Search results for: Maxwell-Cattaneo heat transfers equations
542 Harmonic Elimination of Hybrid Multilevel Inverters Using Particle Swarm Optimization
Authors: N. Janjamraj, A. Oonsivilai
Abstract:
This paper present the harmonic elimination of hybrid multilevel inverters (HMI) which could be increase the number of output voltage level. Total Harmonic Distortion (THD) is one of the most important requirements concerning performance indices. Because of many numbers output levels of HMI, it had numerous unknown variables of eliminate undesired individual harmonic and THD nonlinear equations set. Optimized harmonic stepped waveform (OHSW) is solving switching angles conventional method, but most complicated for solving as added level. The artificial intelligent techniques are deliberation to solve this problem. This paper presents the Particle Swarm Optimization (PSO) technique for solving switching angles to get minimum THD and eliminate undesired individual harmonics of 15-levels hybrid multilevel inverters. Consequently it had many variables and could eliminate numerous harmonics. Both advantages including high level of inverter and Particle Swarm Optimization (PSO) are used as powerful tools for harmonics elimination.Keywords: Multilevel Inverters, Particle Swarms Optimization, Harmonic Elimination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520541 Determination of Temperature and Velocity Fields in a Corridor at a Central Interim Spent Fuel Storage Facility Using Numerical Simulation
Authors: V. Salajka, J. Kala, P. Hradil
Abstract:
The presented article deals with the description of a numerical model of a corridor at a Central Interim Spent Fuel Storage Facility (hereinafter CISFSF). The model takes into account the effect of air flows on the temperature of stored waste. The computational model was implemented in the ANSYS/CFX programming environment in the form of a CFD task solution, which was compared with an approximate analytical calculation. The article includes a categorization of the individual alternatives for the ventilation of such underground systems. The aim was to evaluate a ventilation system for a CISFSF with regard to its stability and capacity to provide sufficient ventilation for the removal of heat produced by stored casks with spent nuclear fuel.Keywords: Temperature fields, Spent Fuel, Interim storage facility, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400540 Aerodynamic Stall Control of a Generic Airfoil using Synthetic Jet Actuator
Authors: Basharat Ali Haider, Naveed Durrani, Nadeem Aizud, Salimuddin Zahir
Abstract:
The aerodynamic stall control of a baseline 13-percent thick NASA GA(W)-2 airfoil using a synthetic jet actuator (SJA) is presented in this paper. Unsteady Reynolds-averaged Navier-Stokes equations are solved on a hybrid grid using a commercial software to simulate the effects of a synthetic jet actuator located at 13% of the chord from the leading edge at a Reynolds number Re = 2.1x106 and incidence angles from 16 to 22 degrees. The experimental data for the pressure distribution at Re = 3x106 and aerodynamic coefficients at Re = 2.1x106 (angle of attack varied from -16 to 22 degrees) without SJA is compared with the computational fluid dynamic (CFD) simulation as a baseline validation. A good agreement of the CFD simulations is obtained for aerodynamic coefficients and pressure distribution. A working SJA has been integrated with the baseline airfoil and initial focus is on the aerodynamic stall control at angles of attack from 16 to 22 degrees. The results show a noticeable improvement in the aerodynamic performance with increase in lift and decrease in drag at these post stall regimes.Keywords: Active flow control, Aerodynamic stall, Airfoilperformance, Synthetic jet actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311539 Ballast Water Management Triad: Administration, Ship Owner and the Seafarer
Authors: Rajoo Balaji, Omar Yaakob
Abstract:
The Ballast Water Convention requires less than 5% of the world tonnage for ratification. Consequently, ships will have to comply with the requirements. Compliance evaluation and enforcement will become mandatory. Ship owners have to invest in treatment systems and shipboard personnel have to operate them and ensure compliance. The monitoring and enforcement will be the responsibilities of the Administrations. Herein, a review of the current status of the Ballast Water Management and the issues faced by these are projected. Issues range from efficacy and economics of the treatment systems to sampling and testing. Health issues of chemical systems, paucity of data for decision support etc., are other issues. It is emphasized that management of ballast water must be extended to ashore and sustainable solutions must be researched upon. An exemplar treatment system based on ship’s waste heat is also suggested.
