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Abstract— A new blind symbol by symbol equalizer is proposed.
The operation of the proposed equalizer is based on the geometric
properties of the two dimensional data constellation. An unsupervised
clustering technique is used to locate the clusters formed by the
received data. The symmetric properties of the clusters labels are
subsequently utilized in order to label the clusters. Following this
step, the received data are compared to clusters and decisions are
made on a symbol by symbol basis, by assigning to each data
the label of the nearest cluster. The operation of the equalizer is
investigated both in linear and nonlinear channels. The performance
of the proposed equalizer is compared to the performance of a CMA-
based blind equalizer.

Keywords— Blind equalization, channel equalization, cluster
based equalisers

I. INTRODUCTION

INTERSYMBOL Interference (ISI) is a major impairment
in today’s high bit rate communication systems [1]. Chan-

nel equalizers used in the receiver part aim to suppress the
effect of ISI. In most of the cases the communication channel
is unknown and the design of the equalizer is performed on
the basis of a known training sequence of information bits.
However, there are many cases that the transmission of a
training sequence is not possible or desirable. This mode of
equalizer design is known as blind.

Blind channel equalization is a challenging task and has
been the focus of intense research effort. Recently, an interest
has risen on approaches based on data clustering techniques
[2], [3], [4], [5].

In this paper a novel blind cluster based symbol by symbol
equalizer is proposed. The equalizer extracts the information
needed to perform data detection from the clusters formed by
the received data. The whole process involves a simple symbol
by symbol decision procedure. The cluster based blind channel
estimation algorithm consists of two steps: a) data clusters
estimation via an unsupervised learning technique and b)
labeling of the estimated clusters by unraveling the information
hidden in the geometry of the clusters constellation in the
two dimensional space. That is, for data generated by bipolar
alphabets (assumed in this paper) the clusters are arranged
in pairs of clusters with the right sided cluster labeled as
+1 and the left sided cluster labeled as −1. This is the
property of symmetric labels and it is used in order to label
the clusters. Determination of the pair of clusters is obtained,
in the linear case, by using the results of [6] concerning the
properties of the convex hull of the clusters constellation.
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Fig. 1. The system diagram.

However, in contrast to [6], in this paper the estimation of
the magnitude of the channel taps (absolute values) provide
sufficient information for the design of the equalizer and
therefore, there is no need to estimate the specific permutation
of the channel taps.

When channel estimation is completed the received data are
compared to clusters and a closest neighbor rule [7] is utilized
to achieve data detection on a symbol by symbol basis. That
is, the currently observed data is classified by assigning to it
the label associated with the nearest cluster. The algorithm is
applied to linear channels. The extension of the algorithm in
nonlinear channels is also investigated.

The paper is organized as follows. Section II presents the
system description and the properties of the two dimensional
clusters constellation when the channel under consideration
is linear. Section III describes the proposed symbol by sym-
bol blind equalizer. Next, the paper is concerned with the
extension of the algorithm to the nonlinear channel case.
Section IV.A describes the clusters constellation properties for
nonlinear channels and in Section IV.B the respective equalizer
follows. In Section V simulation results are given and finally,
in Section VI conclusions are drawn.

II. CLUSTERS CONSTELLATION PROPERTIES

The channel equalization set up adopted in this paper is
illustrated in Fig. 1.

The received signal g(t) of an ISI and noise impaired linear
system is written as:

g(t) =

L
∑

i=0

h(i)I(t − i) + w(t), (1)

where I(t) is an equiprobable sequence of transmitted data
taken from a binary alphabet, i.e., I(t) ∈ {±1}, h(i) is
the channel impulse response and w(t) is an Additive White
Gaussian Noise (AWGN) sequence. Equation (1) can also be
written as:

g(t) = c(t) + w(t), (2)

where c(t) is the noiseless channel output sequence which is
a discrete values signal with 2L+1 different elements.
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In this paper, the necessary information for data detection is
extracted from the geometric structure created by the received
data in the two dimensional space. Consider the 2 x 1 vector
of successively received samples:

g(t) = [g(t) g(t − 1)]T . (3)

