Using Association Rule Mining

Authors: Sangdeok Lee, Sangwon Han, Changtaek Hyun

Abstract:

Construction defects are major components that result in negative impacts on project performance including schedule delays and cost overruns. Since construction defects generally occur when a few associated causes combine, a thorough understanding of defect causality is required in order to more systematically prevent construction defects. To address this issue, this paper uses association rule mining (ARM) to quantify the causality between defect causes, and social network analysis (SNA) to find indirect causality among them. The suggested approach is validated with 350 defect instances from concrete works in 32 projects in Korea. The results show that the interrelationships revealed by the approach reflect the characteristics of the concrete task and the important causes that should be prevented.

Keywords: Causality, defect causes, social network analysis, association rule mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
9173 Performance Shortfalls and Corporate Recidivism: A Contingency Approach

Authors: Kepeng Li

Abstract:

This paper examines the phenomenon of recidivism in the Chinese stock market, emphasizing the significance of mitigating repeat offences within the corporate domain. Using a contingency model and data from Chinese publicly listed companies (1999-2018), the study investigates the impact of underperformance, governance factors, and managerial traits on unethical conduct. The research suggests that persistently unmet economic objectives can foster problem-focused exploration, potentially leading to misconduct. Furthermore, the study considers the unique cultural context of China, where “guanxi” and corruption may influence corporate behavior. It concludes that governance mechanisms play a pivotal role in regulating corporate behavior, underscoring the necessity for enhanced oversight and enforcement of corporate governance standards.

Keywords: Recidivism, corporate misbehavior, BTOF, aspiration level, corporate governance, individual characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106
9172 Zero Inflated Models for Overdispersed Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

The zero inflated models are usually used in modeling count data with excess zeros where the existence of the excess zeros could be structural zeros or zeros which occur by chance. These type of data are commonly found in various disciplines such as finance, insurance, biomedical, econometrical, ecology, and health sciences which involve sex and health dental epidemiology. The most popular zero inflated models used by many researchers are zero inflated Poisson and zero inflated negative binomial models. In addition, zero inflated generalized Poisson and zero inflated double Poisson models are also discussed and found in some literature. Recently zero inflated inverse trinomial model and zero inflated strict arcsine models are advocated and proven to serve as alternative models in modeling overdispersed count data caused by excessive zeros and unobserved heterogeneity. The purpose of this paper is to review some related literature and provide a variety of examples from different disciplines in the application of zero inflated models. Different model selection methods used in model comparison are discussed.

Keywords: Overdispersed count data, model selection methods, likelihood ratio, AIC, BIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4532
9171 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based On Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focusses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: Auto-ID, Construction Logistic, Fuzzy, Monitoring, RFID, Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
9170 Optimal Manufacturing Scheduling for Dependent Details Processing

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing schedules. The paper presents an optimization manufacture scheduling approach for dependent details processing with given processing sequences and times on multiple machines. By defining decision variables as start and end moments of details processing it is possible to use straightforward variables restrictions to satisfy different technological requirements and to formulate easy to understand and solve optimization tasks for multiple numbers of details and machines. A case study example is solved for seven base moldings for CNC metalworking machines processed on five different machines with given processing order among details and machines and known processing time-s duration. As a result of linear optimization task solution the optimal manufacturing schedule minimizing the overall processing time is obtained. The manufacturing schedule defines the moments of moldings delivery thus minimizing storage costs and provides mounting due-time satisfaction. The proposed optimization approach is based on real manufacturing plant problem. Different processing schedules variants for different technological restrictions were defined and implemented in the practice of Bulgarian company RAIS Ltd. The proposed approach could be generalized for other job shop scheduling problems for different applications.

Keywords: Optimal manufacturing scheduling, linear programming, metalworking machines production, dependant details processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
9169 Nuclear Data Evaluation for 217Po

Authors: Sherif S. Nafee, Amir K. Al-Ramady, Salem S. Shaheen

Abstract:

Evaluated nuclear decay data for the 217Po nuclide is presented in the present work. These data include recommended values for the half-life T1/2, α-, β-- and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons and the K-shell to L-shell and L-shell to M-shell and to N-shell conversion electrons ratios K/L, L/M and L/N have been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.

Keywords: Atomic Mass Evaluation, Nuclear Data Evaluation, Total Electron Conversion Electrons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
9168 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
9167 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach

Authors: Abdallah Al-Shammari

Abstract:

This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solution

Keywords: Linear programming, Petrochemicals, stability analysis, uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
9166 Proposal to Increase the Efficiency, Reliability and Safety of the Centre of Data Collection Management and Their Evaluation Using Cluster Solutions

Authors: Martin Juhas, Bohuslava Juhasova, Igor Halenar, Andrej Elias

Abstract:

This article deals with the possibility of increasing efficiency, reliability and safety of the system for teledosimetric data collection management and their evaluation as a part of complex study for activity “Research of data collection, their measurement and evaluation with mobile and autonomous units” within project “Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants”. Possible weaknesses in existing system are identified. A study of available cluster solutions with possibility of their deploying to analysed system is presented

Keywords: Teledosimetric data, efficiency, reliability, safety, cluster solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
9165 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: Classification algorithms; data mining; tourism; knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
9164 Image Thresholding for Weld Defect Extraction in Industrial Radiographic Testing

Authors: Nafaâ Nacereddine, Latifa Hamami, Djemel Ziou

Abstract:

In non destructive testing by radiography, a perfect knowledge of the weld defect shape is an essential step to appreciate the quality of the weld and make decision on its acceptability or rejection. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of thresholding methods must be done judiciously. In this paper, performance criteria are used to conduct a comparative study of thresholding methods based on gray level histogram, 2-D histogram and locally adaptive approach for weld defect extraction in radiographic images.