Keywords: Ballast water management, Compliance evaluation, Compliance enforcement, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190538 Bifurcations and Chaotic Solutions of Two-dimensional Zonal Jet Flow on a Rotating Sphere
Authors: Eiichi Sasaki, Shin-ichi Takehiro, Michio Yamada
Abstract:
We study bifurcation structure of the zonal jet flow the streamfunction of which is expressed by a single spherical harmonics on a rotating sphere. In the non-rotating case, we find that a steady traveling wave solution arises from the zonal jet flow through Hopf bifurcation. As the Reynolds number increases, several traveling solutions arise only through the pitchfork bifurcations and at high Reynolds number the bifurcating solutions become Hopf unstable. In the rotating case, on the other hand, under the stabilizing effect of rotation, as the absolute value of rotation rate increases, the number of the bifurcating solutions arising from the zonal jet flow decreases monotonically. We also carry out time integration to study unsteady solutions at high Reynolds number and find that in the non-rotating case the unsteady solutions are chaotic, while not in the rotating cases calculated. This result reflects the general tendency that the rotation stabilizes nonlinear solutions of Navier-Stokes equations.Keywords: rotating sphere, two-dimensional flow, bifurcationstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651537 Mathematical Modeling of Non-Isothermal Multi-Component Fluid Flow in Pipes Applying to Rapid Gas Decompression in Rich and Base Gases
Authors: Evgeniy Burlutskiy
Abstract:
The paper presents a one-dimensional transient mathematical model of compressible non-isothermal multicomponent fluid mixture flow in a pipe. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales- Eakin (LGE) correlation. Numerical analysis of rapid gas decompression process in rich and base natural gases is made on the basis of the proposed mathematical model. The model is successfully validated on the experimental data [1]. The proposed mathematical model shows a very good agreement with the experimental data [1] in a wide range of pressure values and predicts the decompression in rich and base gas mixtures much better than analytical and mathematical models, which are available from the open source literature.Keywords: Mathematical model, Multi-Component gas mixture flow, Rapid Gas Decompression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952536 Design and Analysis of Piping System with Supports Using CAESAR-II
Authors: M. Jamuna Rani, K. Ramanathan
Abstract:
A steam power plant is housed with various types of equipments like boiler, turbine, heat exchanger etc. These equipments are mainly connected with piping systems. Such a piping layout design depends mainly on stress analysis and flexibility. It will vary with respect to pipe geometrical properties, pressure, temperature, and supports. The present paper is to analyze the presence and effect of hangers and expansion joints in the piping layout/routing using CAESAR-II software. Main aim of piping stress analysis is to provide adequate flexibility for absorbing thermal expansion, code compliance for stresses and displacement incurred in piping system. The design is said to be safe if all these are in allowable range as per code. In this study, a sample problem is considered for analysis as per power piping ASME B31.1 code and the results thus obtained are compared.
Keywords: ASTM B31.1, hanger, expansion joint, CAESAR-II.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5133535 Effect of Shear Wall Openings on the Fundamental Period of Shear Wall Structures
Authors: Anas M. Fares, A. Touqan
Abstract:
A common approach in resisting lateral forces is the use of reinforced concrete shear walls in buildings. These walls represent the main elements to resist the lateral forces due to their large strength and stiffness. However, such walls may contain many openings due to functional requirements, and this may largely affect the overall lateral stiffness of them. It is thus of prime importance to quantify the effect of openings on the dynamic performance of the shear walls. SAP2000 structural analysis program is used as a main source after verifying the results. This study is made by using linear elastic analysis. The results are compared to ASCE7-16 code empirical equations for estimating the fundamental period of shear wall structures. Finally, statistical regression is used to fit an equation for estimating the increase in the fundamental period of shear-walled regular structures due to windows openings in the walls.Keywords: Concrete, earthquake-resistant design, finite element, fundamental period, lateral stiffness, linear analysis, modal analysis, rayleigh, SAP2000, shear wall, ASCE7-16.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458534 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador
Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego
Abstract:
In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.
Keywords: Hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779533 Characteristics of Maximum Gliding Endurance Path for High-Altitude Solar UAVs
Authors: Gao Xian-Zhong, Hou Zhong-xi, Guo Zheng, Liu Jian-xia
Abstract:
Gliding during night without electric power is an efficient method to enhance endurance performance of solar aircrafts. The properties of maximum gliding endurance path are studied in this paper. The problem is formulated as an optimization problem about maximum endurance can be sustained by certain potential energy storage with dynamic equations and aerodynamic parameter constrains. The optimal gliding path is generated based on gauss pseudo-spectral method. In order to analyse relationship between altitude, velocity of solar UAVs and its endurance performance, the lift coefficient in interval of [0.4, 1.2] and flight envelopes between 0~30km are investigated. Results show that broad range of lift coefficient can improve solar aircrafts- long endurance performance, and it is possible for a solar aircraft to achieve the aim of long endurance during whole night just by potential energy storage.