In the absence of noise, g(t) is associated with Q = 2L+2

points in the two dimensional space. Each point corresponds
to one of the 2L+2 possible realizations of the sequence of
transmitted bits: (I(t), ..., I(t−L−1)). If the received data is
corrupted by AWGN, then the randomness of noise leads to
the formation of a cluster around each point. Each cluster
is represented by a suitably chosen representative, which
corresponds to the noiseless channel response vector in the
two dimensional space, i.e.,

c(t) = [c(t) c(t − 1)]T

where c(t) ∈ {ck = [ck1 ck2]
T , k = 1, ..., Q}. Each

cluster representative, ck, corresponds to a specific sequence
of transmitted data denoted as: (Ik0Ik1, ..., IkLIk(L+1)). The
two components of a clusters representative, ck, are written
as:

ck1 =

L
∑

l=0

Iklh(l), ck2 =

L+1
∑

l=1

Iklh(l − 1). (4)

Each cluster is characterized by a label, Xk, which is defined
as the value of the corresponding emitted data, i.e., Xk =
Ikd = I(t − d). Parameter d is an appropriately chosen delay
and Xk ∈ {±1}.

For a linear channel, the edges Ei, i = 1, .., 2L + 4, of
the convex hull, H , of the two dimensional data constellation
contain information related to the channel taps [6]. That is,
every edge Ei of H is parallel to some vector ui, where:

u0 = [h(0) 0]T ,u1 = [h(1) h(0)]T , ....,uL+1 = [0 h(L)]T .

The length of Ei is equal to 2|ui|. Actually, there are two
edges parallel to each vector ui.

Moreover, for the edges of the convex hull the following
Theorem is shown.

Theorem 1: For each unique edge, Ei, (i=1,...,L+2) of the
convex hull there are Q/2 pairs of clusters such that each
cluster of a pair defines the endpoint of a line segment parallel
to the edge Ei. The length of each line segment is equal to
the length of Ei.

Proof: Let us consider two clusters: ck = [ck1 ck2]
T

and cj = [cj1 cj2]
T which correspond to the transmitted

sequences: (Ik0....Ik(L+1)) and (Ij0...Ij(L+1)), respectively,
where

Ikl =

{

Ijl l �= i
−Ijl l = i

for l = 0, ..., L + 1 and i ∈ {0, ..., L + 1}. Using (4) we get:

|ck1 − cj1| = 2|h(i)| (5)

and
|ck2 − cj2| = 2|h(i − 1)|.

Fig. 2. Clusters formed by the linear channel H(z) = 1 + 0.5z−1 and
binary data. Convex hull of the two dimensional data constellation and line
segments parallel to edge Ej formed by the corresponding pair of clusters.

Fig. 3. Clusters formed by the linear channel H(z) = 1 + 0.5z−1 and
binary data. Labeling of clusters over the bit I(t − 1).

As a consequence, for each specific i, i ∈ {0, ..., L + 1},
there are Q/2 such pairs of clusters, in the two dimensional
constellation being separated by a distance equal to 2|ui|. The
corresponding transmitted sequences of the two clusters of
each pair are the same except from the value of data Iki and
Iji (i.e., I(t − i)).

The concept of Theorem 1 is graphically illustrated in Fig.
2. The figure represents the clusters constellation formed by
a simple linear channel H(z) = 1 + 0.5z−1 and Signal to
Noise Ratio (SNR) equal to 40dB. In the figure also appear
the convex hull of the two dimensional data constellation as
well as a set of 4 pair of clusters parallel to the edge Ej .

Definition: By now, we will call a pair of clusters two
clusters, ck and cj , sharing the same data except from the
value of Iki and Iji respectively (i ∈ 0, ..., L + 1). In the
linear channel case, the two clusters of a pair are separated
by distance equal to 2|ui| (Theorem 1).

Definition: We call a set of pairs of clusters the Q/2 pairs
of clusters satisfying Theorem 1, for a specific edge, Ei.
Actually, for a channel with length L + 1, there are L + 2
such sets of pairs.
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Fig. 4. The proposed blind symbol by symbol equalizer.