Keywords: 1D and 2D histogram, locally adaptive approach, performance criteria, radiographic image, thresholding, weld defect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
9163 Analysis of Users’ Behavior on Book Loan Log Based On Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, Apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: Behavior, data mining technique, Apriori algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
9162 Data Integrity: Challenges in Health Information Systems in South Africa

Authors: T. Thulare, M. Herselman, A. Botha

Abstract:

Poor system use, including inappropriate design of health information systems, causes difficulties in communication with patients and increased time spent by healthcare professionals in recording the necessary health information for medical records. System features like pop-up reminders, complex menus, and poor user interfaces can make medical records far more time consuming than paper cards as well as affect decision-making processes. Although errors associated with health information and their real and likely effect on the quality of care and patient safety have been documented for many years, more research is needed to measure the occurrence of these errors and determine the causes to implement solutions. Therefore, the purpose of this paper is to identify data integrity challenges in hospital information systems through a scoping review and based on the results provide recommendations on how to manage these. Only 34 papers were found to be most suitable out of 297 publications initially identified in the field. The results indicated that human and computerized systems are the most common challenges associated with data integrity and factors such as policy, environment, health workforce, and lack of awareness attribute to these challenges but if measures are taken the data integrity challenges can be managed.

Keywords: Data integrity, data integrity challenges, hospital information systems, South Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
9161 The Link between Distributed Leadership and Educational Outcomes: An Overview of Research

Authors: Maria Eliophotou Menon

Abstract:

School leadership is commonly considered to have a significant influence on school effectiveness and improvement. Effective school leaders are expected to successfully introduce and support change and innovation at the school unit. Despite an abundance of studies on educational leadership, very few studies have provided evidence on the link between leadership models, and specific educational and school outcomes. This is true of a popular contemporary approach to leadership, namely, distributed leadership. The paper provides an overview of research findings on the effect of distributed leadership on educational outcomes. The theoretical basis for this approach to leadership is presented, with reference to methodological and research limitations. The paper discusses research findings and draws their implications for educational research on school leadership.

Keywords: Distributed leadership, educational outcomes, leadership research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3721
9160 Study on Specific Energy in Grinding of DRACs: A Response Surface Methodology Approach

Authors: Dayananda Pai, Shrikantha S. Rao, Savitha G.Kini

Abstract:

In this study, the effects of machining parameters on specific energy during surface grinding of 6061Al-SiC35P composites are investigated. Vol% of SiC, feed and depth of cut were chosen as process variables. The power needed for the calculation of the specific energy is measured from the two watt meter method. Experiments are conducted using standard RSM design called Central composite design (CCD). A second order response surface model was developed for specific energy. The results identify the significant influence factors to minimize the specific energy. The confirmation results demonstrate the practicability and effectiveness of the proposed approach.

Keywords: ANOVA, Metal matrix composites, Response surface methodology, Specific energy, Two watt meter method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
9159 Release Management with Continuous Delivery: A Case Study

Authors: A. Maruf Aytekin

Abstract:

We present our approach on using continuous delivery pattern for release management. One of the key practices of agile and lean teams is the continuous delivery of new features to stakeholders. The main benefits of this approach lie in the ability to release new applications rapidly which has real strategic impact on the competitive advantage of an organization. Organizations that successfully implement Continuous Delivery have the ability to evolve rapidly to support innovation, provide stable and reliable software in more efficient ways, decrease the amount of resources need for maintenance, and lower the software delivery time and costs. One of the objectives of this paper is to elaborate a case study where IT division of Central Securities Depository Institution (MKK) of Turkey apply Continuous Delivery pattern to improve release management process.

Keywords: Automation, continuous delivery, deployment, release management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5466
9158 A Simple Approach of Three phase Distribution System Modeling for Power Flow Calculations

Authors: J. B. V. Subrahmanyam, C. Radhakrishna

Abstract:

This paper presents a simple three phase power flow method for solution of three-phase unbalanced radial distribution system (RDN) with voltage dependent loads. It solves a simple algebraic recursive expression of voltage magnitude, and all the data are stored in vector form. The algorithm uses basic principles of circuit theory and can be easily understood. Mutual coupling between the phases has been included in the mathematical model. The proposed algorithm has been tested with several unbalanced radial distribution networks and the results are presented in the article. 8- bus and IEEE 13 bus unbalanced radial distribution system results are in agreements with the literature and show that the proposed model is valid and reliable.

Keywords: radial distribution networks, load flow, circuitmodel, three-phase four-wire, unbalance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3996
9157 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
9156 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151
9155 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919