Keywords: Solar UAVs, Gliding Endurance, gauss pseudo-spectral method, optimization problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2925532 Thermomechanical and Metallurgical Analysis of SMA and GTA Welded Low Carbon Steel Butt Joints
Authors: J. Dutta, P. Pranith Kumar Reddy
Abstract:
This research paper portrays a comparative analysis of thermomechanical behaviour of Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) of low carbon steel of AISI 1020 grade butt joints. The thermal history has been obtained by experimental work. We have focused on temperature dependent cooling rate as depicted by Adam’s two-dimensional model. The effect of moving point heat source of SMAW and GTAW on mechanical properties has been judged by optical and scanning electron micrographs of different regions in weld joints. The microhardness study has been carried to visualize the joint strength due to formation of different phases.
Keywords: Shielded metal arc welding, gas tungsten arc welding, low carbon steel, microhardness study, thermal history, microscopic morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203531 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method
Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi
Abstract:
The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.
Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888530 Coupled Lateral-Torsional Free Vibrations Analysis of Laminated Composite Beam using Differential Quadrature Method
Authors: S.H. Mirtalaie, M. Mohammadi, M.A. Hajabasi, F.Hejripour
Abstract:
In this paper the Differential Quadrature Method (DQM) is employed to study the coupled lateral-torsional free vibration behavior of the laminated composite beams. In such structures due to the fiber orientations in various layers, the lateral displacement leads to a twisting moment. The coupling of lateral and torsional vibrations is modeled by the bending-twisting material coupling rigidity. In the present study, in addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies of the beam. The governing differential equations of motion which form a system of three coupled PDEs are solved numerically using DQ procedure under different boundary conditions consist of the combinations of simply, clamped, free and other end conditions. The resulting natural frequencies and mode shapes for cantilever beam are compared with similar results in the literature and good agreement is achieved.
Keywords: Differential Quadrature Method, Free vibration, Laminated composite beam, Material coupling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129529 The Effect of Ageing Treatment of Aluminum Alloys for Fuselage Structure-Light Aircraft
Authors: Shwe Wut Hmon Aye, Kay Thi Lwin, Waing Waing Kay Khine Oo
Abstract:
As the material used for fuselage structure must possess low density, high strength to weight ratio, the selection of appropriate materials for fuselage structure is one of the most important tasks. Aluminum metal itself is soft and low in strength. It can be made stronger by giving proper combination of suitable alloy addition, mechanical treatment and thermal treatment. The usual thermal treatment given to aluminum alloys is called age-hardening or precipitation hardening. In this paper, the studies are carried out on 7075 aluminum alloy which is how to improve strength level for fuselage structure. The marked effect of the strength on the ternary alloy is clearly demonstrated at several ageing times and temperatures. It is concluded that aluminum-zinc-magnesium alloy can get the highest strength level in natural ageing.Keywords: Aluminum alloy, ageing, heat treatment, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322528 Jacobi-Based Methods in Solving Fuzzy Linear Systems
Authors: Lazim Abdullah, Nurhakimah Ab. Rahman
Abstract:
Linear systems are widely used in many fields of science and engineering. In many applications, at least some of the parameters of the system are represented by fuzzy rather than crisp numbers. Therefore it is important to perform numerical algorithms or procedures that would treat general fuzzy linear systems and solve them using iterative methods. This paper aims are to solve fuzzy linear systems using four types of Jacobi based iterative methods. Four iterative methods based on Jacobi are used for solving a general n × n fuzzy system of linear equations of the form Ax = b , where A is a crisp matrix and b an arbitrary fuzzy vector. The Jacobi, Jacobi Over-Relaxation, Refinement of Jacobi and Refinement of Jacobi Over-Relaxation methods was tested to a five by five fuzzy linear system. It is found that all the tested methods were iterated differently. Due to the effect of extrapolation parameters and the refinement, the Refinement of Jacobi Over-Relaxation method was outperformed the other three methods.