For the labels of the pairs of clusters belonging to a specific
set the following Theorem holds.

Theorem 2: (Property of labels symmetry) Let us consider
a) an edge, Ei, (i = 1, ..., L + 2) of the convex hull of the
two dimensional data constellation and b) the set of pairs of
clusters corresponding to this edge. All the right-hand side
clusters of all the pairs of the set correspond to a transmitted
bit I(t−i) = +1 and all the left-hand side clusters correspond
to a transmitted bit I(t − i) = −1 (or vice versa).

Proof: Consider the clusters ck and cj which form a pair
of clusters of the specific set and let

ck1 = Ikih(i) +
∑

l �=i

Iklh(l), cj1 = Ijih(i) +
∑

l �=i

Ijlh(l).

Suppose that
ck1 < cj1.

This simply implies that the corresponding labels of the
clusters are ordered as:

Iki < Iji.

This is true since:
∑

l �=i

Iklh(l) =
∑

l �=i

Ijlh(l).

That is, the right sided cluster has label I(t − i) = +1 and
the left cluster has label I(t − i) = −1. This ordering of the
labels is valid under the assumption that h(i) > 0. If h(i) < 0
then the opposite ordering takes place, i.e., if ck1 < cj1 then
Iki > Iji.

Fig. 3 represents, for the same channel as in the previous
example, a set of four pairs of clusters which form line
segments parallel to the horizontal edge. It can be observed
that for all the pair of clusters: the right hand side cluster has
label I(t) = +1 and the left-hand side has label I(t) = −1.
The corresponding labeling over the bit I(t − 1) appears in
Fig. 2.

III. SYMBOL BY SYMBOL BLIND CLUSTERING

EQUALIZER

In this Section, a novel symbol by symbol blind equalizer
is proposed based on the clusters constellation properties
developed in Section 2. The block diagram of the proposed
equalizer appears in Fig. 4. First, clusters estimation takes
place and then the signal detection procedure follows.

A cluster-based blind channel estimation algorithm consists
of two steps [4]:

a) clusters representatives estimation via an unsupervised
learning technique and

b) labeling of the estimated clusters.

In the proposed equalizer the two dimensional clusters
representatives are identified by means of the Neural Gas
algorithm [8].

The proposed labeling algorithm aims to the characteriza-
tion of each specific cluster according to the respective value
of the transmitted data I(t−d), where d is an unknown delay.
It is known that a nonzero lag, d, permits a better equalization
performance [9]. In the proposed algorithm, it is chosen the
delay which corresponds to the maximum tap of the channel
impulse response. From (5) it is observed that the maximum
channel tap corresponds to the maximum horizontal distance
between two clusters. That is, that way, we impose the biggest
separation among the two classes (+1, -1). For many channels
this leads to two separable decision regions. This is important
for a symbol by symbol equalizer as it makes its decisions
much more robust to the errors. For example, for the simple
channel H(z) = 1+0.5z−1, the biggest separation between the
two classes is obtained by choosing the first channel coefficient
(Fig. 2 and Fig. 3) and consequently, delay d = 0.

According to Section 2, the clusters labels in the two di-
mensional space have a symmetric distribution. Thus, clusters
labeling can be achieved by identifying the position of each
cluster in the two dimensional constellation.

The proposed labeling algorithm is summarized as follows.
First, the convex hull is estimated and the absolute values
of the channel taps are subsequently extracted using [6]. The
maximum channel tap, |h(d)|, is chosen. Then, all the clusters
pairs that are separated by horizontal and vertical distance
equal to: [2h(d) 2h(d−1)] are determined. Note, that if d = 0
then the pair’s horizontal - vertical distance is [2h(0) 0]. Then,
each cluster of a pair, lying to the left is labeled as -1 and the
other cluster is labeled as +1 (the ambiguity in the descending
or ascending order of the labels is solved by using differential
encoding [10]).

Once labeling is completed, a simple decision rule is
adopted for the detection of the received data. Given the
received data vector g(t), its distance from each cluster is
calculated, i.e.,

ri = |g(t) − ci)|, i = 1, ..., Q.