Keywords: Fuzzy linear systems, Jacobi, Jacobi Over- Relaxation, Refinement of Jacobi, Refinement of Jacobi Over- Relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410527 Uniform Heating during Focused Ultrasound Thermal Therapy
Authors: To-Yuan Chen, Tzu-Ching Shih, Hao-Li Liu, Kuen-Cheng Ju
Abstract:
The focal spot of a high intensity focused ultrasound transducer is small. To heat a large target volume, multiple treatment spots are required. If the power of each treatment spot is fixed, it could results in insufficient heating of initial spots and over-heating of later ones, which is caused by the thermal diffusion. Hence, to produce a uniform heated volume, the delivered energy of each treatment spot should be properly adjusted. In this study, we proposed an iterative, extrapolation technique to adjust the required ultrasound energy of each treatment spot. Three different scanning pathways were used to evaluate the performance of this technique. Results indicate that by using the proposed technique, uniform heating volume could be obtained.Keywords: focused ultrasound, thermal therapy, uniform heating, iteration, extrapolation, scan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626526 Generalized Method for Estimating Best-Fit Vertical Alignments for Profile Data
Authors: Said M. Easa, Shinya Kikuchi
Abstract:
When the profile information of an existing road is missing or not up-to-date and the parameters of the vertical alignment are needed for engineering analysis, the engineer has to recreate the geometric design features of the road alignment using collected profile data. The profile data may be collected using traditional surveying methods, global positioning systems, or digital imagery. This paper develops a method that estimates the parameters of the geometric features that best characterize the existing vertical alignments in terms of tangents and the expressions of the curve, that may be symmetrical, asymmetrical, reverse, and complex vertical curves. The method is implemented using an Excel-based optimization method that minimizes the differences between the observed profile and the profiles estimated from the equations of the vertical curve. The method uses a 'wireframe' representation of the profile that makes the proposed method applicable to all types of vertical curves. A secondary contribution of this paper is to introduce the properties of the equal-arc asymmetrical curve that has been recently developed in the highway geometric design field.Keywords: Optimization, parameters, data, reverse, spreadsheet, vertical curves
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448525 Modeling and Design of an Active Leg Orthosis for Tumble Protection
Authors: Eileen Chih-Ying Yang, Liang-Han Wu, Chieh-Min Chang
Abstract:
The design of an active leg orthosis for tumble protection is proposed in this paper. The orthosis would be applied to assist elders or invalids in rebalancing while they fall unexpectedly. We observe the regain balance motion of healthy and youthful people, and find the difference to elders or invalids. First, the physical model of leg would be established, and we consider the leg motions are achieve through four joints (phalanx stem, ankle, knee, and hip joint) and five links (phalanges, talus, tibia, femur, and hip bone). To formulate the dynamic equations, the coordinates which can clearly describe the position in 3D space are first defined accordance with the human movement of leg, and the kinematics and dynamics of the leg movement can be formulated based on the robotics. For the purpose, assisting elders and invalids in avoiding tumble, the posture variation of unbalance and regaining balance motion are recorded by the motion-capture image system, and the trajectory is taken as the desire one. Then we calculate the force and moment of each joint based on the leg motion model through programming MATLAB code. The results would be primary information of the active leg orthosis design for tumble protection.Keywords: Active leg orthosis, Tumble protection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643524 Thermodynamic Equilibrium of Nitrogen Species Discharge: Comparison with Global Model
Authors: Saktioto, F.D Ismail, P.P. Yupapin, J. Ali
Abstract:
The equilibrium process of plasma nitrogen species by chemical kinetic reactions along various pressures is successfully investigated. The equilibrium process is required in industrial application to obtain the stable condition when heating up the material for having homogenous reaction. Nitrogen species densities is modeled by a continuity equation and extended Arrhenius form. These equations are used to integrate the change of density over the time. The integration is to acquire density and the reaction rate of each reaction where temperature and time dependence are imposed. A comparison is made with global model within pressure range of 1- 100mTorr and the temperature of electron is set to be higher than other nitrogen species. The results shows that the chemical kinetic model only agrees for high pressure because of no power imposed; while the global model considers the external power along the pressure range then the electron and nitrogen species give highly quantity densities by factor of 3 to 5.Keywords: chemical kinetic model, Arrhenius equation, nitrogen plasma, low pressure discharge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735523 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings
Authors: Marco T. C. Faria
Abstract:
Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent loadcarrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steadystate and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.
Keywords: Elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3245522 Contributions to Design of Systems Actuated by Shape Memory Active Elements
Authors: Daniel Amariei, Calin O. Miclosina, Ion Vela, Marius Tufoi, Cornel Mituletu
Abstract:
Even it has been recognized that Shape Memory Alloys (SMA) have a significant potential for deployment actuators, the number of applications of SMA-based actuators to the present day is still quite small, due to the need of deep understanding of the thermo-mechanical behavior of SMA, causing an important need for a mathematical model able to describe all thermo-mechanical properties of SMA by relatively simple final set of constitutive equations. SMAs offer attractive potentials such as: reversible strains of several percent, generation of high recovery stresses and high power / weight ratios. The paper tries to provide an overview of the shape memory functions and a presentation of the designed and developed temperature control system used for a gripper actuated by two pairs of differential SMA active springs. An experimental setup was established, using electrical energy for actuator-s springs heating process. As for holding the temperature of the SMA springs at certain level for a long time was developed a control system in order to avoid the active elements overheating.Keywords: active element, actuator, model, Nitinol, prehension
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536521 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils
Authors: Sara Soltanpour, Adolfo Foriero
Abstract:
Frost heave is arguably the most problematic adverse phenomenon in cold region areas. It is a complex process that depends on heat and water transfer. The coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled Thermal-Hydraulic-Mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).