The label of the closest cluster determines the decision for the
currently observed data g(t).

The algorithm for linear channels appears in Table 1.

IV. THE NONLINEAR CHANNEL CASE

In the nonlinear channel case the convex hull of the clusters
in the two dimensional space does not contain the necessary in-
formation for estimating the channel taps any more. Moreover,
the property of the symmetric labels stated, for linear channels,
in Theorem 2, is not valid in all cases of nonlinear channels.
When the symmetry of the labels exists a variation of the linear
case algorithm can be adopted. This Section deals with a) the
clusters constellation properties for nonlinear channels and the
cases under which the symmetry of the labels exists and b) the
extension of the proposed algorithm in the nonlinear channel
case.
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TABLE I

SYMBOL BY SYMBOL CLUSTERING BASED ALGORITHM - LINEAR CASE

Symbol by Symbol Blind Equalizer for Linear Channels

A. Estimation of the two dimensional clusters

A1. Estimation of the clusters representatives, ck , k = 1, ..., Q

Unsupervised learning

A2. Labeling of clusters

a) Find the convex hull, H, and determine |h(i)|, i = 0, ..., L

b) Choose the max tap |h(d)|
c) Find the couples of clusters with distance [|2h(d)| |2h(d − 1)|]
between them (for d = 0 the distance is [|2h(0)| 0])

d) Label the (pair of) clusters:

left cluster I(t − d) = −1, right cluster I(t − d) = +1

B. Data detection

Nearest neighbor rule.

Fig. 5. Clusters formed by the linear filter H(z) = 1 + 0.5z−1 and the
nonlinearity f(t) = c(t) + 0.15c(t)2 + 0.1c(t)3 + 0.05c(t)4.

A. Clusters constellation properties

When the channel under consideration is nonlinear then the
received signal can be written as:

g(t) = f(I(t), I(t − 1), ..., I(t − L)) + w(t)

where f() is the nonlinear function representing the chan-
nel action. The model of the adopted nonlinear channel is
a cascade of a linear filter and a memoryless polynomial
nonlinearity.

The clusters representatives correspond to the noiseless
channel response and are noted as:

fk = [fk1 fk2]
T , k = 1, ..., Q.

Each cluster, fk, is related with a specific sequence of trans-
mitted data: (Ik0Ik1...IkL+1) and it is labeled by the bit
Xk = Ikd.

As in the linear case, there are L + 2 sets of Q/2 pairs of
clusters such that the two clusters of each pair, say fk and fj ,

share the same transmitted data except one, i.e., Ikl = Ijl, for
l = 0, ..., L and l �= i, i ∈ {0, ..., L} and Iki = −Iji. We
denote the horizontal and vertical distance between the two
clusters of a pair as

ln(k) = [ln1(k) ln2(k)]T ,

with k (k = 0, ..., L + 1) corresponding to the L + 2 different
sets and n (n = 1, ..., Q/2) corresponding to the Q/2 pairs of
a set. In the linear case, all the Q/2 distances characterizing
the Q/2 pairs of a set are the same (equal to 2|ui|). However,
in the nonlinear case, these distances are not equal any more.

A typical two dimensional constellation for the nonlinear
channel case is illustrated in Fig. 5, where, the clusters formed
by the linear filter H(z) = 1 + 0.5z−1 and the nonlinear
function f(t) = c(t)+0.15c(t)2+0.1c(t)3+0.05c(t)4, appear.
The distances between the clusters of the pairs of a specific
set are also plotted in the figure. Clearly, these distances have
not the same length for all the clusters pairs of the set.

Moreover, in the linear case, all the labels of the clusters
pairs are ordered (property of symmetric labels). This is not
true in all the cases of nonlinear channels.

In an attempt to investigate the property of labels symmetry,
to determine the pairs of clusters of a set and to extract
information about the values of channel taps we focus our
attention in two specifique cases a) even valued nonlinearities
and b) odd valued nonlinearities.

1) Even valued nonlinearities:
Theorem 3: Consider a channel with even order nonlinear-

ity of the form: f(t) = c(t) + bc(t)2ν . In the nonlinear -even
ordered- channel case, the property of labels symmetry is valid
if

|b| < (ck1 − cj1)/(c2ν
k1 − c2ν

j1 ) (6)

where, the clusters with representatives fk = ck + bc2ν
k and

fj = cj + bc2ν
j form a pair of clusters and ck1 > cj1.

Proof: Let us consider that the transmitted data pass
through a linear filter. Then, the clusters representatives are
denoted by ck, k = 1, ..., Q, and they are labeled according
to Theorem 2. For example, consider the clusters ck and cj

forming a pair of clusters where

− ck1 < −cj1 < 0. (7)

Then, the label of −ck is I(t− i) = −1 and the label of −cj

is I(t − i) = +1.
In the sequel, we assume that, the output of the linear

channel passes through a memoryless even ordered nonlin-
earity, f(t) = c(t) + bc(t)2ν . Obviously, the clusters with
representatives −fk = −ck + bc2ν

k and −fj = −cj + bc2ν
j

correspond to transmitted data I(t − i) = −1 and I(t − i) =
+1, respectivelly. However, it can be observed that for some
values of b (obviously, b > 0) it may hold:

− ck1 + bc2ν
k1 > −cj1 + bc2ν

j1 . (8)

Or equivalently:
−fk > −fj .
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That is, due to the effect of the nonlinear function, the cluster
−fk has been moved to the right side of the cluster −fj . In
this case, the cluster −fk will be assigned the label -1 although
lying in the right side and −fj is labeled as +1 although lying
in the left side of the pair. Equation (8) can also be written
as:

b(c2ν
k1 − c2ν

j1 ) > ck1 − cj1.

Since, ck1 − cj1 > 0 (see (7)) then the value of b for which
the labeling condition of Theorem 2 is violated is:

b > (ck1 − cj1)/(c2ν
k1 − c2ν

j1 ).

By proceeding in the same way for ck1 > cj1 > 0 and b < 0
we conclude that Theorem 2 is not valid for b:

b < (cj1 − ck1)/(c2ν
k1 − c2ν

j1 ).

Consequently, in general, the property of labels symmetry is
not valid for b:

|b| > (ck1 − cj1)/(c2ν
k1 − c2ν

j1 ). (9)

For example, this condition for x = 2 implies that:

|b| > 1/(
∑

n�=i

2h(n)).

When the symmetry of labels is valid we can proceed for
the estimation of h(i)’s as described in the followings.

Theorem 4: The coefficients, h(i), i = 0, ..., L, are related
to the horizontal distances, lk1(i), of appropriately chosen
clusters pairs by the following relation:

2Lh(i) =

2L+1
∑

k=1

lk1(i), i = 0, ..., L. (10)

Proof: For the ease of writing, consider a quadratic
nonlinearity of the form

f(t) = c(t) + bc(t)2.

In this case, the clusters representatives can be expressed as:
fk = ck + bc2

k, (k = 1, ..., Q) where:

fk1 =
L

∑

i=0

Ikih(i)+ b
L

∑

i=0

I2
kih(i)2 + b

L
∑

i,j=0 i �=j

Ikih(i)Ikjh(j)

and

fk2 =

L+1
∑

i=1

Ikih(i − 1) + b

L+1
∑

i=1

I2
kih(i − 1)2+

b
L+1
∑

i,j=1 i �=j

Ikih(i − 1)Ikjh(j − 1).

The two dimensional data constellation is characterized by
2L ‘rectangulars’ of four clusters each. For example, in Fig. 6
we observe four rectangulars formed by the nonlinear channel
H(z) = 0.3 + 0.8z−1 + 0.3z−2 and b = 0.1. The clusters
with respective representatives: f1, f2, f3, f4 form a rectangular
since: |f11 − f21| = |f31 − f41|, |f12 − f32| = |f22 − f42|.
The (2L+1) horizontal lines of the rectangulars have endpoints
clusters which share the same transmitted data except Ik0.