Keywords: Frost heave, numerical simulations, COMSOL software, unsaturated freezing soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 291520 Modeling of Blood Flow Velocity into the Main Artery via Left Ventricle of Heart during Steady Condition
Authors: Mohd Azrul Hisham Mohd Adib, Nur Hazreen Mohd Hasni
Abstract:
A three-dimensional and pulsatile blood flow in the left ventricle of heart model has been studied numerically. The geometry was derived from a simple approximation of the left ventricle model and the numerical simulations were obtained using a formulation of the Navier-Stokes equations. In this study, simulation was used to investigate the pattern of flow velocity in 3D model of heart with consider the left ventricle based on critical parameter of blood under steady condition. Our results demonstrate that flow velocity focused from mitral valve channel and continuous linearly to left ventricle wall but this skewness progresses into outside wall in atrium through aortic valve with random distribution that is irregular due to force subtract from ventricle wall during cardiac cycle. The findings are the prediction of the behavior of the blood flow velocity pattern in steady flow condition which can assist the medical practitioners in their decision on the patients- treatments.
Keywords: Mitral Valve, Aortic Valve, Cardiac Cycle, Leaflet, Biomechanics, Left Ventricle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138519 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission
Authors: Ramin Khamedi, Isa Ahmadi
Abstract:
In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).
Keywords: Dual Phase Steel, Deformation, Acoustic Emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541518 Interaction between Unsteady Supersonic Jet and Vortex Rings
Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya
Abstract:
The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.Keywords: Computational fluid dynamics, shock wave, unsteady jet, vortex ring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382517 Operation Parameters of Vacuum Cleaned Filters
Authors: Wilhelm Hoeflinger, Thomas Laminger, Johannes Wolfslehner
Abstract:
For vacuum cleaned dust filters there exist no calculation methods to determine design parameters (e.g. traverse velocity of the nozzle, filter area…). In this work a method to calculate the optimum traverse velocity of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions.
A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other.
Keywords: Design of dust filter, Dust removing, Filter regeneration, Operation parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934516 Flow inside Micro-Channel Bounded by Superhydrophobic Surface with Eccentric Micro-Grooves
Authors: Yu Chen, Weiwei Ren, Xiaojing Mu, Feng Zhang, Yi Xu
Abstract:
The superhydrophobic surface is widely used to reduce friction for the flow inside micro-channel and can be used to control/manipulate fluid, cells and even proteins in lab-on-chip. Fabricating micro grooves on hydrophobic surfaces is a common method to obtain such superhydrophobic surface. This study utilized the numerical method to investigate the effect of eccentric micro-grooves on the friction of flow inside micro-channel. A detailed parametric study was conducted to reveal how the eccentricity of micro-grooves affects the micro-channel flow under different grooves sizes, channel heights, Reynolds number. The results showed that the superhydrophobic surface with eccentric micro-grooves induces less friction than the counter part with aligning micro-grooves, which means requiring less power for pumps.Keywords: Superhydrophobic, transverse grooves, heat transfer, slip length, microfluidics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040515 Usability in E-Commerce Websites: Results of Eye Tracking Evaluations
Authors: Beste Kaysı, Yasemin Topaloğlu
Abstract:
Usability is one of the most important quality attributes for web-based information systems. Specifically, for e-commerce applications, usability becomes more prominent. In this study, we aimed to explore the features that experienced users seek in e-commerce applications. We used eye tracking method in evaluations. Eye movement data are obtained from the eye-tracking method and analyzed based on task completion time, number of fixations, as well as heat map and gaze plot measures. The results of the analysis show that the eye movements of participants' are too static in certain areas and their areas of interest are scattered in many different places. It has been determined that this causes users to fail to complete their transactions. According to the findings, we outlined the issues to improve the usability of e-commerce websites. Then we propose solutions to identify the issues. In this way, it is expected that e-commerce sites will be developed which will make experienced users more satisfied.
Keywords: E-commerce websites, eye tracking method, usability, website evaluations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266514 Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates
Authors: H. Fazlinejad, A. Halvaee
Abstract:
In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ.
Keywords: ATIG, active flux, weld penetration, Al 1050, ZnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831513 Agent/Group/Role Organizational Model to Simulate an Industrial Control System
Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua
Abstract:
The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.
Keywords: Complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189