Fig. 6. Clusters formed by the channel H(z) = 0.3 + 0.8z−1
+ 0.3z−2

and the nonlinear function f(t) = c(t) + 0.1c(t)2.

The length, li1(0), i = 1, ..., 2L+1, of a horizontal edge of a
rectangular is equal to

li1(0) = 2h(0) + 4bh(0)
L

∑

j=1

Iijh(j). (11)

The 2L possible values of li1(0) correspond to the 2L different
combinations of Iij (j = 1, ..., L). By adding the lengths of
all the horizontal lines of the rectangulars we get

2L+1
∑

i=1

li1(0) = 2Lh(0). (12)

This is true since in the sum appear all the possible
combinations of Iij’s which, due to the bipolar nature of data,
cancel each other.

Consider now the clusters pairs having vertical distance
equal to the lengths of the horizontal lines, i.e., fi2 − fj2 =
lk1(0). These pairs will obviously share the same data except
Ii1. Thus, by adding the corresponding horizontal distances,
li1(1), we get:

2L+1
∑

i=1

li1(1) = 2Lh(1). (13)

By proceeding in the same way for all channel taps we get:

2Lh(i) =
2l+1
∑

k=1

lk1(i), i = 0, ..., L. (14)

It can be easily shown that (14) is also true in general, for
all even valued nonlinearities.

2) Odd valued nonlinearities: In the case that odd order
nonlinearities are considered it can be easily shown that the
property of Theorem 4 is no more true. For example, in the
case of third order nonlinearites and a channel with L+1 taps
the clusters representatives can be expressed as:

fk1 =

L
∑

i=0

Ikih(i)+b

L
∑

i=0

I3
kih(i)3+b

L
∑

i,j=0 i �=j

I2
kih(i)2Ikjh(j)+

b
L

∑

i,j,n=0 i �=j �=n

Ikih(i)Ikjh(j)Iknh(n)
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and

fk2 =
L+1
∑

i=1

Ikih(i − 1) + b
L+1
∑

i=1

I3
kih(i − 1)3+

b
L+1
∑

i,j=1 i �=j

I2
kih(i − 1)2Ikjh(j − 1)+

b

L+1
∑

i,j,n=1 i�=j �=n

Ikih(i − 1)Ikjh(j − 1)Iknh(n − 1).

The length of an horizontal edge of a rectangular is equal
to:

fk1 − fj1 = li1(0) = 2h(0)+

6bh(0)
L

∑

n,j=1

Iijh(j)Iinh(n) + 2bh(0)3. (15)

When all horizontal lines are added the following result
arise:

2L+1
∑

i=1

li1(0) = 2Lh(0) + 2L3bh(0)

L
∑

j=0

h(j)2 + 2Lbh(0)3. (16)

That is, if we follow the previously described procedure for
the calculation of h(i), the values of the estimated ĥ(i) are
not exact, i.e.,

ĥ(i) = h(i) + bh(i)3 + 3bh(i)

L
∑

j=0,j �=i

h(j)2.

Consequently, in this case, the channel taps are not precisely
estimated by the proposed algorithm.

B. Symbol by Symbol Blind Clustering Equalizer for Nonlin-
ear channels

In the case of nonlinear -even valued- channel and for the
cases that the property of symmetric labels holds, a variation of
the proposed algorithm is adopted. First the 2L rectangulars of
clusters characterizing the two dimensional data constellation
are located. Then, all horizontal edges are added and the
h(0) tap is determined (Theorem 4). Then, the pairs that
have vertical distance equal to a horizontal line segment are
located. Subsequently, the horizontal distances of these pairs
are added and the coefficient h(1) is determined. We proceed
sequentially until h(L) is found.

Once the values of h(i) (i = 0, ..., L) are determined, the
maximum estimated tap, |h(d)|, is chosen. Then, the pairs
that are separated by the max horizontal distance (2|h(d)|)
are determined. Labeling is performed by assigning the -1
to the left cluster of a pair and the +1 to the right cluster
of the same pair. Once labeling has been completed the data
detection step follows in a similar manner as in the linear case
described before. The Symbol by Symbol Clustering Based
Blind Equalizer for nonlinear channels is tabulated in Table
II.

TABLE II

SYMBOL BY SYMBOL CLUSTERING BASED ALGORITHM - NON LINEAR

CASE

Symbol by Symbol Blind Equalizer for Nonlinear Channels

A. Estimation of the two dimensional clusters

A1. Estimation of the clusters representatives, fk , k = 1, ..., Q

Unsupervised learning

A2. Labeling of clusters

a) Find the 2
L rectangulars

b) Add all the horizontal edges of the rectangulars, determine |h(0)|
c) Determine the pairs with vertical distance equal to a horizontal edge.

Add all the horizontal distances of these pairs and determine |h(1)|.
Proceed sequentially until all |h(n)| are determined.

d) Determine the maximum tap |h(d)|.
e) Label the pairs of clusters (found in c)

separated by the maximum horizontal distance

left cluster: I(t − d) = −1, right cluster: I(t − d) = +1

B. Data detection

Nearest neighbor rule.

Fig. 7. Clusters formed by the linear channel H(z) = 0.3 + 0.8z−1
+

0.3z−2 and binary data.

Fig. 8. Performance Comparison. Linear Channel: H(z) = 0.3+0.8z−1
+

0.3z−2, ’-’: proposed equalizer, ’.’: blind CMA equalizer.
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V. SIMULATION RESULTS

A. Linear channel

In the first experiment data are assumed bipolar and a non
minimum phase channel is used where H(z) = 0.3+0.8z−1+
0.3z−2. The Signal to Noise Ratio is defined as

SNR = 10log(Sg/Sw)

where, Sg and Sw are the signal and the noise power respec-
tively. In this experiment the performance of the proposed
equalizer is compared to the performance of a blind equalizer
based on the Godard algorithm (Constant Modulus Algorithm,
CMA) [11].

In Fig. 7 appear the clusters formed in the two dimensional
space by this specific channel. The convex hull as well as the
values of the sequence of transmitted bits: I(t)I(t − 1)I(t −
2)I(t − 3) are also plotted. The horizontal and the vertical
lengths of the convex hull edges are: [0.6 0], [1.6 0.6], [0.6
1.6] [0 0.6] (each length couple corresponds to two edges).
The line segments which are parallel to Ei = [1.6 0.6] are also
plotted. The maximum channel tap is |h(d)| = 1.6/2 = 0.8.
Consequently, the proposed algorithm choose the pairs with
horizontal and vertical distance equal to [1.6 0.6]. Obviously,
by choosing this set of pairs the biggest horizontal separation
is imposed between the clusters pairs. All the respective pairs
of clusters are labeled as: I(t − 1) = 1 the right cluster and
I(t − 1) = −1 the left cluster.

The performance of the two equalizers appears in Fig. 8.
Clearly, the performance of the proposed equalizer outper-
forms the performance of the CMA equalizer.

B. Nonlinear channel

In the second experiment data are assumed bipolar and a
minimum phase filter is adopted with H(z) = 1 + 0.5z−1.
The output of the linear filter is passed through a memoryless
quadratic nonlinearity: f(t) = c(t) + 0.2c(t)2. The proposed
equalizer exhibits better performance compared to the perfor-
mance of the CMA equalizer (Fig. 9). For comparison reasons,
the performance of a blind Clustering Based Sequence Equal-
izer (CBSE) which performs the labeling procedure by using
Hidden Markov Model [4] is included. The performance of the
latter is better compared to the performance of the proposed
equalizer at the expense of a much more increased complexity.
Moreover, the performance of the proposed equalizer is also
compared to the performance of a nonlinear equalizer of
RLS type which models the channel nonlinearities as Volterra
series. From the figure it is seen that the performance of the
two equalizers is comparable, however, the proposed equalizer
has a smaller complexity as discussed later.

Next, the performance of the proposed equalizer is inves-
tigated in case of even and odd valued nonlinearities. The
channel is a cascade of the linear filter H(z) = 1+0.5z−1 and
the nonlinearity f(t) = c(t)+0.15c(t)2 +0.1c(t)3 +0.05c(t)4

[12]. Although the channel taps are not precisely estimated
by the algorithm, the proposed equalizer can be applied at
least for the case of mild odd valued nonlinearities as it is
illustrated by this simple example. The performance of the
four equalizers is illustrated in Fig. 10.

Fig. 9. Performance Comparison. Nonlinear Channel: H(z) = 1+0.5z−1,
f(t) = c(t)+0.2c(t)2, ’-’: proposed equalizer, ’.’: blind Volterra, ’- -’: blind
CMA, ‘.-’: blind CBSE equalizer.

Fig. 10. Performance Comparison. Nonlinear Channel: H(z) = 1+0.5z−1,
f(t) = c(t)+0.15c(t)2 +0.1c(t)3 +0.05c(t)4, ’-’: proposed equalizer, ’.’:
blind Volterra, ’- -’: blind CMA, ‘.-’: blind CBSE equalizer.

The above results have been verified on a variety of channels
and channel nonlinearities and indicate the effectiveness of the
algorithm.

C. Complex Data

The proposed equalizer can also be applied to the case of
complex transmitted data, i.e., I(t) = IR(t) + jII(t). Then,
the detection of the transmitted data is decomposed into two
subproblems: detection of real part of data and detection of
imaginary part of data [6]. Then the algorithm is applied first
to the real part of the received data, gR(t) and then to the
imaginary part of the received data, gI(t). The output of the
algorithm corresponds to the real and imaginary transmitted
data respectively, i.e, IR(t), II(t). Consider, for example, the
case of 4-QAM data and channel with H(z) = 1 + 0.5z−1.
Fig. 11 illustrates the two dimensional clusters formed by the
real part of the transmitted data. Clearly, this constellation is
identical with the constellation formed in the case of binary
data (Fig. 2) and contains all the information related to the
channel, as in the real data case.

D. Computational complexity

The complexity of the proposed equalizer depends on the
complexity of a) the unsupervised clustering algorithm b) the
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Fig. 11. The real part of clusters formed by the linear channel H(z) =

1 + 0.5z−1 and 4-QAM data.

labeling procedure and c) the decision task. The clustering and
labeling algorithms are batch procedures performed once using
a finite number of data. The total complexity is substantially
reduced compared to the complexity of the other cluster based
equalizers which a) adopt a complicated labeling algorithm
(e.g., an HMM procedure [4]) and b) operate on a sequence
decision mode. It should also be emphasized the fact that
the complexity of the decision step is very small. More
precisely, the decision step consists of a simple comparison
of the incoming data with all clusters representatives (2L+2).
However, only a small number of comparisons need to be
performed since data are first compared with the middle
cluster (clusters are assumed to be ordered in the output of
the representatives identification algorithm). Next comparison
is limited to the half of clusters and the incoming data is
compared with the middle cluster of this section and so on. The
procedure is repeated until the nearest cluster is found. This
procedure gives rise to a very small amount of comparisons.

E. Non identifiable channels

As most clustering algorithms, the proposed equalizer is
appropriate for channels that their clusters are not overlapped
in the 2- dimensional space. In the linear case this can arise
due to the channel nature, or due to very high noise level.
In the nonlinear case, the type of nonlinearity can be an
extra reason of clusters overlapping. Moreover, as it is already
noted, the algorithm is not appropriate for high levels of even
nonlinearities which make clusters to exchange positions and
thus alter the labels ordering.

VI. CONCLUSION

A new blind cluster based symbol by symbol equalizer has
been proposed. The equalizer consists of 3 steps: a) clusters
identification through an unsupervised learning algorithm, b)
labeling by unraveling the symmetric properties of labels in
the two dimensional clusters constellation and c) symbol by
symbol data detection. The algorithm is applicable to linear
channels, where an exact solution is given. Moreover, it can be
applied to nonlinear channels where a mild polynomial nonlin-
earity is assumed. Extensive simulation provide evidence that
the performance of the equalizer is superior to the performance

of a CMA-based blind equalizer. An additional advantage of
the proposed method is the low complexity associated to the
decision step.
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